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Introduction
Setting. Consider ℂn with coordinates t1,… , tn and, for a given
t◦ ∈ ℂn with t◦i ≠ t◦j if i ≠ j, consider the connection ∇◦ on the
trivial bundle on the affine line (with coordinate z) having matrix
(1
z
Λ(t◦) + A◦

)dz
z
, Λ(t◦) ∶= diag(t◦i )i=1,…,n, A◦ ∈ Mn(ℂ).

This talk deals with a theorem that concerns the behaviour of an
isomonodromic deformation of ∇◦ with parameters t when t tends
to a value where ti = tj for some i ≠ j.
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This talk deals with a theorem that concerns the behaviour of an
isomonodromic deformation of ∇◦ with parameters t when t tends
to a value where ti = tj for some i ≠ j.
This theorem was developed by Giordano Cotti, Boris Dubrovin
and Davide Guzzetti in various papers, where they have empha-
sized some properties of connections with irregular singularities
which appear when studying Frobenius manifolds. These ques-
tions can be considered from a slightly more general perspective,
and shade new light on the isomonodromic deformation theory
of connections with irregular singularities. These works are a
source of inspiration for what follows, and I would encourage you
to read them. I will not take exactly the same point of view, but
the questions I address are similar.
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A theorem of Jimbo-Miwa-Ueno and Malgrange
If t = t◦ is such that t◦i ≠ t◦j for any pair i ≠ j, then a famous
theorem of Jimbo-Miwa-Ueno and Malgrange show the existence,
in the neighbourhood of t◦, of a universal integrable deformation
of ∇◦. We can write

A◦ = D◦ + [Λ(t◦), R◦]

for some matrix R◦, whose diag. can be chosen to be zero, and
D◦ = diagA◦.
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Theorem (Jimbo-Miwa-Ueno and Malgrange).
∃ neighbdU (t◦) and a holom. matrixR(t) (t ∈ U (t◦)) s.t.R(t◦) = R◦

and ∇ on the trivial bdle OU [z]n with matrix

(JMUM) −d
(Λ(t)
z

)
+
(
[Λ(t), R(t)] +D◦) dz

z
− [dΛ(t), R(t)]

is a universal integrable deformation of∇◦. Furthermore, ∃ a base

change, formal with respect to z and holomorphic with respect to

t ∈ U (t◦), such that, after such a base change, the matrix of the

connection reduces to

−d
(Λ(t)
z

)
+D◦ dz

z
.
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A theorem of Cotti-Dubrovin-Guzzetti
Consider a partition {1,… , n} =

⨆r
a=1 Ia and let tc be a “coalesc-

ing point” in ℂn on the stratum defined by this partition, that is,

tci = t
c
j ⟺ i and j ∈ Ia for some a.

V (tc): a 1-connected nbd of the form
∏

a V (tca)
t◦ ∈ V (tc): a generic point.
⟿ JMU-M deformation defined on

∏
aU (t◦a) ⊂

∏
a V (tca).

If R(t) extends holomorphically to V (tc), then the connection with
matrix (JMUM), which is defined on V (tc), is integrable on V (tc).
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Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,

(1) ∃ a base change, formal with respect to z and holom. w.r.t.

t∈V (tc), s.t., after this base change, the matrix of ∇̂ is

−d
(Λ(t)
z

)
+D◦ dz

z
;

(2) ∃ a pair of Stokes matrices (S◦
+, S

◦
−) attached to ∇◦ s.t. each

entry (i, j) is zero if i ≠ j and i, j in the same subset Ia.
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Goal of this talk: Explain how a theorem of Malgrange explains
the result on Stokes matrices, and how the concept of intermediate
extension also called middle extension plays a role.
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What is a turning point?
∇: an integrable conn. on G = OΔ×T (∗ (0 × T ))d, e.g. dim T = 1.
∃ a Zariski open set T0 ⊂ T s.t. the Hukuhara-Levelt-Turrittin
theorem (dim. one with parameters) applies to ∇ in the nbd of
each point of T0.
Coalescing eigenvalues ⟹ a turning point.
The general situation at a turning point may be very complicated,
however controlled by the theorem of Kedlaya-Mochizuki:

totc

∆o∆c

Tto

∆o

T

∆c

blow-up

After enough complex blowing-ups of Δ × V , ∄ turning point for
the pullback connection.
The first part of the theorem of C-D-G asserts that the turning point
that is created at a coalescing value tc is very simple.
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A formula of Malgrange for Stokes matrices
j ∶ ℂ∗�(t

◦) ∶= ℂ� ∖ {� = t◦i ∣ i = 1,… , n} → ℂ� (punctured affine
line), with t◦i ≠ t◦i′ if i ≠ i′.
L◦: a loc. const. sheaf of rank d on ℂ∗�(t

