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Introduction

Setting. Consider C” with coordinates 7, ...,7, and, for a given
1° € C" with 17 # tj if i # j, consider the connection V° on the

trivial bundle on the affine line (with coordinate z) having matrix

<1A(t°) + A°>d—z, A) := diagt),_, . A°€M,C).
- ;

This talk deals with a theorem that concerns the behaviour of an
isomonodromic deformation of V° with parameters ¢ when 7 tends

to a value where 7, = 7, for some i # j.
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1€ C" with 17 # tj if i # j, consider the connection V° on the

trivial bundle on the affine line (with coordinate z) having matrix

<1A(t°) + A°>d—z, A) :=diagt),_, . A°€M,(C).
- ;

This talk deals with a theorem that concerns the behaviour of an
isomonodromic deformation of V° with parameters ¢ when 7 tends
to a value where 7, = 7, for some i # j.

This theorem was developed by Giordano Cotti, Boris Dubrovin
and Davide Guzzetti in various papers, where they have empha-
sized some properties of connections with irregular singularities
which appear when studying Frobenius manifolds. These ques-
tions can be considered from a slightly more general perspective,
and shade new light on the isomonodromic deformation theory
of connections with irregular singularities. These works are a
source of inspiration for what follows, and I would encourage you
to read them. I will not take exactly the same point of view, but

the questions I address are similar.
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A theorem of Jimbo-Miwa-Ueno and Malgrange

If t = ° is such that 77 # t;.’ for any pair i # j, then a famous
theorem of Jimbo-Miwa-Ueno and Malgrange show the existence,
in the neighbourhood of #°, of a universal integrable deformation
of V°. We can write

A® = D° +[A(r°), R°]
for some matrix R°, whose diag. can be chosen to be zero, and
D° = diag A°.
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in the neighbourhood of #°, of a universal integrable deformation
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A° = D° + [A(t°), R°]
for some matrix R°, whose diag. can be chosen to be zero, and
D° = diag A°.
Theorem (Jimbo-Miwa-Ueno and Malgrange).
d neighbd U (t°) and a holom. matrix R(t) (t € U(2°)) s.t. R(t°) = R°

and V on the trivial bdle Oy [z]" with matrix

dz

A
(JMUM) —d(g) + (IAQ), R()] + D°) ~ = [dA@. R)]

is a universal integrable deformation of V°. Furthermore, 3 a base
change, formal with respect to z and holomorphic with respect to
t € U(t°), such that, after such a base change, the matrix of the

connection reduces to
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A theorem of Cotti-Dubrovin-Guzzetti

Consider a partition {1, ...,n} = |_|;=1 I, and let #° be a “coalesc-
ing point” in C" on the stratum defined by this partition, that is,
t; =1, < iandj € I, for some a.
V(t°): a 1-connected nbd of the form [, V()
t° € V(°): a generic point.
ww> JMU-M deformation defined on [], U(?) C [], V().
If R(¢) extends holomorphically to V' (), then the connection with
matrix (JMUM), which is defined on V' (¢°), is integrable on V (t°).
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(2) 3 a pair of Stokes matrices (S?3,S°) attached to V° s.t. each
entry (i, j) is zero if i # j and i, j in the same subset 1 ,.
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extension also called middle extension plays a role.
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What is a turning point?

V: an integrable conn. on G = O, (¢ (0 X 7)) eg. dimT = 1.

d a Zariski open set T, C T s.t. the Hukuhara-Levelt-Turrittin
theorem (dim. one with parameters) applies to V in the nbd of
each point of 7.

Coalescing eigenvalues = a turning point.

The general situation at a turning point may be very complicated,

however controlled by the theorem of Kedlaya-Mochizuki:

N,
N,
.
N,
N,

T t°

‘ blow-up ‘ l
T t¢ t°

N JAY N

After enough complex blowing-ups of A X V', A turning point for
the pullback connection.

The first part of the theorem of C-D-G asserts that the turning point

that is created at a coalescing value ¢ is very simple.
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A formula of Malgrange for Stokes matrices

JrC@) =C~{A=ri=1,....,n} = C, (punctured affine
line), with 17 # 17 if i # i

L°: aloc. const. sheaf of rank d on Cj(t°).

(V°,V?°) free O(C'(t°))-mod. with connection s.t. L° = (Voan)V°
and V° has reg. sing. included at infinity.

ww j (17°,V°) is left module on the Weyl algebra C[A1](0,), and
DR* j (V°,V°) ~ Rj, L°: a perverse sheaf (up to a shift) on C,.
More generally, can consider M °: areg. holon. C[1](0,)-mod. s.t.
OC(°) @ M° = (V°,V).
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of C[{]{d;) such that ¢ acts as d, and 9, acts as —A.

Setting z = ¢, the localization G° := C[{,{™"] ®¢;y "M° is a
free C[z, z~']-module with conn. having an irregular singularity

of Poincaré rank one (exponential type) at z = 0.
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proved in a topological way by d’ Agnolo-Hien-Morando-CS)
— formula for the Stokes matrices of G° at z = 0 in terms of

monodromy data of M°.
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Perverse sheaf DR* M° <= linear repres. of a quiver (monodr. data):
» Vector spaces ¥° (of rank d) and @9 (i = 1, ..., n),
o linear morphisms ¢; : ¥° — ®° and v; : ®7 — ¥°,

subject to the relations that Id +c,ov; and T; := Id +v,oc; are in-

vertible for each i.

Theorem (Malgrange, DHMS). 3 a pair of Stokes matrices (S7, S°)
for G° at z = 0, decomposed into blocks (i, j) (i,j = 1,...,n) s.t.
the non-diagonal blocks (i, j) and (j, i) respectively read

*C;oV; and O for S°,

* 0 and —c;ov; for S°.
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RH
Perverse sheaf DR™ M° <= linear repres. of a quiver (monodr. data):
e Vector spaces W° (of rank d) and o (i=1,...,n),
e linear morphisms ¢; : ¥° — ®° and v; : ®7 — ¥°,
subject to the relations that Id +c;ov; and T; := Id +v,oc; are in-
vertible for each i.
Theorem (Malgrange, DHMS). 3 a pair of Stokes matrices (S35, S°)
for G° at z = 0, decomposed into blocks (i, j) (i,j = 1,...,n) s.t.
the non-diagonal blocks (i, j) and (j, i) respectively read
e c;ov; and 0 for S?,
* 0 and —c;ov; for S°.
Example (Middle extension). Case DR* M° ~ j L°:
~w> monodromy data are (V°, @, ¢, V) with®? =im(Id-T))
and v; =inclusion : ®7 — ¥°, ¢, =1d-T) : ¥°* — @’.
Th. = fori # j € {1,...,n}, (57,5°) has vanishing blocks
(i,j) and (j, 1) iff
(Van) (Id _TJ)I im(Id -T)) = 0 and (Id _T[)| im(1d _Tj) == O.

(= T,T,=T, and T,T,=T,)
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Dynamical version of Malgrange’s theorem

Case of a coalescing point t© € C" with nbd V () = Ha V().
SV = {1 eVE) |1, #1, Vi # j)
«In C, X V(t°)°, hypersurface H = {[].(A —t;) = 0}.
-~ disjoint union of the hyperplanes H, = {1 — ¢, = 0}.
o L: alocally const. sheaf of rk d on (C, X V' (°)°) \ H.
oj 1 (C,XV())\H < C, X V(t)°: the inclusion.
) /1_,[( Jj.L): vanishing cycle sheaf with autom. T, (i =1, ... ,n)
~w> locally constant on H.,.

e j.L°: restriction of j, L to C, X {#°}.
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Dynamical version of Malgrange’s theorem

