Genus two curves associated with the autonomous 4-dimensional Painlevé-type systems

Web-seminar on Painlevé Equations and related topics

September, 10th, 2021

Akane Nakamura (Josai University)

•The autonomous limit of the Painlevé-type equations •Generic degeneration of spectral curves for 4dimensional equations •Families of Laurent series solutions and the Painlevé divisors Uniqueness (up to isomorphism) of the genus two curves in the Jacobians of our spectral curves •Eric Rains, "Generalized Hitchin systems on rational surfaces" and generic degeneration of spectral curves

Outline

Consider the following system of linear equations Consider the following system of the equations $\delta \frac{\partial Y}{\partial x} = A(x, s)Y, \quad \frac{\partial Y}{\partial t} = B(x, s)Y,$ The integrability condition $\frac{\partial^2 Y}{\partial x \partial t} = \frac{\partial^2 Y}{\partial t \partial x}$ gives a nonlinear equation $\frac{\partial A}{\partial t} - \delta \frac{\partial B}{\partial x} + [A, B] = 0.$ When $\delta = \frac{ds}{dt} = 1$, this gives the usual isomonodromic deformation. When $\delta = 0$, we have an isospectral deformation.

The linear equation of the Painlevé equations and autonomous limit

Linear and nonlinear problem

Linear (Lax, Higgs)

$\lambda \to 0$ for λ -connection

commutative

isospectral deformation

\rightarrow | Nonlinear (Hitchin systems)

autonomous limit

Linear (Lax, connection) ^{isomonodromic deformation} Nonlinear (Painlevé-type systems)

noncommutative

$A(x) = \begin{pmatrix} -px^{2} + qx + q^{2} + s \\ x - q \end{pmatrix}.$

The spectral curve is defined by $det(yI_2 - A(x)) = 0$, which is equivalent to

The family of spectral curves parametrized by $h = H_{I} \in \mathbb{P}^{1}$ also defines an elliptic surface with $E_8^{(1)}$ singular fiber.

Example The autonomous first Painlevé equation has the following Lax pair.

 $y^2 = x^3 + sx + H_{\rm I}$.

Koda	aira's c	:lassifi	catior	of sin	gular	fibers	and	Tate's	algorithm	
We can compute the type of singular fiber of an elliptic surface f										
the orders of discriminant and the j-invariant.										
$v^2 = r^3 + ar + b$ $A - Aa^3 + 27b^2 i - 4a^3$										
$y = x + \alpha x + b$ $\Delta = 4\alpha + 27b$, $J = \Delta$.										
For an affine equation $\tilde{y}^2 = \tilde{x}^3 + s\tilde{h}^4\tilde{x} + \tilde{h}^5$ around $h = \infty$ obtained										
by $h = 1/\tilde{h}$, $v = \tilde{v}/\tilde{h}^3$, $x = \tilde{x}/\tilde{h}^2$. Δ and <i>i</i> are										
$\Delta = \Delta (s\tilde{h}^4)^3 + 27(\tilde{h}^5)^2 = \tilde{h}^{10}(\Delta s^3\tilde{h}^2 + 27) i = \frac{4(s\tilde{h}^4)^3}{2} = \frac{4s^4\tilde{h}^2}{2}$										
	- + (37))	(n) –	- 11 (+3),] —	Δ	4,	$s^{3}\tilde{h}^{2} + 27$	
Kodaira	Dynkin	$\operatorname{ord}(\Delta)$	$\operatorname{ord}(j)$	Kodaira	Dynkin	$\operatorname{ord}(\Delta)$	$\operatorname{ord}(j)$			
I ₀		0	≥ 0	I*	$D_4^{(1)}$	6	≥ 0			
I_m	$A_{m-1}^{(1)}$	m	-m	I_m^*	$D_{4+m}^{(1)}$	6+m	-m			
Π	<u>–</u>	2	≥ 0	IV*	$E_{6}^{(1)}$	8	≥ 0			
III	$A_1^{(1)}$	3	≥ 0	III*	$E_{7}^{(1)}$	9	≥ 0			
IV	$A_{2}^{(1)}$	4	≥ 0	II^*	$E_8^{(1)}$	10	≥ 0			

Degeneration scheme of the 4-dimensional Painlevé-type equations (Kimura, Kawamuko, Sakai, Sakai-Kawakami-N., Kawakami)

 $H_{\rm Gar}^5$ H^{4+1}_{-} Gar $H_{\text{Gar}}^{\frac{7}{2}+1}$ H_{Gar}^{3+2} HGar $H_{\text{Gar}}^{\frac{5}{2}+1+1}$ $H_{\text{Gar}}^{\frac{5}{2}+\frac{3}{2}}$ Gar $H_{\text{Gar}}^{2+\frac{3}{2}+1}$ H_{Gar}^2 $H_{\text{Suz}}^{2+\frac{3}{2}}$ $_{J}\Pi(D_{7})$ $_{I}III(D_8)$ H_{Mat} Mat $H_{\rm Mat}^{\rm l}$ $H_{\rm Mat}^{\rm II}$

Example 0 The autonomous Garnier system of type $\frac{1}{2}$ is given by the Hamiltonians $H_{Gar,s_1}^{\frac{9}{2}} = p_1 q_2^2 - p_1 s_1 + p_2 s_2 + p_1^4 + 3p_2 p_1^2 + p_2^2 - 2q_1 q_2,$ $H_{\text{Gar},s_2}^{\frac{3}{2}} = p_1^2 q_2^2 - 2p_1 q_1 q_2 + p_2 q_2^2 + p_1^3 s_2 + p_1 s_2^2 + p_2 p_1 s_2 + p_2 s_1 - p_2 p_1^3 - 2p_2^2 p_1^2 p_2 p_1^2 p_2^2 + p_2 p_1 s_2 + p_2 p_1 s_2 + p_2 s_1 - p_2 p_1^3 - 2p_2^2 p_1^2 p_2^2 p_2^2 p_1^2 p_2^2 p_2^2 p_1^2 p_2^2 p_1^2 p_2^2 p_1^2 p_2^2 p_1^2 p_2^2 p_2^2 p_1^2 p_2^2 p_2^2 p_2^2 p_1^2 p_2^2 p_2^2 p_1^2 p_2^2 p_2^2 p_1^2 p_2^2 p_2^2 p_1^2 p_2^2 p_2^$ $-q_2^2s_2 + q_1^2$,

A regular level set (= the Liouville torus) is an affine part of an abelian surface.

 $\bigcap_{i=1} \left\{ H_i(q_1, p_1, q_2, p_2) = h_i \right\}$

The autonomous Garnier system of type $\frac{1}{2}$ has a Lax pair with $A(x) = A_0 x^3 + A_1 x^2 + A_2 x + A_3,$ and its spectral curve det(yI - A(x)) = 0 is

This is a genus 2 hyperelliptic curve.

Example

$y^{2} = x^{5} + 3s_{2}x^{3} - s_{1}x^{2} + (2s_{2}^{2} - h_{1})x + h_{2} - s_{1}s_{2}.$

Comparison of genus 1 and 2 curves

genus	1	2
curve	elliptic curve	hyperelliptic curve
Jacobian	elliptic curve	abelian surface
possible types of singular fibers	Kodaira	Namikawa-Ueno
algorithm	Tate's algorithm	Liu's algorithm
normal form	$y^2 = x^3 + ax + b$	$y^2 = a_1 x^5 + \dots + a_5$

generic constant in the base space. Performing the genus counterpart of Tate's algorithm, we find Namikawa-Ueno's VII* as the type of special fiber at $h_1 = \infty$.