◦).
(V ◦,∇◦) free O(ℂ∗�(t

◦))-mod. with connection s.t. L◦ = (V ◦an)∇◦

and ∇◦ has reg. sing. included at infinity.
⟿ j∗(V ◦,∇◦) is left module on the Weyl algebra ℂ[�]⟨)�⟩, and
DRan j∗(V ◦,∇◦) ≃ Rj∗L◦: a perverse sheaf (up to a shift) on ℂ�.
More generally, can considerM◦: a reg. holon. ℂ[�]⟨)�⟩-mod. s.t.
O(ℂ∗�(t

◦))⊗M◦ = (V ◦,∇).
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Fourier transform FM◦: the same ℂ-vector space with an action
of ℂ[� ]⟨)�⟩ such that � acts as )� and )� acts as −�.
Setting z = �−1, the localization G◦ ∶= ℂ[�, �−1]⊗ℂ[� ]

FM◦ is a
free ℂ[z, z−1]-module with conn. having an irregular singularity
of Poincaré rank one (exponential type) at z = 0.
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Theorem of Malgrange (Chap. XII in his 1991 book) (recently
proved in a topological way by d’Agnolo-Hien-Morando-CS)
⟹ formula for the Stokes matrices of G◦ at z = 0 in terms of

monodromy data of M◦.
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Perverse sheafDRanM◦ ⟺ linear repres. of a quiver (monodr. data):

∙ Vector spaces Ψ◦ (of rank d) and Φ◦
i (i = 1,… , n),

∙ linear morphisms ci ∶ Ψ◦ → Φ◦
i and vi ∶ Φ◦

i → Ψ◦,

subject to the relations that Id +ci◦vi and Ti ∶= Id+vi◦ci are in-
vertible for each i.

Theorem (Malgrange, DHMS). ∃ a pair of Stokes matrices (S◦
+, S

◦
−)

for G◦ at z = 0, decomposed into blocks (i, j) (i, j = 1,… , n) s.t.

the non-diagonal blocks (i, j) and (j, i) respectively read

∙ cj◦vi and 0 for S◦
+,

∙ 0 and −ci◦vj for S◦
−.
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for G◦ at z = 0, decomposed into blocks (i, j) (i, j = 1,… , n) s.t.

the non-diagonal blocks (i, j) and (j, i) respectively read

∙ cj◦vi and 0 for S◦
+,

∙ 0 and −ci◦vj for S◦
−.

Example (Middle extension). Case DRanM◦ ≃ j∗L◦:
⟿ monodromy data are (Ψ◦,Φ◦

i=1,…,n, ci, vi)withΦ◦
i = im(Id−Ti)

and vi = inclusion ∶ Φ◦
i ⟶ Ψ◦, ci = (Id−Ti) ∶ Ψ◦ ⟶ Φ◦

i .

Th. ⟹ for i ≠ j ∈ {1,… , n}, (S◦
+, S

◦
−) has vanishing blocks

(i, j) and (j, i) iff

(Van) (Id −Tj)| im(Id−Ti) = 0 and (Id −Ti)| im(Id−Tj) = 0.

(⟺ TjTi = Tj and TiTj = Ti.)
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Dynamical version of Malgrange’s theorem
Case of a coalescing point tc ∈ ℂn with nbd V (tc) =

∏
a V (tca).

∙ V (tc)◦ = {t ∈ V (tc) ∣ ti ≠ tj ∀i ≠ j}
∙ In ℂ� × V (tc)◦, hypersurface H = {

∏
i(� − ti) = 0}.

⟿ disjoint union of the hyperplanes Hi = {� − ti = 0}.
∙ L: a locally const. sheaf of rk d on (ℂ� × V (tc)◦) ∖H .
∙ j ∶ (ℂ� × V (tc)◦) ∖H → ℂ� × V (tc)◦: the inclusion.
∙ ��−ti(j∗L): vanishing cycle sheaf with autom. Ti (i = 1,… , n)
⟿ locally constant on Hi.
∙ j∗L◦: restriction of j∗L to ℂ� × {t◦}.
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∙ j∗L◦: restriction of j∗L to ℂ� × {t◦}.

Proposition. For a given a = 1,… , r, Condition (Van) holds for

any pair i ≠ j ∈ Ia iff ��−ti(j∗L) is constant for every i ∈ Ia.

Sketch of proof. Represent the loc. constant sheaf ��−ti(j∗L) by the
vector space im(Id−Ti) with autom. Tj for j ≠ i ∈ Ia.
Constancy ⟺ Tj| im(Id−Ti) = Id for any j ∈ Ia. �
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Consider:

∙M : the reg. holonomic D -module on ℂ�×V (tc)◦ whose de Rham
complex is j∗L.
∙ FM : its partial Fourier transform relative to �.
∙ Ĝ be the formalization of FM along {� = ∞} × V (tc)◦.