Case of a coalescing point t© € C" with nbd V () = Ha V().
SV = {1 €VE) |1, #1, Vi # j)
«In C, X V(t°)°, hypersurface H = {[].(A —1t;) = 0}.
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o L: alocally const. sheaf of rk d on (C, X V' (°)°) \ H.
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° (l)l_,[(j*L): vanishing cycle sheaf with autom. T, (i = 1, ... ,n)
~w> locally constant on H,.
e j.L°: restriction of j, L to C, X {#°}.
Proposition. For a given a = 1,...,r, Condition (Van) holds for

any pairi # j € 1, iff ¢,_, (j, L) is constant for every i € I,.

Sketch of proof. Represent the loc. constant sheaf ¢,_, (j, L) by the
vector space im(Id —T;) with autom. T, for j #i € I,
Constancy <= T;/inqa_1, = Idforany j € I,. Ul




Dynamical version of Malgrange’s theorem

Case of a coalescing point t© € C" with nbd V () = Ha V().
V) ={teVE)|t,#1;Vi#j}
«In C, X V(t°)°, hypersurface H = {[].(A —t;,) = 0}.
-~ disjoint union of the hyperplanes H, = {1 — ¢, = 0}.
o L: alocally const. sheaf of rk d on (C, X V' (°)°) \ H.
oj 1 (C,XV())\H < C, X V(t)°: the inclusion.
* ¢, (j.L): vanishing cycle sheaf with autom. T; (i = 1, ... ,n)
~w> locally constant on H,.
e j.L°: restriction of j, L to C, X {#°}.
Proposition. For a given a = 1,...,r, Condition (Van) holds for

any pairi # j € 1, iff ¢,_, (j, L) is constant for every i € I,

Sketch of proof. Represent the loc. constant sheaf ¢,_, (j, L) by the
vector space im(Id —T;) with autom. T, for j # i € I,
Constancy <= T;/inqa_1, = Idforany j € I,. L]

Consider:
e M: the reg. holonomic &-module on C, XV (°)° whose de Rham
complex is j, L.
« "M its partial Fourier transform relative to A.
« G be the formalization of FM along {{ = oo} X V (1°)°.

The formal stationary phase formula with parameter t (Douai-
CS 2003) =

G has a decomposition
G~ PRz, Y, +d(t,/2)

with (R;, V,): log. connection with pole along z = 0.
« and L;: sheaf of horiz. sections of the residual conn.
(R;/zR;, V,¢s) on V (1°)° isomorphic to ¢,_, (j,L).

Corollary. If the sheaves L, are constant on V (t°)°, then:
Vie e V), Va=1,...,rand Vi # j € 1, the (i, j) entries of
the Stokes matrices (S7, S°) are zero.
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Corollary. If the sheaves L, are constant on V (t°)°, then:
Vie e V), Ya=1,...,rand Vi # j € 1, the (i, j) entries of

the Stokes matrices (S7, S°) are zero.

Conclusion: Proof of the theorem of C-D-G

Consider a partition {1, ...,n} = |_|;=1 I, and let 7° be a “coalesc-

ing point” in C" on the stratum defined by this partition, that is,
t; =1, < iandj € I, for some a.
V(t°): a 1-connected nbd of the form [, V()
t° € V(°): a generic point.
Assumption: 3R(t) holom. on V () = [], V(¢9) and integr. conn.

A(t)) + (IA@). R0 + D) &

(IMUM) —d(— = — [dA@), R()]
yé Z
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Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,

(1) 3 a base change, formal with respect to z and holom. w.r.t.

teV (1), s.t., after this base change, the matrix of vV is

(2) 3 a pair of Stokes matrices (S°,S°) attached to V° s.t. each
entry (i,j) is zero if i # j and i, j in the same subset 1 ,.

e Proof of (1) omitted (not much difficult).
e (1) = L, constant of rk one on V (t°)°.
e Proof of (2): relate (JMUM) with the above corollary.
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(1) 3 a base change, formal with respect to z and holom. w.r.t.
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(2) 3 a pair of Stokes matrices (S°,S°) attached to V° s.t. each
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e Proof of (1) omitted (not much difficult).
e (1) = L, constant of rk one on V (t°)°.
e Proof of (2): relate (JMUM) with the above corollary.

Setting.

e F° :=(C[z]", F'V°) with matrix

(ﬁ + A°> %, A° 1= diag(t), ..., ).
_ z V4

« G° :=Clz,27"] ®¢[; F° with merom. conn. 7V°.
e Can assume (add c Id, dz/z with suitable ¢ € C):

« integral eigenvalues of A° are > 1,

« no diagonal entry of A° is an integer.
eSet A= zzaz and E° := F° regarded as a C[4]-mod.

o Action of z=! ~ merom. connect. V° on E°.

Lemma. E° is C[A]-free of rk n and V° is log. with matrix

o

B° = (A°—1d,)(A1d,—-A°)'dA =) - "to.
i=1 i

» Each matrix B has rank one and a unique nonzero eigen-
value: the ith diagonal entry of A° —1d,, that is non integral.
e Set (V°,V°) = (C[A, ([[,A — )| ® E°, V°).
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<£ + A°> %, A° 1= diag(t), ..., ).
_ z V4

« G° :=Clz,27"] @[ F° with merom. conn. 7V°.
e Can assume (add c Id, dz/z with suitable ¢ € C):

« integral eigenvalues of A° are > 1,

« no diagonal entry of A° is an integer.
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o Action of z=! ~ merom. connect. V° on E°.

Lemma. E° is C[A]-free of rk n and V° is log. with matrix

n o

B° = (A°-1d,)(Ald,—A*)'dA= ) - "to.
i=1 7

» Each matrix B has rank one and a unique nonzero eigen-
value: the ith diagonal entry of A° —1d,, that is non integral.
e Set (V°,V°) = (C[A, ([[,A — )| ® E°, V°).

Lemma. The C[A]{0,)-submodule of (V°, V°) generated by E° is
the middle extension (M °,V°) of (V°, V°®), whose localized Laplace
transform (G°,*V°) is equal to (G°, FV°).

Proof.

» Properties of eigenvalues of B? = first assertion.

 Set G°: localized Laplace transform of M°.

e F° 5 M° — F° < G°, hence G° C G°.

« For equality, enough to show rk G° = n.

« Known: rk G° = Y77 o M°.

« —> enough to show tﬁat, for each local monodromy T, of
L° = (V°)V" around #?, we have | rk(Id, —-T,)) =1 .

By our assumption on B°, the local monodromy T, is conjugate to

exp —27riB;°, hence T, — Id has rank one, as desired. L]
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» Each matrix B has rank one and a unique nonzero eigen-
value: the ith diagonal entry of A° —1d,, that is non integral.
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Lemma. The C[A]{0,)-submodule of (V°, V°) generated by E° is
the middle extension (M °,V°) of (V°, V°®), whose localized Laplace
transform (G°,*V°) is equal to (G°, FV°).

Proof.
» Properties of eigenvalues of B? = first assertion.
 Set G°: localized Laplace transform of M°.
e F° 5 M° — F° < G°, hence G° C G°.
« For equality, enough to show rk G° = n.
« Known: rk G° = Y77 o M°.
« —> enough to show tﬁat, for each local monodromy T, of
L° = (V°)V" around #?, we have | rk(Id, —-T,)) =1 .

By our assumption on B°, the local monodromy T, is conjugate to

exp —27ziB;°, hence T, — Id has rank one, as desired. L]

Conclusion. Up to adding cId, dz/z to the matrix, the connec-
tion (JMUM) on V(T°)° is the localized Fourier transform G of
a middle extension M. Furthermore, the constancy condition of
¢, M is satisfied because L; is constant (of rank one).
Dynamical Malgrange theorem —> vanishing of Stokes entries.
]




