3.7 積分の理論

閉区間 [a,b] 上で定義された関数 1 f(x) の定積分を考える. 分割,分点 Δ 閉区間 [a,b] を有限個の分点 $a=t_0 < t_1 < \ldots < t_n = b$ によって区切る.これを分割

$$\Delta = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

を与えると言う . $\{t_j\}_{J=0}^n$ を分割 Δ の分点と呼ぶ .

$$|\Delta| = \max_{1 \le i \le n} |t_j - t_{j-1}|$$

を分割 Δ の幅という.不足和,過剰和 分割 $\Delta=\{a=t_0 < t_1 < \ldots < t_n=b\}$ が与えられたとき,関数 f(x) に対して

$$\bar{S}(f;\Delta) = \sum_{j=1}^{n} M_j |t_j - t_{j-1}|$$

$$S(f;\Delta) = \sum_{j=1}^{n} m_j |t_j - t_{j-1}|$$

$$\underline{\mathbf{S}}(f;\Delta) = \sum_{j=1}^{n} m_j |t_j - t_{j-1}|$$

とおく. ただし, $j=1,2,\ldots,n$ に対して

$$M_j = \sup\{f(x); t_{j-1} \le x \le t_j\}, \quad m_j = \inf\{f(x); t_{j-1} \le x \le t_j\}$$

とする $.\bar{S}(f;\Delta)$ を過剰和 $,\underline{S}(f;\Delta)$ を不足和と呼ぶ .

細分 Δ_1,Δ_2 を区間 [a,b] の分割とするそれぞれの分点を $\{t_j\}_{j=0}^n,\,\{s_k\}_{k=0}^m$ と書くことにする.このとき, Δ_1 は Δ_2 の 細分であるとは, Δ_1 の分点はすべての Δ_2 の分点を含む,つまり

$$\{t_j\}_{j=0}^n \supset \{s_k\}_{k=0}^m$$

となるときに言う.このとき $\Delta_1 \rhd \Delta_2$ と書くことにしよう 2 . 定義から $\Delta_1 \rhd \Delta_2$ のとき

$$\bar{S}(f; \Delta_1) \leq \bar{S}(f; \Delta_2)$$

 $S(f; \Delta_1) > S(f; \Delta_2)$

 $\underline{S}(J;\Delta_1) \geq \underline{S}(J;\Delta_1)$

が成り立つことは明らかだろう.

 $^{^1}$ こう書くと分かった気になるが,これではあまりにも対象が広すぎて困ることになる.例えば有理数で 0 無理数で 1 の値をとる関数などもある.

 $^{^2}$ 細分の記号として国際標準は決まっていないようだ、教科書によっては $\Delta_1\succeq\Delta_2$ と書いているのもある、記号を使わない事も多い、

定理 3.11 f(x) が閉区間 [a,b] 上で連続ならば

$$\lim_{|\Delta_n| \to 0} \bar{S}(f; \Delta_n) = \lim_{|\Delta_n| \to 0} \underline{S}(f; \Delta_n)$$
(4)

が成り立つ.

(4) が成り立つとき f は [a,b] 上 Riemann の意味で積分可能と言い,この極限を

$$\int_{a}^{b} f(x)dx$$

と書く.

定理 3.11 の証明

1) 細分列にそった極限の存在

最初に [a,b] の分割の細分列 $\{\Delta_n\}$ をとる . つまり n < m ならば $\Delta_m \rhd \Delta_n$ となるものとする . さらに定理の仮定のように

$$\lim_{n \to \infty} |\Delta_n| = 0$$

としておく.この時,上に注意したように

$$\underline{S}(f; \Delta_1) \leq \ldots \leq \underline{S}(f; \Delta_n) \leq \bar{S}(f; \Delta_n) \leq \ldots \leq \bar{S}(f; \Delta_1)$$

となり, $\{\bar{S}(f;\Delta_n)\}$ は下に有界な単調減少列で, $\underline{S}(f;\Delta_n)$ は上に有界な単調増大列であり,どちらも $n\to\infty$ のとき極限 $\bar{S}(f)$ と $\underline{S}(f)$ をもつ.途中の不等式から $\underline{S}(f;\Delta_n) \leq \bar{S}(f;\Delta_n)$ だから, $n\to\infty$ として $\underline{S}(f) \leq \bar{S}(f)$ が分かる.

一方で , f(x) が閉区間 [a,b] 上で連続なので , f(x) は [a,b] 上で一様連続 3 になることが知られている . つまり

任意の $\varepsilon>0$ に対して $\delta>0$ が決まって , $x,y\in[a,b]$ が $|x-y|<\delta$ を満たすほど近ければ [a,b] 内のどこにあっても

$$|f(x) - f(y)| < \varepsilon$$

が成り立つ.

このことを使うと, $\varepsilon>0$ を任意に小さく与えたとき, δ を一様連続性から選んでおく.細分列 $\{\Delta_n\}$ で n を大きくとれば $|\Delta_n|<\delta$ とできる.このような分割 Δ_n について考える.

 $[\]overline{^3f(x)=rac{1}{x}}$ は (0,1] では一様連続ではないが , [c,1] (0< c<1) 上では一様連続になる .