The formal stationary phase formula with parameter t (Douai-
CS 2003) ⟹
∙ Ĝ has a decomposition

Ĝ ≃
⨁
i
(Ri[z−1],∇i + d(ti∕z))

with (Ri,∇i): log. connection with pole along z = 0.
∙ and Li: sheaf of horiz. sections of the residual conn.
(Ri∕zRi,∇res) on V (tc)◦ isomorphic to ��−ti(j∗L).

Corollary. If the sheaves Li are constant on V (tc)◦, then:

∀t◦ ∈ V (tc)◦, ∀a = 1,… , r and ∀i ≠ j ∈ Ia, the (i, j) entries of

the Stokes matrices (S◦
+, S

◦
−) are zero.
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Conclusion: Proof of the theorem of C-D-G
Consider a partition {1,… , n} =

⨆r
a=1 Ia and let tc be a “coalesc-

ing point” in ℂn on the stratum defined by this partition, that is,

tci = t
c
j ⟺ i and j ∈ Ia for some a.

V (tc): a 1-connected nbd of the form
∏

a V (tca)
t◦ ∈ V (tc): a generic point.
Assumption: ∃R(t) holom. on V (tc) =

∏
a V (tca) and integr. conn.

(JMUM) −d
(Λ(t)
z

)
+
(
[Λ(t), R(t)] +D◦) dz

z
− [dΛ(t), R(t)]
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Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,

(1) ∃ a base change, formal with respect to z and holom. w.r.t.

t∈V (tc), s.t., after this base change, the matrix of ∇̂ is

−d
(Λ(t)
z

)
+D◦ dz

z
;

(2) ∃ a pair of Stokes matrices (S◦
+, S

◦
−) attached to ∇◦ s.t. each

entry (i, j) is zero if i ≠ j and i, j in the same subset Ia.

∙ Proof of (1) omitted (not much difficult).
∙ (1) ⟹ Li constant of rk one on V (tc)◦.
∙ Proof of (2): relate (JMUM) with the above corollary.
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Setting.
∙ F ◦ ∶= (ℂ[z]n, F∇◦) with matrix(Λ◦

z
+ A◦

) dz
z
, Λ◦ ∶= diag(t◦1,… , t◦n).

∙ G̃◦ ∶= ℂ[z, z−1]⊗ℂ[z] F ◦ with merom. conn. F∇◦.
∙ Can assume (add c Idn dz∕z with suitable c ∈ ℂ):
∙ integral eigenvalues of A◦ are ⩾ 1,
∙ no diagonal entry of A◦ is an integer.

∙ Set � = z2)z and E◦ ∶= F ◦ regarded as a ℂ[�]-mod.
∙ Action of z−1 ⇝ merom. connect. ∇◦ on E◦.

Lemma. E◦ is ℂ[�]-free of rk n and ∇◦ is log. with matrix

B◦ = (A◦ − Idn)(� Idn−Λ◦)−1d� =
n∑
i=1

B◦
i

� − t◦i
.

∙ Each matrix B◦
i has rank one and a unique nonzero eigen-

value: the ith diagonal entry of A◦ − Idn, that is non integral.
∙ Set (V ◦,∇◦) =

(
ℂ
[
�, (

∏
i(� − t◦i ))

−1]⊗E◦,∇◦
)
.
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Lemma. The ℂ[�]⟨)�⟩-submodule of (V ◦,∇◦) generated by E◦ is

the middle extension (M◦,∇◦) of (V ◦,∇◦), whose localized Laplace

transform (G◦, F∇◦) is equal to (G̃◦, F∇◦).

Proof.
∙ Properties of eigenvalues of B◦

i ⟹ first assertion.
∙ Set G◦: localized Laplace transform of M◦.
∙ E◦ →M◦ ⟹ F ◦ → G◦, hence G̃◦ ⊂ G◦.
∙ For equality, enough to show rkG◦ = n.
∙ Known: rkG◦ =

∑n
i=1�t◦iM

◦.
∙ ⟹ enough to show that, for each local monodromy Ti of
L◦ = (V ◦)∇◦ around t◦i , we have rk(Idn−Ti) = 1 .

By our assumption on B◦, the local monodromy Ti is conjugate to
exp−2�iB◦

i , hence Ti − Id has rank one, as desired. �
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Conclusion. Up to adding c Idn dz∕z to the matrix, the connec-
tion (JMUM) on V (T c)◦ is the localized Fourier transform G of
a middle extension M . Furthermore, the constancy condition of
��−tiM is satisfied because Li is constant (of rank one).
Dynamical Malgrange theorem ⟹ vanishing of Stokes entries.

�


