HGM の不安定性をどう回避するか？高山信毅（神戸大）

HGM の三つの step
1．パラメータ付定積分のみたす線形偏微分方程式系を代数的ア ルゴリズム等で見つける。
2．初期条件を計算
3．微分方程式の数値解析で，パラメータ付定積分の値を決める。
Step 3 がむつかしくなる場合の例，困難の回避の方法．
＂Algorithms to Reduce the Instability of the HGM and Tricks Useful for the HGM＂，preprint（expository，technical）．

1．このスライドの PDF：Nobuki Takayama［search］
2．http：
／／www．math．kobe－u．ac．jp／OpenXM／Math／hgm／ref－hgm．html

復習：Runge－Kutta 法

$$
\begin{equation*}
\frac{d F}{d t}=P(t) F \tag{1}
\end{equation*}
$$

where $P(t)$ is an $r \times r$ matrix and $F(t)$ is a column vector valued unknown function．Let E be the $r \times r$ identity matrix．

$$
\begin{gathered}
F_{1}=F_{0}+h k_{1}=\left(E+h P\left(t_{0}\right)\right) F_{0}, \quad k_{1}=P\left(t_{0}\right) F_{0} \\
F\left(t_{0}+h\right)-F_{1}=F\left(t_{0}\right)+F^{\prime}\left(t_{0}\right) h+O\left(h^{2}\right)-F_{1}=O\left(h^{2}\right), F^{\prime}\left(t_{0}\right)=P\left(t_{0}\right) F_{0}
\end{gathered}
$$

The 4th order Runge－Kutta（RK）method．

$$
\begin{align*}
k_{i+1} & =P\left(t_{0}+c_{i+1} h\right)\left(F_{0}+a_{i+1} k_{i} h\right), \quad k_{0}=0 \tag{2}\\
F_{1} & =F_{0}+h\left(b_{1} k_{1}+b_{2} k_{2}+b_{3} k_{3}+b_{4} k_{4}\right) \tag{3}
\end{align*}
$$

Determine the constants so that $F_{1}-F\left(t_{0}+h\right)=O\left(h^{5}\right)$ where $F(t)$ is the solution with the initial condition $F\left(t_{0}\right)=F_{0} . a_{1}=c_{1}=0, b_{1}=1 / 6, b_{2}=$ $1 / 3, b_{3}=1 / 3, b_{4}=1 / 6, c_{2}=c_{3}=c_{4}=1 / 2, a_{2}=a_{3}=1 / 2, a_{4}=1$ ．
E．Hairer，S．P．Norsett，G．Wanner，Solving ordinary differential equations I，II，1993，1996，Springer

Matrix factorial

$$
Q(t, h)=E+h P(t), \quad \text { for the first order } \mathrm{RK}
$$

or $Q(t, h)$ is an analogous matrix for the 4th order RK．Then， $F_{k+1}=Q(k) F_{k}\left(Q(k)=Q\left(t_{0}+k h, h\right)\right.$ in short $)$ ．We call

$$
Q(k) Q(k-1) \cdots Q(1) Q(0)
$$

the matrix factorial．Applying the matrix factorial to F_{0} ，we obtain F_{k+1}（approximate solution）．
Methods for exact evaluation of matrix factorials（the binary splitting and the modular method）＊${ }^{*}$ ．以下おまけ話題．

5×5 contingency table，a benchmark test of evaluating the normalizing constant（ A－hypergeometric polyno－ mial）with 32 processes from［tgkt］． N is a parameter in the marginal sum．

[^0]
復習: adaptive Runge-Kutta method

Let F_{1} be the vector determined by RK (of the 4th order) of the step size $2 h$ (not h). Let F_{2} be the vector determined by RK two times with the step size h.

$$
\begin{equation*}
\left|F\left(t_{0}+2 h\right)-F_{1}\right|=\phi(2 h)^{5}+O\left(h^{6}\right) \tag{4}
\end{equation*}
$$

where ϕ depends only on the solution F and t_{0}. We also have

$$
\begin{equation*}
\left|F\left(t_{0}+2 h\right)-F_{2}\right|=\phi h^{5}+\phi^{\prime} h^{5}+O\left(h^{6}\right) \tag{5}
\end{equation*}
$$

Assume $\phi=\phi^{\prime}$. Taking the difference of (5) and (4), we have

$$
\begin{equation*}
\left|F_{2}-F_{1}\right| \sim 30 \phi h^{5}+O\left(h^{6}\right) \tag{6}
\end{equation*}
$$

The good point of this identity is that we can estimate ϕ without knowing the true solution $F(t)$ and estimate the coeficient of the error. We put $\Delta(h)=30 \phi h^{5}$.