Generic degeneration of the spectral curves Our genus 2 spectral curves are parametrized by h_1, h_2 . We shall consider the degeneration along a line $h_2 = ah_1 + b$, where a, b are

Other examples

$$I_2 - I_1^* - 0: H_{Ss}^{D_5}$$

Weight homogeneous vector field and the Laurent series solutions

A polynomial $f \in \mathbb{C}[x_1, \cdots, x_n]$ is a weight homogeneous polynomial of degree k if

A polynomial vector field $\dot{x}_i = f_i(x_1, \cdots, x_i)$ is weight homogeneous if f_1, \cdots, f_n $\nu_i + 1$ $(i = 1, \cdots, n)$ respectively.

Definition

$$f(t^{\nu_1}x_1, \cdots, t^{\nu_n}x_n) = t^k f(x_1, \cdots, x_n).$$

$\dot{x}_i = f_i(x_1, \cdots, x_n) \quad (i = 1, \cdots, n)$ is weight homogeneous if f_1, \cdots, f_n are weight homogeneous with weight

Theorem(Kowalevskaya, Yoshida, Adler-van Moerbeke)

 $\nu_i x_i^{(0)} + f_i(x_1^{(0)}, \dots, x_n^{(0)}) = 0 \ (i = 1, \dots, n).$ $\mathcal{K}_{i,j} = \frac{\partial f_i}{\partial x_i} + \nu_i \delta_{i,j}.$

Example: The 2-dimense
Let us consider the autonomous
$$H_{\rm I}(q,p) = p^2 - q^3 -$$

The Hamiltonian system is thus
 $\dot{q} = 2p, \quad \dot{p} = 3q^2 -$
This is a weight-homogeneous sy

$$egin{array}{c|c} \deg(q,p) & \deg(H_1,s) \ (2,3) & (6,4) \end{array}$$

We assume the following form of formal solutions ∞ k=0

sional first Painlevé equation $H_{\rm I}$ given by the Hamiltonian SQ.

-S. stem with the weights

We will solve for the coefficient of the formal solution k=0

for

$\dot{q} = 2p, \quad \dot{p} = 3q^2 + s.$ The initial terms have to satisfy the following nonlinear equations $2x_1^{(0)} + 2x_2^{(0)} = 0, \ 3x_2^{(0)} + 3\left(x_1^{(0)}\right)^2 = 0.$ These indicial equations have two solutions $(x_1^{(0)}, x_2^{(0)}) = (0,0) = m_1, (1, -1) = m_2.$

The subsequent terms can be computed by solving linear equations $(kI_2 - \mathscr{K}(x^{(0)})) \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \end{pmatrix} = \begin{pmatrix} R_1^{(k)} \\ R_2^{(k)} \end{pmatrix},$ where each $R_i^{(k)}$ is a polynomial which depends on the variables $x_1^{(l)}, x_2^{(l)}$ with $1 \leq l \leq k - 1$. Also, the Kowalevskatya matrix \mathcal{K} is $\mathcal{K} = \begin{pmatrix} \frac{\partial f_1}{\partial q} & \frac{\partial f_1}{\partial p} \\ \frac{\partial f_2}{\partial q} & \frac{\partial f_2}{\partial p} \end{pmatrix} + \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 6q & 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$ $f_1 = 2p, f_2 = 3q^2 + s$

 $p(t;m_1) = \frac{\beta}{2} + t \left(3\alpha^2 + s\right) + 3\alpha\beta t^2 + t^3 \left(6\alpha^3 + \beta^2 + 2\alpha s\right) + O\left(t^4\right).$

When $(x_1^{(0)}, x_2^{(0)}) = (1, -1) = m_2$, the Kowalevskaya matrix is now $\mathscr{K}(m_1) = \begin{pmatrix} 2 & 2 \\ 6x_1^{(0)} & 3 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 6 & 3 \end{pmatrix} \cdot \sim \begin{pmatrix} -1 & 0 \\ 0 & \zeta \end{pmatrix}$ There terms $x^{(k)}$ for $k \neq 6$ (the only non-negative eigenvalue of $\mathcal{K}(m_2)$) are uniquely determined by $(kI_2 - \mathscr{K}(m_2)) \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \end{pmatrix} = \begin{pmatrix} R_1^{(k)} \\ R_2^{(k)} \end{pmatrix}.$ Therefore, we obtain the following family of the Laurent series solution

with a parameter γ .

