Irregular conformal blocks and Painlevé equations

Hajime Nagoya
Kanazawa University

November 5, 2021
(1) Introduction

- Expansions of the tau functions
(2) Irregular conformal blocks
- Definitions
- PV and PIV tau functions
- PIII tau function
(3) Irregular vertex operators of the NSR algebra
- Irregular vertex operators
- Decomposition

Series representation of $\tau_{\mathrm{VI}}(t)$

In 2012, Gamayun, lorgov and Lisovyy conjectured an expansion formula for the tau function of P_{VI} in terms of Virasoro conformal blocks with $c=1$:

$$
\tau_{\mathrm{VI}}(t)=\sum_{n \in \mathbb{Z}} s^{n} C\binom{\theta_{1}, \theta_{t}}{\theta_{\infty}, \sigma+n, \theta_{0}} \mathcal{F}\left(\begin{array}{c}
\theta_{1}, \theta_{t} \\
\theta_{\infty}, \sigma+n, \theta_{0}
\end{array} ; t\right)
$$

where $s, \sigma \in \mathbb{C}, \mathcal{F}(\theta, \sigma ; t)=t^{\sigma^{2}-\theta_{t}^{2}-\theta_{0}^{2}}(1+O(t))$ is the 4-pt Virasoro conformal block with $c=1$, and

$$
C(\theta, \sigma)=\frac{\prod_{\epsilon, \epsilon^{\prime}= \pm} G\left(1+\theta_{t}+\epsilon \theta_{0}+\epsilon^{\prime} \sigma\right) G\left(1+\theta_{1}+\epsilon \theta_{\infty}+\epsilon^{\prime} \sigma\right)}{\prod_{\epsilon= \pm} G(1+2 \epsilon \sigma)}
$$

where $G(z)$ is the Barnes G-function such that $G(z+1)=\Gamma(z) G(z)$.

The AGT relation states

$$
\mathcal{F}\left(\begin{array}{c}
\theta_{1}, \theta_{t} \\
\theta_{\infty}, \sigma, \theta_{0}
\end{array} ; t\right)=t^{\sigma^{2}-\theta_{0}^{2}-\theta_{t}^{2}}(1-t)^{2 \theta_{t} \theta_{1}} \sum_{\lambda, \mu \in \mathbb{Y}} \mathcal{F}_{\lambda, \mu}\binom{\theta_{1}, \theta_{t}}{\theta_{\infty}, \sigma, \theta_{0}} t^{|\lambda|+|\mu|}
$$

where

$$
\begin{aligned}
& \mathcal{F}_{\lambda, \mu}\binom{\theta_{1}, \theta_{t}}{\theta_{\infty}, \sigma, \theta_{0}} \\
& =\prod_{(i, j) \in \lambda} \frac{\left(\left(\theta_{t}+\sigma+i-j\right)^{2}-\theta_{0}^{2}\right)\left(\left(\theta_{1}+\sigma+i-j\right)^{2}-\theta_{\infty}^{2}\right)}{h_{\lambda}^{2}(i, j)\left(\lambda_{j}^{\prime}+\mu_{i}-i-j+1+2 \sigma\right)^{2}} \\
& \times(\lambda \rightarrow \mu, \sigma \rightarrow-\sigma) .
\end{aligned}
$$

Here, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)\left(\lambda_{i} \geq \lambda_{i+1}\right), h_{\lambda}(i, j)$ is the hook length.

Jimbo's asymptotic formula

Jimbo gave the asymptotic expansion of the tau function (1982)

$$
\begin{aligned}
\tau(t)= & \text { const. } t^{\left(\sigma^{2}-\theta_{0}^{2}-\theta_{t}^{2}\right)} \\
\times & \left(1+\frac{\left(\theta_{0}^{2}-\theta_{t}^{2}-\sigma^{2}\right)\left(\theta_{\infty}^{2}-\theta_{1}^{2}-\sigma^{2}\right)}{2 \sigma^{2}} t\right. \\
& -\sum_{\epsilon= \pm} \frac{\hat{s}^{\epsilon}}{8 \sigma^{2}\left(1+4 \sigma^{2}\right)^{2}}\left(\theta_{0}^{2}-\left(\theta_{t}-\epsilon \sigma\right)^{2}\right)\left(\theta_{\infty}^{2}-\left(\theta_{1}-\epsilon \sigma\right)^{2}\right) t^{1+2 \epsilon \sigma} \\
& \left.+\sum_{j=2}^{\infty} \sum_{|k| \leq j} a_{j k} t^{j-2 k \sigma}\right)
\end{aligned}
$$

where \hat{s}, σ are expressed by the monodromy data of the linear equation associated with P_{VI}.

The first part of $\tau(t)$:

$$
t^{\sigma^{2}-\theta_{0}^{2}-\theta_{t}^{2}}\left(1+\frac{\left(\theta_{0}^{2}-\theta_{t}^{2}-\sigma^{2}\right)\left(\theta_{\infty}^{2}-\theta_{1}^{2}-\sigma^{2}\right)}{2 \sigma^{2}} t\right)
$$

is corresponding to the first part of the four point conformal block of Virasoro CFT with $c=1$

$$
\begin{aligned}
& \left\langle h_{\infty}\right| \Phi_{h_{\infty}, h_{\sigma}}^{h_{1}}(1) \Phi_{h_{\sigma}}^{h_{t}}\left(h_{0}(t)\left|h_{0}\right\rangle\right. \\
= & t^{h_{\sigma}-h_{t}-h_{0}}\left(1+\frac{\left(h_{\sigma}+h_{1}-h_{\infty}\right)\left(h_{\sigma}+h_{t}-h_{0}\right)}{2 h_{\sigma}} t+O\left(t^{2}\right)\right),
\end{aligned}
$$

where h_{i} are the conformal dimensions and $\Phi_{h_{i}}(z)$ are the primary fields with h_{i} [Belavin, Polyakov, Zamolodchikov, 1984].