復習：adaptive Runge－Kutta method 続き
Let us assume

$$
\begin{equation*}
\Delta=\varepsilon\left|F_{0}\right| \tag{7}
\end{equation*}
$$

Then，$\phi=\left|F_{0}\right| \varepsilon /\left(30 h^{5}\right)$ ．Then the relative error $\left|\left(F\left(t+h_{0}\right)-F_{1}\right) / F_{0}\right|$ is bounded by

$$
\begin{equation*}
\frac{|\phi| h^{5}}{\left|F_{0}\right|}+O\left(h^{6}\right)=\frac{\varepsilon}{30}+O\left(h^{6}\right) \tag{8}
\end{equation*}
$$

When we want to make the relative error smaller than $\frac{\varepsilon}{30}$ ，we need to make $\Delta(h)$（difference of $2 h$ step and two times of h step） smaller than $\varepsilon\left|F_{0}\right|$ ．
In order to choose the next h ， use the following relation
--> load("ak2.rr");
－－＞$Q Q=r k _m a t 2($ newmat $(2,2,[[0,1],[t, 0]])$
－－＞base＿replace（QQ［0］，QQ［1］）；
［ $1 / 24 * h^{\wedge} 4 * t^{\wedge} 2+\left(1 / 48 * h \wedge 5+1 / 2 * h^{\wedge} 2\right) * t+1 / 6 * *$
$[1 / 6 * h \wedge 3 * t \wedge 2+(1 / 6 * h \wedge 4+h) * t+1 / 24 * h \wedge 5+1 / 2$

$$
\frac{d}{d z} F=P(z) F, \quad z \in \mathbf{C}
$$

We want to solve the differential equation along the path

$$
z=z_{0}+\left(z_{1}-z_{0}\right) t, \quad 0 \leq t \leq 1, z_{0}, z_{1} \in \mathbf{C}
$$

with the initial value $F\left(z_{0}\right)=F_{0}$ ．By $d / d z=\left(z_{1}-z_{0}\right)^{-1} d / d t$ ，

$$
\begin{equation*}
\frac{d F}{d t}=\left(z_{1}-z_{0}\right) P\left(z_{0}+\left(z_{1}-z_{0}\right) t\right) F \tag{9}
\end{equation*}
$$

Decompose $\left(z_{1}-z_{0}\right) P\left(z_{0}+\left(z_{1}-z_{0}\right) t\right)$ into the real part and the imaginary part as $P_{1}(t)+\sqrt{-1} P_{2}(t)$ Put $F=u+\sqrt{-1} v$ ．

$$
\frac{d}{d t}\binom{u}{v}=\left(\begin{array}{cc}
P_{1} & -P_{2} \tag{10}\\
P_{2} & P_{1}
\end{array}\right)\binom{u}{v}
$$

c2rsys（P（t））；

Defusing method (heuristic) 1

$$
\begin{align*}
\frac{d F}{d t} & =P(t) F \tag{11}\\
F\left(t_{0}\right) & =F_{0}^{\text {true }} \in \mathbf{R}^{n} \tag{12}
\end{align*}
$$

$F_{0}^{\text {true }}$ is the initial value of F at $t=t_{0}$.
Situation

1. The initial value has at most 3 digits of accuracy. We denote this initial value F_{0}.
2. The property $|F| \rightarrow 0$ when $t \rightarrow+\infty$ is known, e.g., from a background of the statistics.
3. There exists a solution \tilde{F} of (11) such that $|\tilde{F}| \gg 0$, $t \rightarrow+\infty$.

Under this situation, the HGM works only for a very short interval of t because the error of the initial value vector makes the fake solution \tilde{F} dominant and it hides the true solution $F(t)$. We call this bad behavior of the HGM the instability of the HGM.

Defusing method 2. 例.