 $q(t;m_2) = \frac{1}{t^2} - \frac{s}{5}t^2 + \gamma t^4 + \frac{s^2}{75}t^6 - \frac{3s\gamma}{55}t^8 + O(t^{10}),$ $p(t;m_2) = -\frac{1}{t^3} - \frac{s}{5}t + 2\gamma t^3 + \frac{s^2}{25}t^5 - \frac{12s\gamma}{55}t^7 + O(t^9).$

H(q,p) = h, we have $H(q(t; m_{\gamma}), p(t; m_{\gamma})) = -7\gamma = h.$

indicial locus K-exponents $m_1 = (0, 0)$ (2,3) $m_2 = (1, -1)$ -1, 6)

 $\frac{dq_1}{dt} = 4p_1^3 + 6p_2p_1 + q_2^2 - s_1,$ $\frac{dp_1}{dt} = 2q_2,$

weights.

 $\deg(H_1, H_2, s_1, s_2)$ $\deg(q_1, p_1, q_2, p_2)$ (8, 10, 6, 4)(5, 2, 3, 4)

This is a weight-homogeneous Hamiltonian system with the following

There are 3 types of family of Laurent series solutions to $H_{\text{Gar},s_1}^{\overline{2}}$. fiber (Liouville torus) indicial locus # free para's K-exponents $m_1 = (0, 0, 0, 0)$ (2, 3, 4, 5)affine abelian surface 4 $m_2 = (-1, 1, -1, 0)$ (-1, 2, 5, 8)3 genus two curve (-1, -3, 8, 10) $m_3 = (9, 3, -3, -9)$ 2 point

The following families of Laurent series starting from $m_2 = (-1, 1, -1, 0) \text{ contains three free parameters, } \alpha, \beta, \gamma.$ $q_1(t; m_2) = -\frac{1}{t^5} + \frac{\alpha}{t^3} + \beta + t \left(-\frac{\alpha^3}{2} - \frac{9\alpha s_2}{35} + \frac{s_1}{7}\right) - \frac{15}{2}t^2(\alpha\beta) + \gamma t^3$ $+t^4\left(\frac{18\beta s_2}{7}-\frac{15\alpha^2\beta}{2}\right)+O(t^5),$ $p_q(t;m_2) = \frac{1}{t^2} + \frac{\alpha}{2} + t^2 \left(-\frac{3\alpha^2}{4} - \frac{3s_2}{5} \right) - 4\beta t^3 + \frac{1}{28}t^4 \left(-35\alpha^3 - 24\alpha s_2 + 4s_1 \right) + O\left(t^5\right),$ $q_2(t;m_2) = -\frac{1}{t^3} + t\left(-\frac{3\alpha^2}{4} - \frac{3s_2}{5}\right) - 6\beta t^2 + \frac{1}{14}t^3\left(-35\alpha^3 - 24\alpha s_2 + 4s_1\right) - \frac{15}{2}t^4(\alpha\beta)$ $+O(t^{5}),$ $p_2(t;m_2) = -\frac{3\alpha}{2t^2} + \left(\frac{3\alpha^2}{2} + s_2\right) + 6\beta t + 6\beta t$ $3t^4 \left(1925\alpha^4 + 1680\gamma - 120\alpha^4\right)$ 1232

$$\begin{array}{l} \cdot t^{2} \left(\frac{9\alpha^{3}}{8} + \frac{9\alpha s_{2}}{10} \right) \\ \alpha^{2} s_{2} - 400\alpha s_{1} - 1008s_{2}^{2} \right) \\ \frac{1}{20} + O \left(t^{5} \right) . \end{array}$$

