Discrete Hamiltonians of the discrete Painlevé equations

坂井 秀隆
SAKAI Hidetaka

Joint work with T．Mase and A．Nakamura

1 Oct． 2021

Content

（1）Introduction
（2）discrete Painlevé equations
（3）Case1：Biquadratic Hamiltonians of differential systems
（4）Case2：井 type
（5）Case3：コ type

Content

（1）Introduction

（2）discrete Painlevé equations

（3）Case1：Biquadratic Hamiltonians of differential systems
（4）Case2：井 type
（5）Case3：コ type

Introduction

We study the discrete Painlevé equations in parallel to studies of the Painlevé differential equations．
e．g．Lax pair，specail solutions，and so on．

Introduction

We study the discrete Painlevé equations in parallel to studies of the Painlevé differential equations．
e．g．Lax pair，specail solutions，and so on．

Difference：

Introduction

We study the discrete Painlevé equations in parallel to studies of the Painlevé differential equations．
e．g．Lax pair，specail solutions，and so on．

Difference：
The Painlevé differential equation is expressed as a Hamiltonian system， whereas the discrete Painlevé equation does not have such an expression．

The Painlevé differential equations are written in the form of the canonical systems with the Hamiltonians：

The Painlevé differential equations are written in the form of the canonical systems with the Hamiltonians：

$$
\left[\frac{d s}{d t}=s(s-1)\right],
$$

$$
\begin{aligned}
& H_{\mathrm{VI}}\left(\begin{array}{c}
a_{1}, a_{2} \\
a_{3}, a_{4}
\end{array} t ; q, p\right)=q(q-1)(q-s) p^{2} \\
& \quad \quad+\left\{\left(a_{1}+2 a_{2}\right) q(q-1)+a_{3}(s-1) q+a_{4} s(q-1)\right\} p+a_{2}\left(a_{1}+a_{2}\right) q, \\
& H_{\mathrm{V}}\left(\begin{array}{c}
a_{1}, a_{2} \\
a_{3}
\end{array} ; t ; q, p\right)=p(p+1) q\left(q+e^{t}\right)+a_{1} q(p+1)+a_{3} p q-a_{2} e^{t} p, \\
& H_{I I I}\left(D_{6}\right)\left(a_{1}, b_{1} ; t ; q, p\right)=p(p+1) q^{2}-a_{1} p(q-1)-b_{1} p q-e^{t} q, \\
& H_{\text {III }}\left(D_{7}\right)\left(a_{1} ; t ; q, p\right)=p^{2} q^{2}+a_{1} q p+e^{t} p+q, \\
& H_{\text {III }}\left(D_{8}\right)(t ; q, p)=p^{2} q^{2}+q p-q-\frac{e^{t}}{q}, \\
& H_{\text {IV }}\left(a_{1}, a_{2} ; t ; q, p\right)=p q(p-q-t)-a_{1} p-a_{2} q, \\
& H_{I I}\left(a_{1} ; t ; q, p\right)=p\left(p-q^{2}-t\right)-a_{1} q, \quad H_{I}(t ; q, p)=p^{2}-q^{3}-t q .
\end{aligned}
$$

Why do we use the Hamiltonian expression？

Why do we use the Hamiltonian expression？

1．Hamiltonian is an invariant．

Why do we use the Hamiltonian expression？
1．Hamiltonian is an invariant．
\rightarrow
It is not applicable to non－autonomous cases．

Why do we use the Hamiltonian expression？
1．Hamiltonian is an invariant．
$\rightarrow \quad$ It is not applicable to non－autonomous cases．
2．Hamiltonian gives a simple expression to a dynamical system．

Why do we use the Hamiltonian expression？
1．Hamiltonian is an invariant．
$\rightarrow \quad$ It is not applicable to non－autonomous cases．

2．Hamiltonian gives a simple expression to a dynamical system．
$\rightarrow \quad$ The Hamiltonian function can give a clue to identify the system．

Why do we use the Hamiltonian expression？
1．Hamiltonian is an invariant．
$\rightarrow \quad$ It is not applicable to non－autonomous cases．

2．Hamiltonian gives a simple expression to a dynamical system．
$\rightarrow \quad$ The Hamiltonian function can give a clue to identify the system．
If a discrete dynamical system can be described simply using function W on a phase space，we call this W a discrete Hamiltonian，although it is a vague terminology．

Discrete Lagrangian and discrete Hamiltonian

Starting from a function：$L_{k}(r, s): M^{n} \times M^{n} \rightarrow \mathbb{R}$ ．（We call it Lagrangian．）