Example

$$
\frac{d}{d t} F=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right) F
$$

The solution space is spanned by $F^{1}=(\exp (-t), 0,0)^{T}$, $F^{2}=(0, \exp (-t), 0)^{T}, F^{3}=(1,1,1)^{T}$. The initial value $(1,0,0)^{T}$ at $t=0$ yields the solution F^{1}. Add some errors $\left(1,10^{-30}, 10^{-30}\right)^{T}$ to the initial value. Then, we have

t	value F_{1} by RK	difference $F_{1}-F^{1}$
50	$1.92827 \mathrm{e}-22$	$9.99959 \mathrm{e}-31$
60	$8.75556 \mathrm{e}-27$	$1.00000 \mathrm{e}-30$
70	$1.39737 \mathrm{e}-30$	$1.00000 \mathrm{e}-30$
80	$1.00002 \mathrm{e}-30$	$1.00000 \mathrm{e}-30$

We can see the instability.

Defusing method 3．Airy functionを以下の例に
From the Airy differential equation $y^{\prime \prime}(t)-t y(t)=0$ by $F=\left(y(t), y^{\prime}(t)\right)^{T}$ ，

$$
\begin{gathered}
P(t)=\left(\begin{array}{cc}
0 & 1 \\
t & 0
\end{array}\right) \\
\operatorname{Ai}(t)=\frac{1}{\pi} \lim _{b \rightarrow+\infty} \int_{0}^{b} \cos \left(\frac{s^{3}}{3}+t s\right) d s
\end{gathered}
$$

（Airy function）is a solution of the Airy differential equation．We want to obtain values of $\operatorname{Ai}(x)$ by $\mathrm{RK} .{ }^{\dagger}$
The figure is a graph of Airy 3.0 $\mathrm{Ai}(t)$ function and Airy $\operatorname{Bi}(t){ }^{25}$ function drawn by Mathemat－${ }^{20}$ ica．The function $F(t)=$ $\left(\mathrm{Ai}(t), \mathrm{Ai}^{\prime}(t)\right)^{T}$ satisfies the condition 2 of the Situation 1 of the instability problem．
${ }^{\dagger}$ More advanced method is＂S．Chevillard，M．Mezzarobba，Multiple－precision evaluation of the Airy Ai function with reduced cancellation，arxiv：1212．4731＂

Defusing method 4．Algorithm
$F_{k+1}=Q(k) F_{k} \cdot Q=Q(N-1) \cdots Q(1) Q(0)$ ．
Algorithm
1．Obtain eigenvalues $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{r}>0$（assumption）of Q and the corresponding eigenvectors v_{1}, \ldots, v_{r} ．
2．Let λ_{m} be the eigenvalue which is almost equal to 0 ．
3．Express the initial value vector F_{0} containing errors in terms of v_{i}＇s as

$$
\begin{equation*}
F_{0}=f_{1} v_{1}+\cdots+f_{r} v_{r}, \quad f_{i} \in \mathbf{R} \tag{13}
\end{equation*}
$$

4．Choose a constant c such that $F_{0}^{\prime}:=c\left(f_{m} v_{m}+\cdots+f_{r} v_{r}\right)$ approximates F_{0} ．
5．Determine F_{N} by $F_{N}=Q F_{0}^{\prime}$ with the new initial value vector F_{0}^{\prime} ．要するに Q の大きい固有値に対応する固有空間の分を初期値から除く。

We call this algorithm the defusing method．This is a heuristic algorithm ．

Example
$t_{0}=0, h=10^{-3}, N=10 \times 10^{3}, 4$-th order Runge-Kutta scheme. We have $\lambda_{1}=9.708 \times 10^{9}$, $v_{1}=(-5.097,-159.919)^{T}$ and $\lambda_{2}=3.247 \times 10^{-7}, v_{2}=(-5.097,37.16)^{T}=(a, b)$. Then, $m=2$. We assume the 3 digits accuracy of the value $\operatorname{Ai}(0)$ as 0.355 and set $F_{0}^{\prime}=(0.355,0.355 b / a)$. Then, the obtained value F_{5000} at $t=5$ is $(0.00010808,-0.00024685)$ by the defusing method. We have the following accurate value by Mathematica In[1]:= N[AiryAi [5]]; Out[1]= 0.00010834
On the other hand, we appy the 4th order Runge-Kutta method with $h=10^{-3}$ for $F_{0}=(0.355,-0.259)^{T}$, which has the accuracy of 3 digits. It gives the value at $t=5$ as ($-0.147395,-0.322215$), which is a completely wrong value, and the value at $t=10$ as $(-102173,-320491)$, which is a blow-up solution.