The level set of the moment map is $H_{s_1}(q_1(t;m_2), p_1(t;m_2), q_2(t;m_2), p_2(t;m_2)) = h_1,$ $H_{s_2}(q_1(t;m_2), p_1(t;m_2), q_2(t;m_2), p_2(t;m_2)) = h_2.$ These are equivalent to the followings $\frac{405\alpha^4}{32} + \frac{812}{22} + \frac{648\alpha^2 s_2}{77} - \frac{150\alpha s_1}{77} - \frac{23s_2^2}{110} = h_1, \quad r = \cdots$ $s_1 \left(s_2 - \frac{207\alpha^2}{308} \right) + \frac{81 \left(35 \left(99\alpha^5 + 48\alpha\gamma + 704\beta^2 \right) + 760\alpha^3 s_2 - 1008\alpha s_2^2 \right)}{24640} = h_2.$ This is equivalent to $-\frac{243\alpha^5}{32} + 81\beta^2 + \frac{3\alpha h_1}{2} - \frac{81\alpha^3 s_2}{8} + s_1 \left(\frac{9\alpha^2}{4} + s_2\right) - 3\alpha s_2^2 = h_2.$ By replacing $\alpha = \frac{2}{3}x$, $\beta = \frac{1}{9}y$, the equation reads painleve divisor of the $y^2 = x^5 + 3s_2x^3 - s_1x^2 + (2s_2^2 - h_1)x + h_2 - s_1s_2.$ Liouville torus)

In this example of the autonomous Garnier system of type $\frac{1}{2}$, the spectral curve (linear) and the Painleve divisor (nonlinear) are difined by the same equation

$$y^2 = x^5 + 3s_2x^3 - s_1x$$

We will show in the following that it is not a mere coincidence.

 $x^{2} + (2s_{2}^{2} - h_{1})x + h_{2} - s_{1}s_{2}$.

Theorem(N.-Rains) For the 4-dimensional autonomous Painlevé-type equations, any genus the spectral curve.

Corollary For the 4-dimensional autonomous Painlevé-type equations, any genus 2 component of the generic Painlevé divisor is isomorphic to the corresponding spectral curve. In particular, the generic degeneration of the spectral curve and the generic degeneration of any irreducible component of the Painlevé divisor are the same.

2 curve in the Jacobian of the generic spectral curve is isomorphic to

Nonlinear to linear

·····>

Nonlinear

Painlevé divisor

generic degeneration of the Painlevé divisors

Linear (Lax)

spectral curve

 \rightarrow

generic degeneration of the spectral curves

Sketch of the proof

the Jacobian J(C) for our spectral curves.

(Then the classical Torelli theorem for curves assures the uniqueness of isomorphism class of curves.)

Theorem(Torelli) are isomorphic.

•It is enough to prove the uniqueness of the principal polarization of

Two Jacobians $(J(C), \Theta)$ and $(J(C'), \Theta')$ of smooth curves C and C' are isomorphic as polarized abelian varieties if and only if C and C'

•It is enough to prove the Jacobian A = J(C) has no nontrivial endomorphisms.

For a polarization $L \in NS(A) = Im(c_1 \colon H^1(\mathcal{O}_A^*) \to H^2(A, \mathbb{Z}))$, we get where $t_a: A \to A$ is the translation by $a \in A$. NS(A) and the symmetric (w.r.t Rosati involution) endomorphisms.

 $\phi_I : A \to \hat{A} = \operatorname{Pic}^0(A)$ $a \mapsto t_a^* L \otimes L^{-1}$ For a principal polarization $L_0 \in NS(A)$, we get an isomorphism of $NS(A) \simeq End^{s}(A)$ $L \mapsto \phi_{L_0}^{-1} \phi_L$

the most degenerated 6 cases.

When an equation P_A degenerates to P_B , the endomorphism ring for P_A injects in the endomorphism ring for P_B .

Under some mild assumptions for S, we have the following, $\operatorname{End}\left(A_{K(S)}\right) \simeq \operatorname{End}_{S}(A) \hookrightarrow \operatorname{End}_{s}(A_{s})$ where $s \in S$.

If we can prove that the endomorphism rings of the most degenerated equations are trivial, then all the other equations degenerating to one of these 6 equations also have trivial endomorphism rings.

•It is enough to prove the triviality of the endomorphism rings for

•For the most degenerated 6 types, we can check that their endomorphism rings are trivial by direct computation.

1)Note that the Jacobian of a generic hyperelliptic curve has trivial endomorphism ring. We can show that the family of spectral curves of a system of type $H_{Gar}^{\frac{9}{2}}, H_{Gar}^{\frac{5}{2}+\frac{3}{2}}, H_{Mat}^{III(D_8)}, H_{Mat}^{I}$ dominates the moduli space of genus two curves, so that a typical curve in our family has no non-trivial endomorphisms. We can use absolute Igusa invariants $I_1 = \frac{J_4}{J_2^2}, I_2 = \frac{J_6}{J_2^3}, I_3 = \frac{J_{10}}{J_2^5}$ as coordinates for the affine subset $\mathcal{M}_2 \setminus \{J_2 \neq 0\}$. Use Jacobian criterion to check that these are algebraically independent.

•For the most degenerated 6 types, we can check that their endomorphism rings are trivial by direct computation.

2) Use reduction modulo two different primes to reduce the problems to curves over finite field study the intersection.

Remark Approach 1) using the Igusa invariants does not work for $H_{KFS}^{\frac{4}{3}+\frac{4}{3}}$ and $H^{\frac{3}{2}+}$

semicontinuity of endomorphism rings

 $\operatorname{End}_{S}(A)$

 $\operatorname{End}_{\mathbb{F}_p}(A_p)$

The endomorphism of an abelian variety A over a finite field \mathbb{F}_p can be studied using the Frobenius endomorphism $\pi: A \longrightarrow A$ $(x_0:\cdots:x_n)\mapsto (x_0^p:\cdots:x_n^p).$ If the characteristic polynomial of the Frobenius endomorphism has no multiple root, then $\operatorname{End}_{\mathbb{F}_n}(A) \otimes \mathbb{Q} = \mathbb{Q}[\pi]$. For the Jacobian A = J(C) the characteristic polynomial of π can be computed from the Zeta function of the curve C (Weil conjecture). $Z(C,s) = \exp\left(\sum_{m=1}^{\infty} \frac{\#C(\mathbb{F}_{p^m})}{m} p^{-ms}\right) = \frac{L(t)}{(1-t)(1-pt)},$ for $t = p^{-s}$, and $P(t) = t^{2g}L\left(\frac{1}{t}\right)$ is the characteristic polynomial.

The spectral curve for $H_{KFS}^{\frac{4}{3}+\frac{4}{3}}$ is $y^{2} = x^{6} - 2x^{5} + (2h_{1} + 1)x^{4} + 2(h_{2} - h_{1})x^{3} + (h_{1}^{2} - 2h_{2})x^{2} + 2h_{1}h_{2}x + h_{2}^{2} - 4s.$ p = 37.

We can compute using Magma that

The zeta function of this hyperelliptic curve is $Z_{C_1}(t) = \frac{37^2t^4 - 37 \cdot 2t^3 + 38t^2 - 2t + 1}{(1-t)(1-37t)} = \frac{L_1(t)}{(1-t)(1-37t)}.$ The characteristic polynomial of Frobenius is

 $P_1(t) = t^4 L_1\left(\frac{1}{t}\right) = t^4 - 2t^3 + 38t^2 - 37 \cdot 2t + 37^2.$

Consider an instance $h_1 = 12$, $h_2 = 17$, s = 29 and reduce this curve modulo

 $C_1: y^2 = x^6 + 35x^5 + 25x^4 + 10x^3 + 36x^2 + x + 25.$

 $N_1 = \#C_1(\mathbb{F}_p) = 36, \quad N_2 = \#C_1(\mathbb{F}_{p^2}) = 1442.$

We have, $\operatorname{End}_{\mathbb{F}_p}(J(C_1)) \otimes \mathbb{Q} \simeq \mathbb{Q}(\alpha) = \mathbb{Q}[t]/P_1(t),$ where α is a root of the characteristic polynomial $P_1(t) = t^4 - 2t^3 + 38t^2 - 37 \cdot 2t + 37^2$ = $\left(t^2 - (1 + \sqrt{37})t + 37\right) \left(t^2 - (1 - \sqrt{37})t + 37\right).$

the Galois group of $P_1(t)$ is $D_4 = \langle \sigma = (1234), \tau = (13) \rangle$. $\therefore P_1(t)$ is irreducible over \mathbb{Q} (\Rightarrow The Galois group is transitive.) • The Galois group does not contain the whole group S_4