分割 Δ_n の分点を $a=t_0 < t_1 < \ldots < t_m = b$ と書こう. ほんとはそれぞれの分点は n に関係して変わるので $t_1^{(n)}, t_2^{(n)}, \ldots, t_{m(n)}^{(n)}$ と表すべきだが, 記号が複雑になるので上のように n は省略しておく.

分割 Δ_n の各小区間 $[t_{j-1},t_j]$ 上では f(x) は連続なので最大値と最小値をとる点 c_i,d_i が $t_{i-1}\leq c_i,d_i\leq t_i$ とれて

$$f(c_j) \le f(x) \le f(d_j)$$
 $t_{j-1} \le \forall x \le t_j$

となる. つまり, このとき $M_i = f(d_i), m_i = f(c_i)$ だから,

$$|c_j - d_j| \le t_j - t_{j-1} \le |\Delta_n| < \delta$$

となるが,一様連続性からこのとき

$$0 \le M_i - m_i = f(d_i) - f(c_i) \le \varepsilon$$

となっている.これは任意の $1 \leq j \leq m$ で正しい. このことから $|\Delta_n| < \delta$ ならば

$$0 \le \bar{S}(f; \Delta_n) - \underline{S}(f; \Delta_n) = \sum_{j=1}^m (M_j - m_j)(t_j - t_{j-1}) \le \varepsilon \sum_j (t_j - t_{j-1}) = (b - a)\varepsilon.$$

この差は n とともに単調に減少するから $n \to \infty$ として

$$0 \le \bar{S}(f) - \underline{S}(f) \le \varepsilon(b - a)$$

が任意の $\varepsilon>0$ に対して成り立つ . $\varepsilon\to 0$ として $\bar{S}(f)=\underline{S}(f)$ が成り立つ . この値を単に S と書いておく .

分割の幅が小さければ過剰和も不足和も S に近いこと 最後に , 任意の分割 $\varepsilon>0$ に対して δ_0 がとれて $|\Delta|<\delta_0$ ならば

$$|\underline{S}(f;\Delta) - S| < \varepsilon, \quad |\bar{S}(f;\Delta) - S| < \varepsilon$$

が成り立つことを言えばよい (Sが最初にとった細分列 $\{\Delta_n\}$ に関係して決まっている事に注意.上の式はこれが細分列のとり方によらないことを言っている。)

まず,細分列 $\{\Delta_n\}$ の元でnを十分大きくとり,

$$|\underline{S}(f;\Delta_n) - S| + |\bar{S}(f;\Delta) - S| < \frac{\varepsilon}{2}$$

となるようにしておくことができる . Δ_n の分点を $\{t_j\}_{j=1}^m$ と書こう . $\delta_0>0$ を十分小さくとり , $x,y\in[a,b]$ が $|x-y|<\delta_0$ を満たすならば

$$|f(x) - f(y)| < \frac{\varepsilon}{2(b-a)}$$

となるようにしておく.これは f の一様連続性から可能.

いま, $|\Delta|<\delta_0$ とする.この時, Δ の分点を $\{s_i\}_{i=0}^N$ と書くとき,上と同じ議論で

$$0 \le \bar{S}(f;\delta) - \underline{S}(f;\Delta) = \sum_{i=1}^{N} (M_i - m_i)(s_i - s_{i-1}) < \frac{\varepsilon}{3(b-a)} \sum_{i=1}^{N} (s_i - s_{i-1}) < \frac{\varepsilon}{2}$$

が分かる.

次に, Δ と Δ_n の分点を合わせてできる分割を Δ^* と書こう. Δ^* は Δ , Δ_n の細分になっているから

$$S - \frac{\varepsilon}{2} < \underline{S}(f; \Delta_n) \le \underline{S}(f; \Delta^*) \le \bar{S}(f; \Delta^*) \le \bar{S}(f; \Delta_n) < S + \frac{\varepsilon}{2}$$
 (5)

となる.また Δ の任意の小区間 $[s_{i-1},si]$ をみるとき,この中に Δ^* の分点が $s_{i-1}=u_0^i< u_1^i<\ldots< u_{k(i)}^i=s_i$ と入っているとすると,この区間内での $\underline{S}(f;\Delta^*)$ と $\underline{S}(f;\Delta)$ に対応する差は

$$\sum_{\ell=1}^{k(i)} \min_{x \in [u_{\ell-1}^i, u_{\ell}^i]} f(x) (u_{\ell}^i - u_{\ell-1}^i) - m_i (s_i - s_{i-1}) \le \frac{\varepsilon(s_i - s_{i-1})}{2(b-a)}$$

と評価できる. したがってこれをi について加えると

$$0 \le \underline{\mathbf{S}}(f; \Delta^*) - \underline{\mathbf{S}}(f; \Delta) < \frac{\varepsilon}{2}. \tag{6}$$

(5),(6)を合わせると,

$$\underline{\mathbf{S}}(f;\Delta) > \underline{\mathbf{S}}(f;\Delta^*) - \frac{\varepsilon}{2} > S - \varepsilon$$

同じ議論で $\bar{S}(f;\Delta)$ についても

$$\bar{S}(f;\Delta) < \bar{S}(f;\Delta^*) + \frac{\varepsilon}{2} < S + \varepsilon$$

したがって S をひくと

$$-\varepsilon < \underline{S}(f;\Delta) - S \le \bar{S}(f;\Delta) - S < \varepsilon$$

練習 3.11 今日の講義で,疑問に思ったことをリストアップせよ.