Example: defusing method for $H_{n}^{k}(x, y), 1$

$$
H_{n}^{k}(x, y)=\int_{0}^{x} t^{k} e^{-t} F_{1}(; n ; y t) \mathrm{d} t
$$

Proposition (dots)

The function $u=H_{n}^{k}(x, y)$ satisfies

$$
\begin{aligned}
\left\{\theta_{y}\left(\theta_{y}+n-1\right)+y\left(\theta_{x}-\theta_{y}-k-1\right)\right\} \bullet u & =0 \\
\left(\theta_{x}-\theta_{y}-k-1+x\right) \theta_{x} \bullet u & =0
\end{aligned}
$$

where $\theta_{x}=x \frac{\partial}{\partial x}, \theta_{y}=y \frac{\partial}{\partial y}$. The holonomic rank of this system is 4 .
The ODE of y direction is unstable for H_{n}^{k}.

[^1]余談：$H_{n}^{k}(x, y)$ はどう応用される？

Theorem（Kang－Alouinis）

When the matrix $\Sigma^{-1} M M^{*}{ }^{*}$ has the positive eigenvalues $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{s}$ ，then the cummulative distribution function of the largest eigenvalue ϕ_{s} of S for the threshold x is

$$
\mathrm{P}\left(\phi_{s} \leq x\right)=\frac{\exp \left(-\sum_{i=1}^{s} \lambda_{i}\right)}{\Gamma(t-s+1)^{s} \prod_{1 \leq i<j \leq s}\left(\lambda_{j}-\lambda_{i}\right)} \operatorname{det} \psi(x)
$$

where $\Psi(x)$ is a matrix valued function of which (i, j) element is

$$
H_{t-s+1}^{t-i}\left(x, \lambda_{j}\right)=\int_{0}^{x} y^{t-i} \exp (-y)_{0} F_{1}\left(; t-s+1 ; y \lambda_{j}\right) d y
$$

[^2]
Defusing Method for $H_{n}^{k}, 2$.

The ODE of y direction is unstable for H_{n}^{k}.

By the DEtools [formal_sol] function of Maple, we have

$$
\begin{aligned}
& h_{1}=(x y)^{-1 / 2(1 / 2+n)} \exp \left(-2(x y)^{1 / 2}\right)\left(1+O\left(1 / y^{1 / 2}\right)\right), \\
& h_{2}=y^{-k-1}(1+O(1 / y)), \\
& h_{3}=(x y)^{-1 / 2(1 / 2+n)} \exp \left(2(x y)^{1 / 2}\right)\left(1+O\left(1 / y^{1 / 2}\right)\right), \\
& h_{4}=y^{1-n+k} \exp (y)(1+O(1 / y)),
\end{aligned}
$$

when $y \rightarrow+\infty$. What is the asymptotic behavior of the function $H_{n}^{k}(x, y)$ when x is fixed? We compare the value of h_{4} and the value by a numerical integration in Mathematical.

y	Ratio
1000	$7.36595030875893 \mathrm{e}-452$
2000	$2.64621603289928 \mathrm{e}-881$
3000	where
	$2.67723893601667 \mathrm{e}-1311$

Ratio $=\left(H_{1}^{10}(1 / 2, y)\right) /\left(y^{1-n+k} \exp (y)\right)$, which suggests that H_{n}^{k} is expressed by h_{1}, h_{2}, h_{3} without the dominant component h_{4}.
"The method to evaluate hypergeometric functions in Mathematica is still a black box. It is not easy to give a numerical evaluator of hypergeometric functions which matches to Mathematica in all ranges of parameters and independent variables.

Defusing method for $H_{n}^{k}, 3$

$\log H_{1}^{10}(1, y)$. Exact value (by numerical integration) and the value by our defusing method agree. The adaptive Runge-Kutta method with the initial relative error 10^{-20} (upper curve) does not agree with the exact value when y is larger than about 25.

The relative error of $H_{1}^{10}(1, y)$ of our defusing method. The relative error is defined as $\left(H_{d}-H\right) / H$ where H_{d} is the value by the defusing method and H is the exact value.

小技 1. 例 χ^{r} 分布， 1 ．

Koyama＊＊gave an integral formula of a generalization of χ^{2} distribution motivated by the work of Marumo，Oaku，Takemura ${ }^{\dagger \dagger}$

Theorem（koyama2019）
The probability density function $f(x)=\frac{d}{d x} P\left(\sum_{k=1}^{n} X_{k}^{r}<x\right)\left(X_{k}\right.$＇s are i．i．d random normal variables with $m=0, \sigma=1, r \geq 3$ ）is expressed by the following integrals．

$$
\begin{align*}
& f(x)=\frac{1}{\pi} \frac{1}{2 \pi^{n / 2}} \int_{0}^{\infty} \exp (-x s) \operatorname{Im}\left[\varphi_{3}(s) \exp (\sqrt{-1} \pi / r)+\varphi_{0}(s)\right]^{n} d s, r \text { odd } \\
& f(x)=\frac{1}{\pi}\left(\frac{2}{\pi}\right)^{n / 2} \int_{0}^{\infty} \exp (-x s) \operatorname{Im}\left[\varphi_{3}(s) \exp (\sqrt{-1} \pi / r)\right]^{n} d s, r \text { even } \tag{14}
\end{align*}
$$

[^3]小技1．例 χ^{r} 分布， 2.
Here，

$$
\begin{equation*}
\varphi_{3}(s)=\int_{0}^{\infty} \exp \left(-s t^{r}\right) \exp \left(-\frac{e^{2 \pi \sqrt{-1} / r}}{2} t^{2}\right) d t \tag{15}
\end{equation*}
$$

for $s>0$ and

$$
\begin{equation*}
\varphi_{0}(s)=\int_{0}^{\infty} \exp \left(-s t^{r}-t^{2} / 2\right) d t \tag{16}
\end{equation*}
$$

We will evaluate the following integral when $r=4$ as an example．

$$
f(x)=\frac{1}{\pi}\left(\frac{2}{\pi}\right)^{n / 2} \int_{0}^{\infty} \exp (-x s) \operatorname{Im}\left[\varphi_{3}(s) \exp (\sqrt{-1} \pi / r)\right]^{n} d s
$$

小技1．例 χ^{r} 分布， 3.
It seems that it is not a good method to evaluate $f(x)$ itself by the HGM， because the rank of the holonomic system for the integrand becomes very high when n increases［mot2014］．
It will be a good method to generate a table of φ_{3} by the HGM and use a one dimensional numerical integration method to obtain the value of the PDF $f(x)$ ． Note that the HGM is a good method to generate a table of values． Trick：use HGM as a subprocedure of a numerical integration．

$$
\begin{aligned}
& \text { The PDF } f(x) \text { for } r=4, n= \\
& 1,3,5 \\
& \text {--> load("test-ak2.rr"); } \\
& \text {--> Ans=hgm_phi3(R=6,X=100)\$ // evalua } \\
& \ldots \\
& \text { Time=[} 41.2335 \text { 0 } 231331278841.2705 \text {] } \\
& \text {--> Ans [0]; } \\
& \text { [100, [(0.4229-0.012354*@i) ...]] }]
\end{aligned}
$$

小技 1 ．例 χ^{r} 分布， 4 ．

Proposition

The cummulative distribution function（CDF）$P\left(\sum_{i=1}^{n} X_{i}^{r}<y\right)$ is approximately expressed as

$$
\begin{equation*}
\int_{0}^{b} \frac{1-\exp (-y s)}{s} \xi(s) d s+c_{\alpha} \frac{b^{-\alpha}}{\alpha}-c_{\alpha} y^{\alpha} \int_{b y}^{\infty} e^{-t} t^{-\alpha-1} d t \tag{17}
\end{equation*}
$$

where b is a sufficiently large number，$\alpha=n / r$ ，and $\xi(s)$ is given in（18）and（19）．

$$
\begin{align*}
& \left.\xi(s)=\frac{1}{\pi} \frac{1}{(2 \pi)^{n / 2}} \operatorname{Im}\left[\varphi_{3}(s) \exp (\sqrt{-1} \pi / r)+\varphi_{0}(s)\right]^{n} \quad r \text { is } \phi \mathbb{1 8}\right) \\
& \xi(s)=\frac{1}{\pi}\left(\frac{2}{\pi}\right)^{n / 2} \operatorname{Im}\left[\varphi_{3}(s) \exp (\sqrt{-1} \pi / r)\right]^{n} \quad r \text { is even } \tag{19}
\end{align*}
$$

c_{α} is a constant（see the preprint as to the explicit value）．
小技1．例 χ^{r} 分布， 5 ．