Note that $\mathbb{Q}(\alpha)$ contains the unique degree 2 subfield over \mathbb{Q} , since • The Galois group contains a transposition (\Rightarrow not a subgroup of A_A)

The Galois group of

Consider the same curve over \mathbb{Q} , but reduce modulo a different prime q = 53 to obtain $C_2: y^2 = x^6 + 51x^5 + 25x^4 + 10x^3 + 4x^2 + 37x + 14.$ We find that $\#C_2\left(\mathbb{F}_q
ight)=57,\,\#C_2\left(\mathbb{F}_{q^2}
ight)=3001.$ The zeta function of this hyperelliptic curve is $Z_{C_2}(t) = \frac{53^2t^4 + 53 \cdot 3t^3 + 100t^2 + 3t + 1}{(1-t)(1-53t)}.$ The characteristic polynomial of Frobenius is $P_2(t) = t^4 + 3t^3 + 100t^2 + 53 \cdot 3t + 53^2$ $= \left(t^{2} + \frac{3 + \sqrt{33}}{2}t + 53\right) \left(t^{2} + \frac{3 - \sqrt{33}}{2}t + 53\right).$

 $(h_1, h_2, s) = (12, 17, 29)$

$\mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) = \mathbb{Q}$ $\therefore \operatorname{End}_{s}(A_{s}) = \mathbb{Z}$

 $\operatorname{End}_{\mathbb{F}_q}(A_q)\otimes \mathbb{Q}=\mathbb{Q}(\beta)$ $\mathbb{Q}(\sqrt{53})$

specialize to
a point
$$s \in S$$

a point $s \in S$
b) $\leftarrow \sim \operatorname{End}_{S}(A) \longleftrightarrow \operatorname{End}_{s}(A)$
ndomorphism on the
generic fiber can be
tended to the family

 $\operatorname{End}_{\mathbb{F}_p}(A_p) \otimes \mathbb{Q}$ is generated by the Frobenius (non-trivial, yet computable by counting points)

Degeneration scheme of the 4-dimensional Painlevé-type equations (Kimura, Kawamuko, Sakai, Sakai-Kawakami-N., Kawakami)

 $H_{\rm Mat}^{\rm II}$

 $H_{\rm Gar}^5$ H^{4+1}_{2} Gar $H_{\text{Gar}}^{\frac{7}{2}+1}$ H_{Gar}^{3+2} HGar $H_{\text{Gar}}^{\frac{5}{2}+1+1}$ H_{Gar}^2 HGar $H_{\text{Gar}}^{2+\frac{3}{2}+1}$ $H_{\rm Gar}^2$ $H_{\text{Suz}}^{2+\frac{3}{2}}$ $_{J}\Pi(D_{7})$ $\operatorname{III}(D_8)$ $H_{\rm Mat}$ Mat

 $H^{\rm I}_{\rm Mat}$

Eric Rains, Generalized Hitchin systems on rational surfaces arXiv:1307.4033, p.65 Moduli of sheaves on surfaces

Let (X, C_{α}) be an anticanonical rational surface. Say a coherent sheaf on X has integral support if its 0-th Fitting scheme is an integral curve on X, and it contains no 0-dimensional subsheaf.