Proofs

(1) By constructing a fundamental solution to a Lax pair of P_{VI}, using the conformal field theory. [lorgov, Lisovyy, Teschner, 2014]
(2) By proving that the Fourier transform of conformal blocks satisfies the bilinear equations for P_{VI}, using embedding of direct sum of two Virasoro algebras to the sum of fermion and super Virasoro algebra. [Bershtein, Shchechkin, 2014]
(3) Expansion of Fredholm determinant expression of the tau function for P_{VI}. [Gavrylenko, Lisovyy, 2016].

Monodromy preserving deformation

- P_{VI} is derived from monodromy preserving deformation of a Fuchsian system of rank 2 with four regular singular points.
- 4-point Virasoro conformal block with one degenerate field is the Gauss hypergeometric function.
- Connection problem of m-point Virasoro conformal block with one degenerate filed is reduced to connection problem of the Gauss hypergeometric function.
- A finite sub system of conformal blocks becomes a monodromy preserved fundamental solution of a Fuchsian system of rank 2 with four regular singular points. [lorgov, Lisovyy, Teschner, 2014]

Ranks of singularities of corresponding 2 by 2 linear systems:
$\left.\begin{array}{|c|c|c|}\hline & \text { singular points } & \text { ranks } \\ \hline \mathrm{P}_{\mathrm{VI}} & 0,1, t, \infty & (0,0,0,0) \\ \hline \mathrm{P}_{\mathrm{V}} & 0, t, \infty & (0,0,1) \\ \hline \mathrm{P}_{\mathrm{IV}} & t, \infty & (0,2) \\ \hline \mathrm{P}_{\mathrm{III}}^{1}\end{array}\right)$

Ranks of singularities of conformal blocks:

	singular points	ranks	$t=0$	$t=\infty$
P_{VI}	$0,1, t, \infty$	(0, 0, 0, 0)	[BPZ, 1984]	[BPZ, 1984]
P_{V}	$0, t, \infty$	$(0,0,1)$	[Gaiotto, 2009]	[$\mathrm{N}, 2015$]
$\mathrm{P}_{\text {IV }}$	t, ∞	$(0,2)$		[N, 2015]
$\mathrm{P}_{\text {III }}$	$0, t, \infty$	(0,0, 1/2)	[Gaiotto, 2009]	[$\mathrm{N}, 2018$]
$\mathrm{P}_{\text {III }}$	$0, \infty$	$(1,1)$	[Gaiotto, 2009]	
$\mathrm{P}_{\text {III }}$	$0, \infty$	(1,1/2)	[Gaiotto, 2009]	
$\mathrm{P}_{\text {III }}$	$0, \infty$	(1/2, 1/2)	[Gaiotto, 2009]	[GMS,2020]
$\mathrm{P}_{\text {II }}$	t, ∞	$(0,3 / 2)$		[$\mathrm{N}, 2018$]
$\mathrm{P}_{\text {II }}$	∞	(3)		[NU, 2019]
P_{I}	∞	(5/2)		

[BPZ]=[Belavin-Polyakov-Zamolodchikov],
[GMS]=[Gavrylenko-Marshakov-Stoyan],
[NU]=[Nishinaka-Uetoko].
Limiting procedures were proposed for conformal blocks of integer ranks [Gaiotto-Teschner 2012].

Irregular Verma Module

The Virasoro algebra Vir $=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} L_{n} \oplus \mathbb{C} c$ is the Lie algebra with

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\delta_{m+n, 0} \frac{n^{3}-n}{12} c
$$

For $r \in \mathbb{Z}_{>0}$, define a module $M_{\Lambda}^{[r]}$ as a representation of Vir with a vector $|\Lambda\rangle$ such that

$$
L_{n}|\Lambda\rangle=\Lambda_{n}|\Lambda\rangle \quad(n=r, r+1, \ldots, 2 r),
$$

with $\Lambda=\left(\Lambda_{r}, \ldots, \Lambda_{2 r}\right)$ and $M_{\Lambda}^{[r]}$ is spanned by linearly independent vectors of the form

$$
L_{-\lambda}=L_{-i_{1}+r} \cdots L_{-i_{k}+r}|\Lambda\rangle \quad\left(i_{1} \geq \cdots \geq i_{k}>0\right) .
$$

We remark that $M_{\Lambda}^{[r]}$ is irreducible if and only if $\Lambda_{2 r-1} \neq 0$ or $\Lambda_{2 r} \neq 0$ [Lu, Guo and Zhao, 2011], [Felińska, Jaskólski and Kosztolowicz, 2012].

Vertex operator

Define a vertex operator

$$
\Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z): M_{\Lambda}^{[r]} \rightarrow M_{\Lambda^{\prime}}^{[r]}
$$

by

$$
\begin{aligned}
& {\left[L_{n}, \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)\right]=z^{n}\left(z \frac{d}{d z}+(n+1) \Delta\right) \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z),} \\
& \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)|\Lambda\rangle=z^{\alpha} \exp \left(\sum_{n=1}^{r} \frac{\beta_{n}}{z^{n}}\right) \sum_{n=0}^{\infty} v_{n} z^{n},
\end{aligned}
$$

where $\alpha, \beta_{n} \in \mathbb{C}, v_{n} \in M_{\Lambda^{\prime}}^{[r]}$ and $v_{0}=\left|\Lambda^{\prime}\right\rangle$.

Theorem (N, 2015)

If $\Lambda_{2 r} \neq 0$, then the vertex operator $\Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z): M_{\Lambda}^{[r]} \rightarrow M_{\Lambda^{\prime}}^{[r]}$ exists and is uniquely determined by the given parameters $\wedge, \Delta, \beta_{r}$.