The CDF $F_{n}(y)$ for $y \in[0,10]$ ， $r=4, n=1,3,5,7,9,10$（from the top to the bottom）．

The CDF $F_{n}(y)$ for $y \in[10,210]$ ， $n=10,30,50,70,90,100$ ．Note that $n=90,100$ cases（two lower curves） give wrong values because of numer－ cal error of high powers n ．

$$
\begin{align*}
& \hline \text { ところで } \varphi_{3} \text { の微分方程式, } 1 \\
& \qquad f\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} \exp \left(x_{1} z^{2}+x_{2} z^{r}\right) d z
\end{align*}
$$

Lemma

The function f satisfies the following A－hypergeometric system

$$
\begin{equation*}
\left(2 \theta_{1}+r \theta_{2}+1\right) \bullet f=0 \tag{21}
\end{equation*}
$$

$$
\begin{align*}
& \left(\partial_{1}^{r_{1}}-\partial_{2}\right) \bullet f=0, \quad\left(r=2 r_{1} \text { is even }\right) \tag{22}\\
& \left(\partial_{1}^{r}-\partial_{2}^{2}\right) \bullet f=0, \quad(r \text { is odd }) \tag{23}
\end{align*}
$$

where $\theta_{i}=x_{i} \partial_{i}=x_{i} \frac{\partial}{\partial x_{i}}$.

ところで φ_{3} の微分方程式， 2

Lemma
Fix x_{1} to a number．The function $f\left(x_{1}, x_{2}\right)$ annihilated by the following ordinary differential operator

$$
\begin{array}{rl}
& \left(\frac{-r}{2}\right)^{r_{1}} \prod_{k=0}^{r_{1}-1}\left(\theta_{2}+\frac{2 k+1}{r}\right)-x_{1}^{r_{1}} \partial_{2} \quad(r \text { is even }) \\
& \left(\frac{-r}{2}\right)^{r} \prod_{k=0}^{r-1}\left(\theta_{2}+\frac{2 k+1}{r}\right)-x_{1}^{r} \partial_{2}^{2} \quad(r \text { is odd }) \tag{25}\\
\varphi_{3}(s)=f & f\left(-\frac{e^{2 \pi \sqrt{-1} / r}}{2},-s\right) .
\end{array}
$$

小技，例 $E\left[\chi\left(M_{x}\right)\right], 1$ ．
The expected Euler characteristic for the largest eigenvalue of a real Wishart matrix is numerically evaluated for a small sized Wishart matrix by HGM＊．Let $A=\left(a_{i j}\right)$ be a real $m \times n$ matrix valued random variable with the density

$$
p(A) d A, \quad d A=\prod d a_{i j}
$$

We assume that $p(A)$ is smooth and $n \geq m \geq 2$ ．Define a manifold

$$
M=\left\{h g^{T} \mid g \in S^{m-1}, h \in S \in S^{n-1}\right\} \simeq S^{m-1} \times S^{n-1} / \sim
$$

where $(h, g) \sim(-h,-g)$ and h and g are regarded as column vectors and $h g^{\top}$ is a rank $1 m \times n$ matrix．Put

$$
f(U)=\operatorname{tr}(U A)=g^{T} A h, \quad U \in M
$$

and

$$
M_{x}=\left\{h g^{T} \in M \mid f(U)=g^{T} A h \geq x\right\}
$$

We are interested in $E\left[\chi\left(M_{x}\right)\right]$ ．

[^4]
小技，例 $E\left[\chi\left(M_{x}\right)\right], 2$ ．

Assume $m=n=2$ and $p(A)$ is a Gaussian distribution

$$
p(A) d A=\frac{1}{(2 \pi)^{m n / 2} \operatorname{det}(\Sigma)^{n / 2}} \exp \left\{-\frac{1}{2} \operatorname{Tr}(A-M)^{T} \Sigma^{-1}(A-M)\right\} d A
$$