Theorem 6.1. Let (X, C_{α}) be an anticanonical rational surface over an algebraically closed field of characteristic p, let D be a divisor class with generic representative an integral curve disjoint from C_{α} , and let r be the largest integer such that $D \in r \operatorname{Pic}(X)$. Then the moduli problem of classifying sheaves M on X with integral support, $c_1(M) = D$, $\chi(M) = x$, and $M|_{C_{\alpha}} = 0$ is represented by a quasiprojective variety $\mathcal{I}rr_X(D,x)$ of dimension D^2+2 , with a symplectic structure induced by any choice of nonzero holomorphic differential on C_{α} . Moreover, $\mathcal{I}rr_X(D,x)$ is unirational if the generic representative of D has no cusp, separably unirational if p = 0 or gcd(x, r, p) = 1, and rational if $x \mod r \in \{1, r-1\}$. Finally, if gcd(x, r) = 1, then there exists a universal sheaf over $\mathcal{I}rr_X(D,x).$

anticanonical curve C_{α} .

6

Blow up the surface (F_2 etc.) to separate D (spectral curve) from the

Example: The $A_{A}^{(1)}$ -Noumi-Yamada System nonsymmetric differece Garnier): ((11))((1)), 111 $D = 3s + 3f - 2e_1 - 2e_2 - e_3 - e_4 - e_5$ $-e_6 - e_7 - e_8 - e_9 - e_{10}$ $= C_{\alpha} + D^{\text{res}}$

$$\begin{pmatrix} x = 0 & x = \\ 0 & 0 & 0 & \theta_1^{\circ} \\ 0 & 0 & \theta_1^{0} & \theta_2^{\circ} \\ 1 & -t & \theta_2^{0} & \theta_3^{\circ} \end{pmatrix}$$

C_{α} : anticanonical $D^{\text{res}} = s + f - e_1 - e_2$

$IV^* - II_3 : H_{NY}^{A_4}$

See you at the RIMS Review Seminar "Generalized Hitchin Systems, Non-commutative Geometry and Special Functions", with Prof. Eric Rains as a special guest.

This is a part of RIMS Research Project 2020 "Differential Geometry and Integrable Systems – Mathematics of Symmetry, Stability and Moduli –", organized by Prof. Ohnita.

2020 May->2021 May->2021 November->??

Some of the references

•M. Adler, P. van Moerbeke, and P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, vol. 47, Springer-Verlag, 2004. •H. Kawakami, A. Nakamura, and H. Sakai, Degeneration scheme of 4dimensional Painlevé-type equations, vol. 37, MSJ Memoirs, 2018. •H. Kawakami, Four-dimensional Painlevé-type equations... 2017,2018,2020. N., Autonomous limit of 4-dimensional Painlevé-type equations and degeneration of curves of genus two, Annales de l'Institut Fourier, 2019.

•N., The Painlevé divisors of the autonomous 4-dimensional Painlevé-type equations, <u>RIMS Kôkyûroku Bessatsu</u>, B78, 2020. •N., E. Rains, Uniqueness of polarization for the autonomous 4-dimensional Painlevé-type systems, <u>IMRN</u>, 2020. •E. Rains, Generalized Hitchin systems on rational surfaces, arXiv:1307.4033, 2013.

Some of the references

•M. Adler, P. van Moerbeke, and P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, vol. 47, Springer-Verlag, 2004. •H. Kawakami, A. Nakamura, and H. Sakai, Degeneration scheme of 4dimensional Painlevé-type equations, vol. 37, MSJ Memoirs, 2018. •H. Kawakami, Four-dimensional Painlevé-type equations... 2017,2018,2020. N., Autonomous limit of 4-dimensional Painlevé-type equations and degeneration of curves of genus two, Annales de l'Institut Fourier, 2019.

•N., The Painlevé divisors of the autonomous 4-dimensional Painlevé-type equations, <u>RIMS Kôkyûroku Bessatsu</u>, B78, 2020. •N., E. Rains, Uniqueness of polarization for the autonomous 4-dimensional Painlevé-type systems, <u>IMRN</u>, 2020. •E. Rains, Generalized Hitchin systems on rational surfaces, arXiv:1307.4033, 2013.