Pairing

(I) P_{V} case.

A bilinear pairing $\langle\cdot\rangle: M_{\Delta}^{*} \times M_{\Lambda}^{[1]} \rightarrow \mathbb{C},\left(\Lambda=\left(\Lambda_{1}, \Lambda_{2}\right)\right)$ is uniquely defined by

$$
\begin{aligned}
& \langle\Delta| \cdot|\Lambda\rangle=1 \\
& \langle u| L_{n} \cdot|v\rangle=\langle u| \cdot L_{n}|v\rangle \equiv\langle u| L_{n}|v\rangle
\end{aligned}
$$

where $\langle u| \in M_{\Delta}^{*},|v\rangle \in M_{\Lambda}^{[1]}$. Because, L_{n} for $n \geq 1$ acts on $|\Lambda\rangle$ diagonally and L_{n} for $n \leq 0$ acts on $\langle\Delta|$ diagonally.
(II) $\mathrm{P}_{\text {IV }}$ case.

A bilinear pairing $\langle\cdot\rangle: V_{0}^{*} \times M_{\Lambda}^{[2]} \rightarrow \mathbb{C},\left(\Lambda=\left(\Lambda_{2}, \Lambda_{3}, \Lambda_{4}\right)\right)$ is uniquely defined by

$$
\begin{aligned}
& \langle 0| \cdot|\Lambda\rangle=1 \\
& \langle u| L_{n} \cdot|v\rangle=\langle u| \cdot L_{n}|v\rangle \equiv\langle u| L_{n}|v\rangle
\end{aligned}
$$

where $\langle u| \in V_{0}^{*},|v\rangle \in M_{\Lambda}^{[2]}$. Here, V_{0}^{*} is the irreducible highest weight module.

Theorem (Lisovyy-N-Roussillon, 2018)

A series expansion of the Painlevé V tau function at the irregular singular point ∞ is given by

$$
\begin{aligned}
\tau(t)=\sum_{n \in \mathbb{Z}} & s^{n}(-1)^{n(n+1) / 2} G\left(1 \pm \theta_{0}+\theta-\beta-n\right) G\left(1+\theta_{t} \pm(\beta+n)\right) \\
& \times\left\langle\theta_{0}^{2}\right| \cdot\left(\Phi_{(\theta-\beta-n, 1 / 4),(\theta, 1 / 4)}^{\theta_{t}^{2}}\left(t^{-1}\right)|(\theta, 1 / 4)\rangle\right)
\end{aligned}
$$

Namely, $H=t\left(\log \left(t^{-2 \theta_{t}^{2}-\theta^{2} / 2} e^{-\theta t / 2} \tau(t)\right)\right)^{\prime}$ satisfies the following differential equation (Hamiltonian $D E$ for P_{V})

$$
\left(t H^{\prime \prime}\right)^{2}-\left(H-t H^{\prime}+2\left(H^{\prime}\right)^{2}\right)^{2}+\frac{1}{4}\left(\left(2 H^{\prime}-\theta\right)^{2}-4 \theta_{0}^{2}\right)\left(\left(2 H^{\prime}+\theta\right)^{2}-4 \theta_{t}^{2}\right)=0 .
$$

We note that

$$
\left(\left\langle\theta_{0}^{2}\right| \Phi_{\theta_{0}^{2}, \sigma^{2}}^{\theta_{t}^{2}}\left(t^{-1}\right)\right) \cdot|(\theta, 1 / 4)\rangle
$$

expresses a series expansion at the regular singular point 0 .

Theorem (N)

A series expansion of the Painlevé IV tau function at the irregular singular point ∞ is given by

$$
\begin{aligned}
\tau(t)=t^{-2 \theta_{t}^{2}} e^{\theta_{t} t^{2} / 2} & \sum_{n \in \mathbb{Z}} s^{n} G(1+\theta-\beta-n) G\left(1+\theta_{t} \pm(\beta+n)\right) \\
& \times\langle 0| \cdot\left(\Phi_{(\theta-\beta-n, 0,1 / 4),(\theta, 0,1 / 4)}^{\theta_{t}^{2}}(1 / t)|(\theta, 0,1 / 4)\rangle\right),
\end{aligned}
$$

Namely, $H=(\log \tau(t))^{\prime}$. Then, H satisfies the following differential equation (Hamiltonian DE for P_{IV})

$$
\left(H^{\prime \prime}\right)^{2}-\left(t H^{\prime}-H\right)^{2}+4 H^{\prime}\left(H^{\prime}-\theta-\theta_{t}\right)\left(H^{\prime}-2 \theta_{t}\right)=0 .
$$

Here,

$$
\begin{aligned}
& \langle 0| \cdot\left(\Phi_{(\theta-\beta, 0,1 / 4),(\theta, 0,1 / 4)}^{\theta_{t}^{2}}(1 / t)|(\theta, 0,1 / 4)\rangle\right) \\
& =t^{3 \theta_{t}^{2}+\beta(2 \theta-3 \beta)} e^{\beta t^{2} / 2} \sum_{n=0}^{\infty} a_{m}\left(\theta_{t}, \theta, \beta\right) t^{-2 n}
\end{aligned}
$$

An irregular conformal block of type $(0,0,1)$ with $c=1$ is expanded as

$$
\begin{aligned}
& \left\langle\theta_{0}^{2}\right| \cdot\left(\Phi_{(\theta, 1 / 4),(\theta-\beta, 1 / 4)}^{\theta_{t}^{2}}\left(t^{-1}\right)|(\theta, 1 / 4)\rangle\right) \\
& =t^{2 \theta_{t}^{2}+2 \beta(\theta-\beta)} e^{\beta t}\left(1+2\left(2 \beta^{3}-3 \beta^{2} \theta+\beta \theta^{2}-\beta \theta_{0}^{2}-\beta \theta_{t}^{2}+\theta \theta_{t}^{2}\right) t^{-1}+\cdots\right)
\end{aligned}
$$