Discrete Lagrangian and discrete Hamiltonian

Starting from a function：$L_{k}(r, s): M^{n} \times M^{n} \rightarrow \mathbb{R}$ ．（We call it Lagrangian．）
We consider formal sum $S(\lambda)=\sum_{k \in \mathbb{Z}} L_{k}\left(\lambda_{k}, \lambda_{k+1}\right)$ ，and $\delta S=0$ ：

$$
\begin{aligned}
\delta S(\lambda) & =\sum_{k \in \mathbb{Z}} \delta L_{k}\left(\lambda_{k}, \lambda_{k+1}\right) \\
& =\sum_{k \in \mathbb{Z}}\left\{L_{k}\left(\lambda_{k}+\delta \lambda_{k}, \lambda_{k+1}+\delta \lambda_{k+1}\right)-L_{k}\left(\lambda_{k}, \lambda_{k+1}\right)\right\} \\
& =\sum_{k \in \mathbb{Z}}\left\{\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right) \delta \lambda_{k}+\frac{\partial L_{k}}{\partial s}\left(\lambda_{k}, \lambda_{k+1}\right) \delta \lambda_{k+1}\right\} \\
& =\sum_{k \in \mathbb{Z}}\left\{\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right)+\frac{\partial L_{k-1}}{\partial s}\left(\lambda_{k-1}, \lambda_{k}\right)\right\} \delta \lambda_{k}=0
\end{aligned}
$$

Discrete Lagrangian and discrete Hamiltonian

Starting from a function：$L_{k}(r, s): M^{n} \times M^{n} \rightarrow \mathbb{R}$ ．（We call it Lagrangian．）
We consider formal sum $S(\lambda)=\sum_{k \in \mathbb{Z}} L_{k}\left(\lambda_{k}, \lambda_{k+1}\right)$ ，and $\delta S=0$ ：

$$
\begin{aligned}
& \delta S(\lambda)=\sum_{k \in \mathbb{Z}} \delta L_{k}\left(\lambda_{k}, \lambda_{k+1}\right) \\
&=\sum_{k \in \mathbb{Z}}\left\{L_{k}\left(\lambda_{k}+\delta \lambda_{k}, \lambda_{k+1}+\delta \lambda_{k+1}\right)-L_{k}\left(\lambda_{k}, \lambda_{k+1}\right)\right\} \\
&=\sum_{k \in \mathbb{Z}}\left\{\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right) \delta \lambda_{k}+\frac{\partial L_{k}}{\partial s}\left(\lambda_{k}, \lambda_{k+1}\right) \delta \lambda_{k+1}\right\} \\
&=\sum_{k \in \mathbb{Z}}\left\{\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right)+\frac{\partial L_{k-1}}{\partial s}\left(\lambda_{k-1}, \lambda_{k}\right)\right\} \delta \lambda_{k}=0 . \\
& \rightarrow \quad \frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right)+\frac{\partial L_{k-1}}{\partial s}\left(\lambda_{k-1}, \lambda_{k}\right)=0 \quad \text { (Euler-Lagrange). }
\end{aligned}
$$

Discrete Lagrangian and discrete Hamiltonian

Legendre transformation：
We put $\mu_{k}=\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right)=-\frac{\partial L_{k-1}}{\partial s}\left(\lambda_{k-1}, \lambda_{k}\right)$ ， and put $H(\lambda, \bar{\mu})=\bar{\lambda} \bar{\mu}+L(\lambda, \bar{\lambda})$ ．

Discrete Lagrangian and discrete Hamiltonian

Legendre transformation：
We put $\mu_{k}=\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right)=-\frac{\partial L_{k-1}}{\partial s}\left(\lambda_{k-1}, \lambda_{k}\right)$ ， and put $H(\lambda, \bar{\mu})=\bar{\lambda} \bar{\mu}+L(\lambda, \bar{\lambda})$ ．

Then the system is written as

$$
\bar{\lambda}=\frac{\partial H}{\partial \bar{\mu}}, \quad \mu=\frac{\partial H}{\partial \lambda} .
$$

Discrete Lagrangian and discrete Hamiltonian

Legendre transformation：
We put $\mu_{k}=\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right)=-\frac{\partial L_{k-1}}{\partial s}\left(\lambda_{k-1}, \lambda_{k}\right)$ ， and put $H(\lambda, \bar{\mu})=\bar{\lambda} \bar{\mu}+L(\lambda, \bar{\lambda})$ ．

Then the system is written as

$$
\bar{\lambda}=\frac{\partial H}{\partial \bar{\mu}}, \quad \mu=\frac{\partial H}{\partial \lambda} .
$$