It is natural to expect that this irregular conformal block has a combinatorial expression. For example, we find
$2\left(2 \beta^{3}-3 \beta^{2} \theta+\beta \theta^{2}-\beta \theta_{0}^{2}-\beta \theta_{t}^{2}+\theta \theta_{t}^{2}\right)=2(\beta-\theta)\left(\beta^{2}-\theta_{t}^{2}\right)+2 \beta\left((\theta-\beta)^{2}-\theta_{0}^{2}\right)$
Thus, the coefficient of t^{-1} is successfully written as a sum of two factorized forms, which should be corresponding to pairs of partitions ((1), $\emptyset),(\emptyset,(1))$. Put

$$
U_{\lambda, \emptyset}=\prod_{(i, j) \in \lambda} \frac{(2(\beta-\theta)+i-j)\left((\beta+i-j)^{2}-\theta_{t}^{2}\right)}{h_{\lambda}(i, j)^{2}} .
$$

Then, the coefficient of t^{-2} is

$$
\sum_{|\lambda|=2}\left(U_{\lambda, \emptyset}+U_{\emptyset, \lambda}\right)+2(2(\theta-\beta) \beta-1)\left(\beta^{2}-\theta_{t}^{2}\right)\left((\theta-\beta)^{2}-\theta_{0}^{2}\right) .
$$

The last term should be corresponding to ((1), (1)).

Conjecture (N, arxiv:1611.08971)

An irregular conformal block of type $(0,0,1)$ admits the following combinatorial formula

$$
\left\langle\theta_{0}^{2}\right| \cdot\left(\Phi_{(\theta, 1 / 4),(\theta-\beta, 1 / 4)}^{\theta_{t}^{2}}(t)|(\theta, 1 / 4)\rangle\right)=\sum_{\substack{\lambda, \mu, \nu, \eta \in \mathbb{Y}, \nu \subset \lambda, \eta \subset \mu,|\nu|=|\eta|}} t^{|\lambda|+|\mu|}(-1)^{|\nu|} c_{\lambda, \mu}^{\nu, \eta} M_{\lambda / \nu, \mu / \eta} N_{\lambda, \mu}
$$

where $c_{\lambda, \mu}^{\nu, \eta} \in \mathbb{Z}_{\geq 0}$,

$$
\begin{aligned}
& M_{\lambda, \mu}=\prod_{(i, j) \in \lambda}(2(\beta-\theta)+i-j) \prod_{(i, j) \in \mu}(-2 \beta+i-j), \\
& N_{\lambda, \mu}=(-1)^{|\mu|} \prod_{(i, j) \in \lambda} \frac{(\beta+i-j)^{2}-\theta_{t}^{2}}{h_{\lambda}(i, j)^{2}} \prod_{(i, j) \in \mu} \frac{(\theta-\beta+i-j)^{2}-\theta_{0}^{2}}{h_{\mu}(i, j)^{2}} .
\end{aligned}
$$

We observe

$$
\begin{aligned}
& c_{\lambda, \mu}^{\emptyset, \emptyset}=1, \quad c_{\lambda, \mu}^{(1),(1)}=2|\lambda \| \mu|, \quad c_{\lambda, \mu}^{(2),(2)}=q_{\lambda} q_{\mu}, \quad c_{\lambda, \mu}^{(2),(1,1)}=3 q_{\lambda} q_{\mu^{\prime}}, \quad c_{\lambda, \mu}^{\nu, \eta}=c_{\mu, \lambda}^{\eta, \nu}=c_{\lambda^{\prime}, \mu^{\prime}}^{\nu^{\prime}, \eta^{\prime}} \\
& q_{\lambda}=\lambda_{1}\left(\lambda_{1}-1\right)+\sum_{\substack{(i, j) \in \lambda, i \neq 1}}\left(\lambda_{1}-1+\sum_{k=1}^{j-1} \lambda_{k}^{\prime}\right)
\end{aligned}
$$

and $c_{\lambda, \mu}^{\nu, \eta} \in \mathbb{Z}_{\geq 0}$ are determined uniquely if $|\lambda|+|\mu| \leq 5$.

Vertex operator of half rank

Define a vertex operator

$$
\Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z): M_{\Lambda}^{[r]} \rightarrow M_{\Lambda^{\prime}}^{[r]}
$$

by

$$
\begin{aligned}
& {\left[L_{n}, \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)\right]=z^{n}\left(z \frac{d}{d z}+(n+1) \Delta\right) \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z),} \\
& \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)|\Lambda\rangle=z^{\alpha} \exp \left(\sum_{n=1}^{2 r} \frac{\beta_{n}}{z^{n / 2}}\right) \sum_{n=0}^{\infty} v_{n} z^{n / 2},
\end{aligned}
$$

where $\alpha, \beta_{n} \in \mathbb{C}, v_{n} \in M_{\Lambda^{\prime}}^{[r]}$ and $v_{0}=\left|\Lambda^{\prime}\right\rangle$.

Proposition

If $\Lambda_{2 r-1} \neq 0$ and $\Lambda_{2 r}=0$, then the vertex operator $\Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)$ exists, where $\Lambda^{\prime}=\Lambda$, $\beta_{2 r}=0, v_{m}=\sum_{|\lambda| \leq m} c_{\lambda}^{(m)} L_{-\lambda}|\Lambda\rangle$ and $c_{\lambda}^{(m)}$ for any λ is a polynomial of α, $\beta_{1}, \ldots, \beta_{2 r-1}, \Lambda_{r}, \ldots, \Lambda_{2 r-1}, \Lambda_{2 r-1}^{-1}$ and $c_{\phi}^{(k)}(k \leq m-1)$.

Since the vertex operator $\Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)$ depends on the parameters $\alpha, \beta_{1}, \ldots, \beta_{2 r-1}$, $\Lambda_{r}, \ldots, \Lambda_{2 r-1}, \Lambda_{2 r-1}^{-1}$ and complex numbers $c_{\phi}^{(k)}$, it should be denoted by $\Phi_{\Lambda, \Lambda}^{\Delta}\left(\alpha, \beta, c_{\phi} ; z\right)$.
We define actions of L_{-n} for any positive integer n on a linear operator $\Phi(z)$ as follows.

$$
\begin{aligned}
L_{-1} \cdot \Phi(z) & =\frac{\partial}{\partial z} \Phi(z) \\
L_{-n} \cdot \Phi(z) & =: \frac{1}{(n-2)!} \partial_{z}^{n-2}(T(z)) \Phi(z): \\
& =\frac{1}{(n-2)!}\left(\partial_{z}^{n-2}\left(T_{-}(z)\right) \Phi(z)+\Phi(z) \partial_{z}^{n-2}\left(T_{+}(z)\right)\right),
\end{aligned}
$$

where $n \geq 2$ and

$$
T_{-}(z)=\sum_{n \leq-2} L_{n} z^{-n-2}, \quad T_{+}(z)=\sum_{n \geq-1} L_{n} z^{-n-2}
$$

We define descendants of the vertex operator $\Phi_{\Lambda, \Lambda}\left(\alpha, \beta, c_{\phi} ; v, z\right)$ for $v \in M_{\Delta}$ by

$$
\begin{aligned}
\Phi_{\Lambda, \Lambda}\left(\alpha, \beta, c_{\phi} ;|\Delta\rangle, z\right) & =\Phi_{\Lambda, \Lambda}^{\Delta}\left(\alpha, \beta, c_{\phi} ; z\right), \\
\Phi_{\Lambda, \Lambda}\left(\alpha, \beta, c_{\phi} ; L_{-\lambda}|\Delta\rangle, z\right) & =L_{-\lambda} \cdot \Phi_{\Lambda, \Lambda}^{\Delta}\left(\alpha, \beta, c_{\phi} ; z\right)
\end{aligned}
$$

A singular vector χ is a vector such that

$$
L_{n} \chi=0, \quad(n \geq 1) .
$$

It is known [Kac, 1979], [Feigin, Fuchs, 1982] that for a positive integer p, q, a singular vector $\chi_{p, q}$ of level $p q$ exists in $M_{\Delta_{p, q}}$, where

$$
c=13-6\left(t+\frac{1}{t}\right), \quad \Delta_{p, q}=\frac{(p t-q)^{2}-(t-1)^{2}}{4 t} .
$$

Definition

For $p, q \in \mathbb{Z}_{>0}$, an irregular vertex operator $\Phi_{\Lambda, \Lambda}^{\Delta_{\rho, q}}\left(\alpha, \beta, c_{\phi} ; z\right)$ is called singular if it satisfies

$$
\Phi_{\Lambda, \Lambda}^{\Delta_{p, q}}\left(\alpha, \beta, c_{\phi} ; \chi_{p, q}, z\right)=0
$$

for a singular vector $\chi_{p, q}$ of level $p q$ in $M_{\Delta_{p, q}}$.
By definition the singular vertex operator $\Phi_{\Lambda, \Lambda}^{\Delta_{p, q}}\left(\alpha, \beta, c_{\phi} ; z\right)$ satisfies a kind of linear differential equation.

Conjecture (N, arXiv:1804.04782)

For any positive integers p, q, there exist singular vertex operators $\Phi_{\Lambda, \Lambda}^{\Delta_{p, q}}\left(\alpha, \beta, c_{\phi} ; z\right)$ such that $\alpha, \beta_{1}, \ldots, \beta_{2 r-1}$ and $c_{\phi}^{(m)}\left(m \in \mathbb{Z}_{\geq 1}\right)$ are solved as polynomials of $c, \Lambda_{r}, \ldots, \Lambda_{2 r-1}, \Lambda_{2 r-1}^{-1}$. Moreover, the number of such sets $\left\{\alpha, \beta, c_{\phi}\right\}$ with multiplicity is $p q$.

We may denote a singular vertex operator by $\Phi_{\Lambda, \Lambda}^{\Delta_{p, q}, i}(z)(i=1, \ldots, p q)$.

Conjecture (N, arXiv:1804.04782)

There exist a unique vertex operator $\Phi_{\Lambda, \Lambda}^{\Delta_{p, q}}\left(\alpha, \beta, c_{\phi} ; z\right)$ such that the coefficients $c_{\lambda}^{(m)}$ of it are polynomials of $c, \Delta, \beta_{2 r-1}, \Lambda_{r}, \ldots, \Lambda_{2 r-1}, \Lambda_{2 r-1}^{-1}$ and it is equal to the singular vertex operator $\Phi_{\Lambda, \Lambda}^{\Delta_{p, q}, i}(z)$ when $\beta_{2 r-1}=\beta_{2 r-1}^{p, q, i}$ and $\Delta=\Delta_{p, q}$.

We denote such irregular vertex operator as $\Phi_{\Lambda, \Lambda}^{\Delta, \beta_{2 r-1}}(z)$ and call it irregular vertex operator of rank $r / 2$.