But we know this form．It is just a generating function of a canonical transformation．
$d \mu \wedge d \lambda$ is an invariant form（symplectic）．

Discrete Lagrangian and discrete Hamiltonian

Legendre transformation：
We put $\mu_{k}=\frac{\partial L_{k}}{\partial r}\left(\lambda_{k}, \lambda_{k+1}\right)=-\frac{\partial L_{k-1}}{\partial s}\left(\lambda_{k-1}, \lambda_{k}\right)$ ， and put $H(\lambda, \bar{\mu})=\bar{\lambda} \bar{\mu}+L(\lambda, \bar{\lambda})$ ．

Then the system is written as

$$
\bar{\lambda}=\frac{\partial H}{\partial \bar{\mu}}, \quad \mu=\frac{\partial H}{\partial \lambda} .
$$

But we know this form．It is just a generating function of a canonical transformation．
$d \mu \wedge d \lambda$ is an invariant form（symplectic）．
We forget the Lagrangian，and only consider the generating function of the cananical transformation．

Content

（1）Introduction

（2）discrete Painlevé equations

（3）Case1：Biquadratic Hamiltonians of differential systems

4 Case2：井 type
（5）Case3：コ type

discrete Painlevé equations

Discrete Painlevé equations are classified by the types of certain rational surfaces：

discrete Painlevé equations

Discrete Painlevé equations are classified by the types of certain rational surfaces：

Definition

Let X be a smooth projective rational surface．We call X a generalized Halphen surface if X has an anti－canonical divisor of canonical type．

discrete Painlevé equations

Discrete Painlevé equations are classified by the types of certain rational surfaces：

Definition

Let X be a smooth projective rational surface．We call X a generalized Halphen surface if X has an anti－canonical divisor of canonical type．

Let $D=\sum_{i \in I} m_{i} D_{i}$ be an effective divisor on X with irreducible components D_{i} ．We say that D is of canonical type if

$$
\mathcal{K}_{X} \cdot\left[D_{i}\right]=0 \quad \text { for all } i
$$

－ $\operatorname{dim}\left|-\mathcal{K}_{X}\right|=1 \quad \rightarrow$ rational elliptic surface
－ $\operatorname{dim}\left|-\mathcal{K}_{X}\right|=0$
－ $\operatorname{dim}\left|-\mathcal{K}_{X}\right|=1 \quad \rightarrow$ rational elliptic surface
－ $\operatorname{dim}\left|-\mathcal{K}_{X}\right|=0 \rightarrow$ Painlevé
－ $\operatorname{dim}\left|-\mathcal{K}_{X}\right|=1 \rightarrow$ rational elliptic surface
－ $\operatorname{dim}\left|-\mathcal{K}_{X}\right|=0 \rightarrow$ Painlevé

Classification by anti－canonical divisor

elliptic	$A_{0}^{(1)}$
multiplicative	$A_{0}^{(1) *}, A_{1}^{(1)}, A_{2}^{(1)}$,
	$A_{3}^{(1)}, \ldots, A_{6}^{(1)}, A_{7}^{(1)}, A_{7}^{(1) \prime}, A_{8}^{(1)}$
additive	$A_{0}^{(1) * *}, A_{1}^{(1) *}, A_{2}^{(1) *}$,
	$D_{4}^{(1)}, D_{5}^{(1)}, D_{6}^{(1)}, D_{7}^{(1)}, D_{8}^{(1)}$,
	$E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}$

We have non－autonomous differential systems only for $D_{k}^{(1)}$ and $E_{k}^{(1)}$ ．

equations	P_{VI}	P_{V}	$P_{\mathrm{III}}\left(D_{6}\right)$	$P_{\mathrm{III}}\left(D_{7}\right)$	$P_{\mathrm{III}}\left(D_{8}\right)$
geometry	$D_{4}^{(1)}$	$D_{5}^{(1)}$	$D_{6}^{(1)}$	$D_{7}^{(1)}$	$D_{8}^{(1)}$
symmetry	$D_{4}^{(1)}$	$A_{3}^{(1)}$	$\left(A_{1}+A_{1}\right)^{(1)}$	$A_{1}^{(1)}$	-

P_{IV}	P_{II}	P_{I}
$E_{6}^{(1)}$	$E_{7}^{(1)}$	$E_{8}^{(1)}$
$A_{2}^{(1)}$	$A_{1}^{(1)}$	-

Definition

Discrete Painlevé equation is a discrete dynamical system which is given by a Cremona isometry of a generalized Halphen surface of infinite order．

Definition

Discrete Painlevé equation is a discrete dynamical system which is given by a Cremona isometry of a generalized Halphen surface of infinite order．

We have discrete Painlevé equations for each surfaces except $A_{8}^{(1)}, D_{8}^{(1)}$ ， $E_{8}^{(1)}$ ．

Definition

Discrete Painlevé equation is a discrete dynamical system which is given by a Cremona isometry of a generalized Halphen surface of infinite order．

We have discrete Painlevé equations for each surfaces except $A_{8}^{(1)}, D_{8}^{(1)}$ ， $E_{8}^{(1)}$ ．

Except $E_{8}^{(1)}$ ，the surfaces can be blown down to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ ．We set the coordinate as $\left(f_{0}: f_{1}\right),\left(g_{0}: g_{1}\right)$ ．
We divide them into 4 cases：
（1）The imgae of the anti－canonical divisor is $f_{0}{ }^{2} g_{0}{ }^{2}=0$ ，
（2）The imgae of the anti－canonical divisor is $f_{0} f_{1} g_{0}^{2}=0$ ，
（3）The imgae of the anti－canonical divisor is $f_{0} f_{1} g_{0} g_{1}=0$ ，
（9）The others．
（1）$f_{0}{ }^{2} g_{0}{ }^{2}=0: \quad D_{5}^{(1)}, D_{6}^{(1)}, D_{7}^{(1)}, E_{6}^{(1)}, E_{7}^{(1)}$ ，
（2）$f_{0} f_{1} g_{0}{ }^{2}=0: \quad D_{4}^{(1)}, D_{5}^{(1)}, D_{6}^{(1)}, D_{7}^{(1)},\left(D_{8}^{(1)}\right)$ ，
（3）$f_{0} f_{1} g_{0} g_{1}=0: \quad A_{3}^{(1)}, A_{4}^{(1)}, A_{5}^{(1)}, A_{6}^{(1)}, A_{7}^{(1)}, A_{7}^{(1) \prime},\left(A_{8}^{(1)}\right)$ ，
（9）the others：$\quad A_{0}^{(1)}, A_{0}^{(1) *}, A_{0}^{(1) * *}, A_{1}^{(1)}, A_{1}^{(1) *}, A_{2}^{(1)}, A_{2}^{(1) *}$ ．

Content

（1）Introduction

（2）discrete Painlevé equations

（3）Case1：Biquadratic Hamiltonians of differential systems
（4）Case2：井 type
（5）Case3：コ type

Case1：$f_{0}{ }^{2} g_{0}{ }^{2}=0$

In this case，the Hamiltonian of the differential system is written by a biquadratic polynomial：

$$
\begin{aligned}
& H=\left(g^{2}, g, 1\right)\left(\begin{array}{lll}
m_{22} & m_{21} & m_{20} \\
m_{12} & m_{11} & m_{10} \\
m_{02} & m_{01} & m_{00}
\end{array}\right)\left(\begin{array}{c}
f^{2} \\
f \\
1
\end{array}\right) \\
& \frac{d f}{d t}=\frac{\partial H}{\partial g}, \quad \frac{d g}{d t}=-\frac{\partial H}{\partial f} .
\end{aligned}
$$

$$
\begin{gathered}
M=M_{D_{5}}=\left(\begin{array}{ccc}
1 & s & 0 \\
1 & s+a_{1}+a_{3} & -a_{2} s \\
0 & a_{1} & 0
\end{array}\right), \quad M_{D_{6}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -a_{1}-b_{1} & -s \\
0 & -a_{1} & 0
\end{array}\right), \\
M_{D_{7}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a_{1} & s \\
0 & 1 & 0
\end{array}\right), M_{E_{6}}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & -s & -a_{2} \\
0 & -a_{1} & 0
\end{array}\right), M_{E_{7}}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & -s \\
0 & -a_{1} & 0
\end{array}\right) .
\end{gathered}
$$

$s=e^{t}$ for D－type，$s=t$ for E－type．

Discrete Painlevé equations are written by using these matrices as：

$$
g=-\bar{g}-\frac{\hat{m}_{12} f^{2}+\hat{m}_{11} f+\hat{m}_{10}}{\hat{m}_{22} f^{2}+\hat{m}_{21} f+\hat{m}_{20}}, \quad \bar{f}=-f-\frac{\bar{m}_{21} \bar{g}^{2}+\bar{m}_{11} \bar{g}+\bar{m}_{01}}{\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}} .
$$

Discrete Painlevé equations are written by using these matrices as：

$$
g=-\bar{g}-\frac{\hat{m}_{12} f^{2}+\hat{m}_{11} f+\hat{m}_{10}}{\hat{m}_{22} f^{2}+\hat{m}_{21} f+\hat{m}_{20}}, \quad \bar{f}=-f-\frac{\bar{m}_{21} \bar{g}^{2}+\bar{m}_{11} \bar{g}+\bar{m}_{01}}{\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}} .
$$

Hence when we put a generating function W as

$$
W(f, \bar{g})=-f \bar{g}-\int \frac{\hat{m}_{12} f^{2}+\hat{m}_{11} f+\hat{m}_{10}}{\hat{m}_{22} f^{2}+\hat{m}_{21} f+\hat{m}_{20}} d f-\int \frac{\bar{m}_{21} \bar{g}^{2}+\bar{m}_{11} \bar{g}+\bar{m}_{01}}{\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}} d \bar{g},
$$

we can write the discrete equations as

$$
g=\frac{\partial W}{\partial f}, \quad \bar{f}=\frac{\partial W}{\partial \bar{g}}
$$

The explicite formula：

$$
\begin{aligned}
W=W_{D_{5}}= & -f \bar{g}-f-s \bar{g}-\bar{a}_{3} \log (\bar{g}+1)+a_{2} \log f \\
& -\bar{a}_{1} \log \bar{g}-\left(a_{1}+a_{2}+a_{3}-1\right) \log (f+s), \\
W_{D_{6}}= & -f \bar{g}-f-\frac{s}{f}+\left(a_{1}+b_{1}-1\right) \log f \\
& +\bar{a}_{1} \log \bar{g}+\bar{b}_{1} \log (\bar{g}+1), \\
W_{D_{7}}= & -f \bar{g}-\frac{s}{f}+\frac{1}{\bar{g}}-\left(a_{1}-1\right) \log f-\bar{a}_{1} \log \bar{g}, \\
W_{E_{6}}= & -f \bar{g}+\frac{f^{2}}{2}+s f+\frac{\bar{g}^{2}}{2}-s \bar{g}+a_{2} \log f-\bar{a}_{1} \log \bar{g}, \\
W_{E_{7}}= & -f \bar{g}+s f+\frac{f^{3}}{3}-\bar{a}_{1} \log \bar{g} .
\end{aligned}
$$

e．g．$\quad E_{7}^{(1)}$ type：

$$
W_{E_{7}}=-f \bar{g}+s f+\frac{f^{3}}{3}-\bar{a}_{1} \log \bar{g},
$$

e．g．$\quad E_{7}^{(1)}$ type：

$$
W_{E_{7}}=-f \bar{g}+s f+\frac{f^{3}}{3}-\bar{a}_{1} \log \bar{g},
$$

$$
\begin{aligned}
& g=\frac{\partial W_{E_{7}}}{\partial f}=-\bar{g}+s+f^{2}, \\
& \bar{f}=\frac{\partial W_{E_{7}}}{\partial \bar{g}}=-f-\frac{\bar{a}_{1}}{\bar{g}} .
\end{aligned}
$$

Content

（1）Introduction

（2）discrete Painlevé equations

（3）Case1：Biquadratic Hamiltonians of differential systems
（4）Case2：井 type
（5）Case3：コ type

Case2：$f_{0} f_{1} g_{0} g_{1}=0$

$$
\begin{aligned}
& M_{A_{7}}=\left(\begin{array}{ccc}
0 & -a_{0} & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{array}\right), \quad M_{A_{7}^{\prime}}=\left(\begin{array}{ccc}
1 & -a_{0} & 0 \\
0 & 0 & 0 \\
0 & -1 & 1
\end{array}\right), \\
& M_{A_{6}}=\left(\begin{array}{ccc}
0 & 1 / b & 0 \\
1 & 0 & -1 / b \\
0 & -a_{1} & a_{1}
\end{array}\right), \quad M_{A_{5}}=\left(\begin{array}{ccc}
0 & b_{1} / a_{2} & 0 \\
a_{0} & 0 & -b_{1} / a_{2} \\
1 / a_{1} & -1-\left(1 / a_{1}\right) & 1
\end{array}\right), \\
& 0
\end{aligned} \quad 1 \begin{array}{cc}
-1 \\
M_{A_{4}} & =\left(\begin{array}{ccc}
0 / a_{2} & 0 & 1+\left(1 / a_{4}\right) \\
-a_{0} a_{3} / a_{2} & a_{0} a_{3}+\left(1 / a_{2} a_{4}\right) & -1 / a_{4}
\end{array}\right), \\
M_{A_{3}}=\left(\begin{array}{ccc}
a_{0} a_{5} & -1 /\left(a_{1} a_{2}^{2} a_{3}\right)-a_{0} a_{3} a_{5} & 1 /\left(a_{1} a_{2}^{2}\right) \\
-\left(1+a_{0}\right) a_{5} & 0 & -\left(1+a_{1}\right) / a_{1} a_{2} \\
a_{5} & -1-a_{5} & 1
\end{array}\right) .
\end{array}
$$

Discrete Painlevé equations are written by using these matrices as：

$$
g=\frac{\hat{m}_{02} f^{2}+\hat{m}_{01} f+\hat{m}_{00}}{\bar{g}\left(\hat{m}_{22} f^{2}+\hat{m}_{21} f+\hat{m}_{20}\right)}, \quad \bar{f}=\frac{\bar{m}_{20} \bar{g}^{2}+\bar{m}_{10} \bar{g}+\bar{m}_{00}}{f\left(\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}\right)}
$$

Discrete Painlevé equations are written by using these matrices as：

$$
g=\frac{\hat{m}_{02} f^{2}+\hat{m}_{01} f+\hat{m}_{00}}{\bar{g}\left(\hat{m}_{22} f^{2}+\hat{m}_{21} f+\hat{m}_{20}\right)}, \quad \bar{f}=\frac{\bar{m}_{20} \bar{g}^{2}+\bar{m}_{10} \bar{g}+\bar{m}_{00}}{f\left(\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}\right)}
$$

The symplectic form is $\omega=\frac{d g \wedge d f}{f g}=d \log g \wedge d \log f$ ．When we put $F=\log f, G=\log g$ ，we can find a generating function $\widetilde{W}(F, \bar{G})$ ． But it is important that the system is a birational mapping，so we want to use the variables f and g ．

We put $W(f, \bar{g})=\widetilde{W}(\log f, \log \bar{g})$ ，then

$$
\begin{aligned}
W(f, \bar{g})= & -\log f \log \bar{g}+\int \log \left(\hat{m}_{02} f^{2}+\hat{m}_{01} f+\hat{m}_{00}\right) \frac{d f}{f} \\
& -\int \log \left(\hat{m}_{22} f^{2}+\hat{m}_{21} f+\hat{m}_{20}\right) \frac{d f}{f} \\
& +\int \log \left(\bar{m}_{20} \bar{g}^{2}+\bar{m}_{10} \bar{g}+\bar{m}_{00}\right) \frac{d \bar{g}}{\bar{g}} \\
& -\int \log \left(\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}\right) \frac{d \bar{g}}{\bar{g}}
\end{aligned}
$$

and we can write the discrete equations as

$$
g=\exp \left(f \frac{\partial W}{\partial f}\right), \quad \bar{f}=\exp \left(\bar{g} \frac{\partial W}{\partial \bar{g}}\right)
$$

The explicite formula：

$$
\begin{aligned}
W_{A_{3}}= & -\log f \log \bar{g}+\operatorname{Li}_{2}(\bar{g})+\operatorname{Li}_{2}\left(\bar{a}_{0} \bar{g}\right)-\operatorname{Li}_{2}\left(\frac{\bar{g}}{\bar{a}_{2}}\right)-\operatorname{Li}_{2}\left(\frac{\bar{g}}{\bar{a}_{1} \bar{a}_{2}}\right) \\
& -\operatorname{Li}_{2}(f)+\operatorname{Li}_{2}\left(\frac{f}{a_{3}}\right)-\operatorname{Li}_{2}\left(a_{5} f\right)+\operatorname{Li}_{2}\left(\frac{a_{0} a_{1} a_{2}{ }^{2} a_{3} a_{5} f}{q}\right) \\
& -\log \bar{a}_{3} \log \bar{g}+\log \left(a_{1} a_{2}^{2}\right) \log f \\
W_{A_{4}}= & -\log f \log \bar{g}+\operatorname{Li}_{2}(f)-\operatorname{Li}_{2}\left(\frac{q f}{a_{2}}\right)-\operatorname{Li}_{2}\left(a_{0} a_{3} a_{4} f\right)-\operatorname{Li}_{2}(\bar{g}) \\
& \quad-\operatorname{Li}_{2}\left(\bar{a}_{4} \bar{g}\right)+\operatorname{Li}_{2}\left(\frac{\bar{g}}{\bar{a}_{3}}\right)+\left(\log \frac{\bar{a}_{2}}{\bar{a}_{0} \bar{a}_{3} \bar{a}_{4}}\right) \log \bar{g}-\log a_{4} \log f \\
W_{A_{5}}= & -\log f \log \bar{g}-\operatorname{Li}_{2}(f)-\operatorname{Li}_{2}\left(\frac{f}{a_{1}}\right)-\operatorname{Li}_{2}\left(\frac{\bar{b}_{1} \bar{g}}{\bar{a}_{2}}\right) \\
& +\operatorname{Li}_{2}\left(-\bar{a}_{0} \bar{a}_{1} \bar{g}\right)-\frac{1}{2}\left(\log \frac{b_{1} f}{a_{1}}\right)^{2}+\log \bar{a}_{1} \log \bar{g}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
W_{A_{6}}= & -\log f \log \bar{g}-\operatorname{Li}_{2}(f)-\operatorname{Li}_{2}\left(\frac{\bar{g}}{\bar{a}_{1} \bar{b}}\right)+\log \bar{g} \log \bar{a}_{1} \\
& -\frac{1}{2}\left(\log \frac{f}{q b}\right)^{2}-\frac{1}{2}(\log \bar{g})^{2}-\log a_{1} \log f
\end{aligned} \\
& \begin{aligned}
W_{A_{7}^{\prime}}= & -\log f \log \bar{g}-\frac{1}{2}(\log f)^{2}-(\log \bar{g})^{2}-\operatorname{Li}_{2}(f)+\operatorname{Li}_{2}\left(\frac{q f}{a_{0}}\right) \\
& \quad-\log \frac{-a_{0}}{q} \log f,
\end{aligned} \\
& W_{A_{A_{7}}=}-\log f \log \bar{g}-\operatorname{Li}_{2}(f)-\frac{1}{2}\left(\log \left(-q^{-1} a_{0} f\right)\right)^{2}-\frac{1}{2}(\log (\bar{g}))^{2}
\end{aligned}
$$

where $\operatorname{Li}_{2}(x)$ is the dilogarithmic function：

$$
\operatorname{Li}_{2}(x)=-\int \frac{\log (1-x)}{x} d x=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}}
$$

$$
\begin{aligned}
& \text { e.g. } \quad A_{7}^{(1) \prime} \text { type: } \\
& W_{A_{7}^{\prime}}=-\log f \log \bar{g}-\frac{1}{2}(\log f)^{2}-(\log \bar{g})^{2}-\operatorname{Li}_{2}(f)+\operatorname{Li}_{2}\left(\frac{q f}{a_{0}}\right)-\log \frac{-a_{0}}{q} \log f,
\end{aligned}
$$

$$
\text { e.g. } \quad A_{7}^{(1) \prime} \text { type: }
$$

$$
W_{A_{7}^{\prime}}=-\log f \log \bar{g}-\frac{1}{2}(\log f)^{2}-(\log \bar{g})^{2}-\operatorname{Li}_{2}(f)+\operatorname{Li}_{2}\left(\frac{q f}{a_{0}}\right)-\log \frac{-a_{0}}{q} \log f,
$$

$$
\begin{aligned}
g & =\exp \left(f \frac{\partial W_{A_{7}^{\prime}}}{\partial f}\right) \\
& =\exp \left(-\log \bar{g}-\log f+\log (1-f)-\log \left(1-\frac{q f}{a_{0}}\right)-\log \frac{-a_{0}}{q}\right) \\
& =\frac{1-f}{\bar{g} f\left(f-\frac{a_{0}}{q}\right)}, \\
\bar{f} & =\exp \left(\bar{g} \frac{\partial W_{A_{7}^{\prime}}}{\partial \bar{g}}\right)=\exp (-\log f-2 \log \bar{g})=\frac{1}{f \bar{g}^{2}} .
\end{aligned}
$$

Content

（1）Introduction

（2）discrete Painlevé equations

（3）Case1：Biquadratic Hamiltonians of differential systems
（4）Case2：井 type
（5）Case3：コ type

Case3：$f_{0} f_{1} g_{0}^{2}=0$

$$
M_{D_{4}}=\left(\begin{array}{ccc}
1 & -1-s & s \\
a_{1}+2 a_{2} & -a_{1}-2 a_{2}+(s-1) a_{3}+a_{4} & s a_{4} \\
a_{2}\left(a_{1}+a_{2}\right) & 0 & 0
\end{array}\right) .
$$

Discrete Painlevé equation is written by using the matrix as：

$$
g=-\bar{g}-\frac{m_{12} f^{2}+m_{11} f+m_{10}}{m_{22} f^{2}+m_{21} f+m_{20}}, \quad \bar{f}=\frac{\bar{m}_{20} \bar{g}^{2}+\bar{m}_{10} \bar{g}+\bar{m}_{00}}{f\left(\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}\right)} .
$$

Case3：$f_{0} f_{1} g_{0}{ }^{2}=0$

$$
M_{D_{4}}=\left(\begin{array}{ccc}
1 & -1-s & s \\
a_{1}+2 a_{2} & -a_{1}-2 a_{2}+(s-1) a_{3}+a_{4} & s a_{4} \\
a_{2}\left(a_{1}+a_{2}\right) & 0 & 0
\end{array}\right) .
$$

Discrete Painlevé equation is written by using the matrix as：

$$
g=-\bar{g}-\frac{m_{12} f^{2}+m_{11} f+m_{10}}{m_{22} f^{2}+m_{21} f+m_{20}}, \quad \bar{f}=\frac{\bar{m}_{20} \bar{g}^{2}+\bar{m}_{10} \bar{g}+\bar{m}_{00}}{f\left(\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}\right)} .
$$

Hence when we put a function W as

$$
\begin{aligned}
W(f, \bar{g})= & -\bar{g} \log f-\int \frac{m_{12} f^{2}+m_{11} f+m_{10}}{m_{22} f^{2}+m_{21} f+m_{20}} \frac{d f}{f} \\
& +\int \log \left(\bar{m}_{20} \bar{g}^{2}+\bar{m}_{10} \bar{g}+\bar{m}_{00}\right) d \bar{g} \\
& -\int \log \left(\bar{m}_{22} \bar{g}^{2}+\bar{m}_{12} \bar{g}+\bar{m}_{02}\right) d \bar{g}
\end{aligned}
$$

we can write the discrete equations as

$$
g=f \frac{\partial W}{\partial f}, \quad \bar{f}=\exp \left(\frac{\partial W}{\partial \bar{g}}\right) .
$$

e．g．$\quad D_{4}^{(1) \prime}$ type：

$$
\begin{aligned}
W_{D_{4}}= & -\bar{g} \log f+a_{4} \log f-a_{3} \log (1-f) \\
& -\left(a_{1}+2 a_{2}+a_{3}+a_{4}-1\right) \log (1-f / s)+\bar{g}(\log \bar{g}+\log s) \\
& -\left(\bar{g}+\bar{a}_{1}+\bar{a}_{2}\right) \log \left(\bar{g}+\bar{a}_{1}+\bar{a}_{2}\right)-\left(\bar{g}+\bar{a}_{2}\right) \log \left(\bar{g}+\bar{a}_{2}\right) \\
& +\left(\bar{g}-\bar{a}_{4}\right) \log \left(\bar{g}-\bar{a}_{4}\right),
\end{aligned}
$$

e．g．$\quad D_{4}^{(1) \prime}$ type：

$$
\begin{aligned}
W_{D_{4}}= & -\bar{g} \log f+a_{4} \log f-a_{3} \log (1-f) \\
& -\left(a_{1}+2 a_{2}+a_{3}+a_{4}-1\right) \log (1-f / s)+\bar{g}(\log \bar{g}+\log s) \\
& -\left(\bar{g}+\bar{a}_{1}+\overline{\mathrm{a}}_{2}\right) \log \left(\bar{g}+\bar{a}_{1}+\bar{a}_{2}\right)-\left(\bar{g}+\bar{a}_{2}\right) \log \left(\bar{g}+\overline{\mathrm{a}}_{2}\right) \\
& +\left(\bar{g}-\bar{a}_{4}\right) \log \left(\bar{g}-\bar{a}_{4}\right),
\end{aligned}
$$

$$
\begin{aligned}
g= & f \frac{\partial W_{D_{4}}}{\partial f}=-\bar{g}+a_{4}-\frac{a_{3} f}{1-f}+\frac{\left(a_{1}+2 a_{2}+a_{3}+a_{4}-1\right) f}{s-f} \\
= & -\bar{g}+1-a_{1}-2 a_{2}-\frac{a_{3}}{1-f}+\frac{a_{1}+2 a_{2}+a_{3}+a_{4}-1}{1-f / s} \\
\bar{f}= & \exp \left(\frac{\partial W_{D_{4}}}{\partial \bar{g}}\right) \\
= & \exp \left(-\log f+\log \bar{g}+\log \left(\bar{g}-\bar{a}_{4}\right)+\log s-\log \left(\bar{g}+\bar{a}_{1}+\bar{a}_{2}\right)\right. \\
& \left.-\log \left(\bar{g}+\bar{a}_{2}\right)\right) \\
= & \frac{s \bar{g}\left(\bar{g}-\bar{a}_{4}\right)}{f\left(\bar{g}+\bar{a}_{1}+\bar{a}_{2}\right)\left(\bar{g}+\bar{a}_{2}\right)},
\end{aligned}
$$

Thank you．