The first few terms of irregular vertex operator of rank $1 / 2$ with $\Lambda_{1}=1, \beta_{1}=\beta$:

$$
\begin{aligned}
& \alpha=\frac{\beta^{2}}{32}-\frac{3 \Delta}{2}, \quad v_{1}=\frac{\beta^{3}}{256}+\frac{\beta}{64}(c-4 \Delta+1)-\frac{\beta}{2} L_{0}, \\
& v_{2}=\frac{\beta^{6}}{131072}+\frac{\beta^{4}(c-4 \Delta+6)}{16384} \\
& +\frac{\beta^{2}\left(3 c^{2}-24 c \Delta+74 c+48 \Delta^{2}-168 \Delta+103\right)}{24576}+\frac{\Delta}{64}(\Delta-c-2) \\
& +\left(-\frac{\beta^{4}}{512}-\frac{\beta^{2}}{128}(c-4 \Delta+13)+\frac{\Delta}{2}\right) L_{0}+\frac{\beta^{2}}{8} L_{0}^{2} .
\end{aligned}
$$

We note that the central charge c appears in v_{1}, which do not happen in integer rank case. Gavrylenko, Marshakov, Stoyan also reported the same fact for their irregular conformal block of type ($1 / 2,1 / 2$).

Conjecture (N, arXiv:1804.04782)

A series expansion of the Painlevé III_{1} tau function at the irregular singular point ∞ is given by

$$
\begin{aligned}
\tau(t)= & t^{-\theta_{1} \theta_{2}} e^{-t / 2} \sum_{n \in \mathbb{Z}} s^{n} 2^{-(\nu+n)^{2}} G\left(1+\nu+n \pm\left(\theta_{1}+\theta_{2}\right) / 2\right) \\
& \times\left\langle\left(\theta_{1}-\theta_{2}\right)^{2} / 4\right| \cdot\left(\Phi_{(1,0),(1,0)}^{\left(\theta_{1}+\theta_{2}\right)^{2} / 4,4(\nu+n)}\left(t^{-1}\right)|(1,0)\rangle\right) .
\end{aligned}
$$

Namely, $H=t(\log (\tau(t)))^{\prime}$ satisfies the following differential equation (Hamiltonian DE for $\mathrm{P}_{\mathrm{III}_{1}}$)

$$
\left(t H^{\prime \prime}\right)^{2}-\left(4\left(H^{\prime}\right)^{2}-1\right)\left(H-t H^{\prime}\right)+4 \theta_{1} \theta_{2} H^{\prime}-\left(\theta_{1}+\theta_{2}\right)^{2}=0 .
$$

We have a similar conjecture for the Painlevé II tau function.

Other results

- A series expansion of the tau function of q - P_{VI} [Jimbo-N-Sakai, 2017]
- Series expansions of the tau functions of $q-\mathrm{P}_{\mathrm{V}}$ and $q-\mathrm{P}_{\mathrm{III}}[$ Matsuhira- N , 2019]
- A series expansion of the tau function of q-FST system [N, 2021]
- Irregular vertex operators of a super Virasoro algebra (NSR algebra)

In 2014, Bershtein, Shchechkin showed that using embedding of direct sum of two Virasoro algebras to the sum of fermion and a super Virasoro algebra, the Fourier transform of 4-pt regular conformal blocks discovered by Gamayun, lorgov, Lisovyy satisfies the bilinear equations for P_{VI}.

The Neveu-Schwarz-Ramond algebra

$$
\mathrm{NSR}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} L_{n} \oplus \bigoplus_{r \in \mathbb{Z}+\frac{1}{2}} G_{r} \oplus \mathbb{C} c
$$

is an algebra with (anti) commuting relations

$$
\begin{aligned}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0},} \\
& {\left[L_{m}, G_{r}\right]=\left(\frac{m}{2}-r\right) G_{m+r},} \\
& {\left[G_{r}, G_{s}\right]_{+}=2 L_{r+s}+\frac{c}{3}\left(r^{2}-\frac{1}{4}\right) \delta_{r+s, 0} .}
\end{aligned}
$$

For $\Lambda=\left(\Lambda_{p}, \ldots, \Lambda_{2 p}\right) \in \mathbb{C}^{p} \times \mathbb{C}^{*}$, let $M_{\Lambda}^{[p]}$ be an irregular Verma module of NSR such that

$$
L_{n}|\Lambda\rangle=\Lambda_{n}|\Lambda\rangle \quad(n \geq p), \quad G_{r}|\Lambda\rangle=0 \quad\left(r>p-\frac{1}{2}\right),
$$

where $\Lambda_{n}=0$ if $n>2 p$.

Definition

We define irregular vertex operators $\Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)$ and $\Psi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z): M_{\Lambda}^{[p]} \rightarrow M_{\Lambda^{\prime}}^{[p]}$ by

$$
\begin{aligned}
& {\left[L_{n}, \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)\right]=z^{n}\left(z \frac{\partial}{\partial z}+(n+1) \Delta\right) \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z),} \\
& {\left[L_{n}, \Psi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)\right]=z^{n}\left(z \frac{\partial}{\partial z}+(n+1)\left(\Delta+\frac{1}{2}\right)\right) \Psi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z),} \\
& {\left[G_{r}, \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)\right]=z^{r+\frac{1}{2}} \Psi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z),} \\
& {\left[G_{r}, \Psi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)\right]_{+}=z^{r-\frac{1}{2}}\left(z \frac{\partial}{\partial z}+(2 r+1) \Delta\right) \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z),} \\
& \Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)|\Lambda\rangle=z^{\alpha} \exp \left(\sum_{i=1}^{p} \frac{\beta_{i}}{z^{i}}\right) \sum_{m=0}^{\infty} v_{m} z^{\frac{m}{2}}, \\
& \Psi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)|\Lambda\rangle=z^{\alpha-\frac{p+1}{2}} \exp \left(\sum_{i=1}^{p} \frac{\beta_{i}}{z^{i}}\right) \sum_{m=0}^{\infty} u_{m} z^{\frac{m}{2}},
\end{aligned}
$$

where $v_{0}=u_{0}=\left|\Lambda^{\prime}\right\rangle, v_{m}, u_{m} \in M_{\Lambda^{\prime}}^{[p]}$.

Theorem

If $\Lambda_{2 p} \neq 0$, then the irregular vertex operators $\Phi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z)$ and $\Psi_{\Lambda^{\prime}, \Lambda}^{\Delta}(z): M_{\Lambda}^{[p]} \rightarrow M_{\Lambda^{\prime}}^{[p]}$ exists and are uniquely determined by the given parameters $\Lambda, \Delta, \beta_{p}$.

The $\mathrm{F} \oplus$ NSR algebra

$$
\mathrm{F} \oplus \mathrm{NSR}=\bigoplus_{n \in \mathbb{Z}+\frac{1}{2}} \mathbb{C} f_{r} \oplus \bigoplus_{n \in \mathbb{Z}} \mathbb{C} L_{n} \oplus \bigoplus_{r \in \mathbb{Z}+\frac{1}{2}} G_{r} \oplus \mathbb{C} c
$$

is an algebra with (anti) commuting relations

$$
\begin{aligned}
& {\left[f_{r}, f_{s}\right]_{+}=\delta_{r+s, 0}, \quad\left[f_{r}, G_{s}\right]_{+}=\left[f_{r}, L_{n}\right]=0,} \\
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0},} \\
& {\left[L_{m}, G_{r}\right]=\left(\frac{m}{2}-r\right) G_{m+r},} \\
& {\left[G_{r}, G_{s}\right]_{+}=2 L_{r+s}+\frac{c}{3}\left(r^{2}-\frac{1}{4}\right) \delta_{r+s, 0} .}
\end{aligned}
$$

Put

$$
c=1+2 Q^{2} \quad\left(Q=b^{-1}+b\right)
$$

For $\Lambda^{\mathrm{NS}}=\left(\Lambda_{p}^{\mathrm{NS}}, \ldots, \Lambda_{2 p}^{\mathrm{NS}}\right) \in \mathbb{C}^{p} \times \mathbb{C}^{*}$, let $\pi_{\mathrm{F} \oplus \mathrm{NSR}}^{\wedge,[p]}$ be a tensor product of a Verma module π_{F} and an irregular Verma module $\pi_{\mathrm{NSR}}^{\Lambda^{\mathrm{NS}},[p]}$ such that

$$
f_{r}|1\rangle=0 \quad(r>0), \quad L_{n}\left|\Lambda^{\mathrm{NS}}\right\rangle=\Lambda_{n}^{\mathrm{NS}}\left|\Lambda^{\mathrm{NS}}\right\rangle, \quad G_{r}\left|\Lambda^{\mathrm{NS}}\right\rangle=0 \quad(n, r \geq p)
$$

where $\Lambda_{n}^{\mathrm{NS}}=0$ if $n>2 p$. The irregular vector of $\pi_{\mathrm{F} \oplus \mathrm{NSR}}^{\wedge,[p]}$ is $|1\rangle \otimes\left|\Lambda^{\mathrm{NS}}\right\rangle$. We use the free-field realization of the NSR algebra generated by $c_{n}(n \in \mathbb{Z})$ and $\psi_{r}\left(r \in \mathbb{Z}+\frac{1}{2}\right)$ with relations

$$
\left[c_{n}, c_{m}\right]=n \delta_{n+m, 0}, \quad\left[c_{n}, \psi_{r}\right]=0, \quad\left[\psi_{r}, \psi_{s}\right]_{+}=\delta_{r+s, 0}
$$

For $P=\left(P_{0}, \ldots, P_{p}\right) \in \mathbb{C}^{p+1}$, let $\mathcal{F}_{P}^{[p]}$ be an irregular Fock module of this algebra generated by a vacuum vector $|P\rangle$ such that

$$
c_{n}|P\rangle=P_{n}|P\rangle \quad(n=0, \ldots, p), \quad c_{n}|P\rangle=\psi_{r}|P\rangle=0 \quad(n>p, r>0)
$$

We have two free field representations of the same irregular Verma module of NSR:

$$
\begin{aligned}
& L_{n}=\frac{1}{2} \sum_{k \neq 0, n} c_{k} c_{n-k}+\frac{1}{2} \sum_{r}\left(r-\frac{n}{2}\right) \psi_{n-r} \psi_{r}+\frac{i}{2}\left(Q n-2 c_{0}\right) c_{n} \quad(n \neq 0), \\
& L_{0}=\sum_{k>0} c_{-k} c_{k}+\sum_{r>0} r \psi_{-r} \psi_{r}+\frac{1}{2}\left(\frac{Q^{2}}{4}-c_{0}^{2}\right), \\
& G_{r}=\sum_{k \neq 0} c_{k} \psi_{r-k}+i\left(Q r-c_{0}\right) \psi_{r},
\end{aligned}
$$

and
$L_{n}=\frac{1}{2} \sum_{k \neq 0, n} c_{k} c_{n-k}+\frac{1}{2} \sum_{r}\left(r-\frac{n}{2}\right) \psi_{n-r} \psi_{r}-\frac{i}{2}\left(Q(n-2 p)+2 c_{0}\right) c_{n} \quad(n \neq 0)$,
$L_{0}=\sum_{k>0} c_{-k} c_{k}+\sum_{r>0} r \psi_{-r} \psi_{r}+\frac{1}{2}\left(\frac{Q^{2}}{4}-\left(Q p-c_{0}\right)^{2}\right)$,
$G_{r}=-\sum_{k \neq 0} c_{k} \psi_{r-k}+i\left(Q(r-p)+c_{0}\right) \psi_{r}$.

In both free field representations, the actions of $L_{n}(n \geq p)$ and $G_{r}(r>p)$ on $|P\rangle$ are

$$
\begin{aligned}
& L_{n}|P\rangle=\frac{1}{2} \sum_{k=n-p}^{p} P_{k} P_{n-k}|P\rangle \quad(p<n \leq 2 p), \\
& L_{p}|P\rangle=\frac{1}{2} \sum_{k=1}^{p-1} P_{k} P_{p-k}|P\rangle+\frac{i}{2}\left(Q p-2 P_{0}\right) P_{p}|P\rangle, \\
& L_{n}|P\rangle=0 \quad(n>2 p), \quad G_{r}|P\rangle=0 \quad(r>p) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \Lambda_{n}^{\mathrm{NS}}=\frac{1}{2} \sum_{k=n-p}^{p} P_{k} P_{n-k} \quad(p<n \leq 2 p), \\
& \Lambda_{p}^{\mathrm{NS}}=\frac{1}{2} \sum_{k=1}^{p-1} P_{k} P_{p-k}+\frac{i}{2}\left(Q p-2 P_{0}\right) P_{p} .
\end{aligned}
$$

The embedding of the Vir \oplus Vir subalgebra in the $\mathrm{F} \oplus$ NSR algebra is defined by

$$
\begin{aligned}
& L_{n}^{(1)}=\frac{b^{-1}}{b^{-1}-b} L_{n}-\frac{b^{-1}+2 b}{2\left(b^{-1}-b\right)} \sum_{\mathbb{Z}-\frac{1}{2}} r: f_{n-r} f_{r}:+\frac{1}{b^{-1}-b} \sum_{\mathbb{Z}-\frac{1}{2}} f_{n-r} G_{r}, \\
& L_{n}^{(2)}=\frac{b}{b-b^{-1}} L_{n}-\frac{b+2 b^{-1}}{2\left(b-b^{-1}\right)} \sum_{\mathbb{Z}-\frac{1}{2}} r: f_{n-r} f_{r}:+\frac{1}{b-b^{-1}} \sum_{\mathbb{Z}-\frac{1}{2}} f_{n-r} G_{r} .
\end{aligned}
$$

$L_{n}^{(\eta)}(\eta=1,2)$ act on $|P\rangle$ as follows.

$$
\begin{aligned}
L_{n}^{(1)}|P\rangle & =\frac{b^{-1}}{b^{-1}-b} \Lambda_{n}^{\mathrm{NS}}|P\rangle \quad(p \leq n \leq 2 p), \\
L_{n}^{(2)}|P\rangle & =\frac{b}{b-b^{-1}} \Lambda_{n}^{\mathrm{NS}}|P\rangle \quad(p \leq n \leq 2 p) .
\end{aligned}
$$

Put

$$
\chi_{r}^{(j)}=f_{r}-i \psi_{r}^{(j)} \quad(j=1,2)
$$

We define the vectors $|P, n\rangle(2 n \in \mathbb{Z})$ as follows.

$$
\begin{aligned}
& |P, 0\rangle=|1\rangle \otimes|P\rangle=|1\rangle \otimes\left|\Lambda^{\mathrm{NS}}\right\rangle, \quad|P, n\rangle=\prod_{r=1 / 2}^{(4 n-1) / 2} \chi_{-r}^{(1)}|1\rangle \otimes\left|\Lambda^{\mathrm{NS}}\right\rangle \quad(n>0), \\
& |P, n\rangle=\prod_{r=1 / 2}^{(-4 n-1) / 2} \chi_{-r}^{(2)}|1\rangle \otimes\left|\Lambda^{\mathrm{NS}}\right\rangle \quad(n<0) .
\end{aligned}
$$

Straightforward calculations show that

$$
\begin{aligned}
L_{n}^{(1)}|P, m\rangle & =\left(\frac{b^{-1}}{b^{-1}-b} \Lambda_{n}^{\mathrm{NS}}-\delta_{n, p} \frac{2 i m}{b^{-1}-b} P_{p}\right)|P, m\rangle, \\
L_{n}^{(2)}|P, m\rangle & =\left(\frac{b}{b-b^{-1}} \Lambda_{n}^{\mathrm{NS}}-\delta_{n, p} \frac{2 i m}{b-b^{-1}} P_{p}\right)|P, m\rangle
\end{aligned}
$$

for $m>0$.

We can write $|P, m\rangle=\left|\Lambda^{(m, 1)}\right\rangle \otimes\left|\Lambda^{(m, 2)}\right\rangle$.

Theorem (N)

For $P_{p} \neq 0, \pi_{\mathrm{F} \oplus \mathrm{NSR}}^{\Lambda_{\mathrm{NS}},[p]}$ is isomorphic to the sum of irregular Verma modules over Vir \oplus Vir

$$
\pi_{\mathrm{F} \oplus \mathrm{NSR}}^{\wedge^{\mathrm{NS}},[p]} \cong \bigoplus_{2 m \in \mathbb{Z}} \pi_{\mathrm{Vir} \oplus \mathrm{Vir}}^{m,[p]}
$$

The irregular vectors of the irregular Verma module $\pi_{\mathrm{Vir} \oplus \mathrm{Vir}}^{m,[p]}$ of Vir \oplus Vir are $\left|\Lambda^{(m, 1)}\right\rangle \otimes\left|\Lambda^{(m, 2)}\right\rangle$.

This result should lead to a decomposition of an irregular vertex operator of NSR algebra into the sum of irregular vertex operators of Vir \oplus Vir. We expect that for $p=1,2$, an expectation value of an irregular vertex operator of NSR algebra satisfies the bilinear equation for $\mathrm{P}_{\mathrm{V}}, \mathrm{P}_{\mathrm{IV}}$, respectively.