The mean is expressed by the variable $M=\left(m_{i j}\right)$ ．We gave an integral representation of $E\left(\chi\left(M_{x}\right)\right)$ in［euler2019］．Moreover，we derived an ODE of rank 11 for（26）by the computer algebra package HolonomicFunctions．m （C．Koutchan）．

$$
\begin{aligned}
& E\left[\chi\left(M_{x}\right)\right] \\
= & \frac{1}{2 \pi^{2}} \int_{x}^{\infty} d \sigma \int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} d s \int_{-\infty}^{\infty} d t \frac{s_{1} s_{2}\left(\sigma^{2}-b^{2}\right)}{\left(1+s^{2}\right)\left(1+t^{2}\right)} \exp \left\{-\frac{1}{2} \tilde{R}\right\}(26)
\end{aligned}
$$

where \tilde{R} is a rational function in $\sigma, b, s, t, s_{1}, s_{2}, m_{11}, m_{21}, m_{22}$ ．More precisely， put

$$
\begin{aligned}
R= & s_{1}\left(b \sin \theta \sin \phi+\sigma \cos \theta \cos \phi-m_{11}\right)^{2}+s_{2}\left(\sigma \sin \theta \cos \phi-b \cos \theta \sin \phi-m_{21}\right)^{2} \\
& +s_{1}(\sigma \cos \theta \sin \phi-b \sin \theta \cos \phi)^{2}+s_{2}\left(b \cos \theta \cos \phi+\sigma \sin \theta \sin \phi-m_{22}\right)^{2},
\end{aligned}
$$

replace \sin , \cos in R by

$$
\sin \theta=\frac{2 s}{1+s^{2}}, \quad \cos \theta=\frac{1-s^{2}}{1+s^{2}}, \quad \sin \phi=\frac{2 t}{1+t^{2}}, \quad \cos \phi=\frac{1-t^{2}}{1+t^{2}}
$$

and we set this \tilde{R} ．We want to evaluate it when $m_{11}=1, m_{21}=2, m_{22}=3$ （means）and $s_{1}=10^{3}, s_{2}=10^{2}$ ，

小技，例 $E\left[\chi\left(M_{x}\right)\right]$ ， 3 ．
bigfloat，幕級数を使うのを躊躇しない
Trick：Do not hesitate to use the bigfloat and powerseries． use series solutions as a basis of interpolation or extrapolation．

The extrapolation function with pow－ erseries of 20000 terms．Solid line is the extrapolation function，which di－ verges when $x>3.8633$ ．Dots are values by simulations．
We use bigfloat of size 380 to deter－ mine series solutions．

Computational Try

R．Vidunas and A．Takemura ${ }^{\dagger}$ derived a system of linear partial differential equations for the outage probability $P\left(\phi_{s} \leq x\right)$ ．Try to make a numerical analysis of this system with Gröbner basis， the defusing method，or the method to obtain a stabile system．

Problem

Derive a good system of non－linear equations satisfied by $\operatorname{det} \Psi(x)$ ．The theory of holonomic quantum field and Hirota bilinear equations might help to solve this problem．If we can find such system，try a numerical analysis of it．

Computational Try

Try the defusing method for $H_{n}^{k}(x, y)$ upto $y \sim 10^{8}$ ，which lies in a range to apply to practical problems．

[^5]
Computational Try

The defusing method for non－linear equation needs to compute a composition of non－linear functions instead of the matrix factorial．What is the size of a problem feasible by current computer algebra systems？

Computational Try

Marumo，Oaku，Takemura gave a method to derive a linear ODE for φ^{n} ． The function φ_{3} for $r=4$ satisfies a 2 nd order linear ODE．Try to make a numerical analysis of the system for φ_{3}^{n} with the defusing method，or the method to obtain a stabile system．

Problem

Give a method for a high precision evalution of the hypergeometric function ${ }_{r} F_{1}$ and ${ }_{r} F_{0}$ ．Refer，e．g．，to the paper by S．Chevillard and M．Mezzarobba．

Computational Try

Try to make a numerical analysis of the ODE of rank 11 for $E\left[\chi\left(M_{x}\right)\right]$ with the defusing method，or the method to obtain a stabile system．

[^0]: ＊［tgkt］Y．Tachibana，Y．Goto，T．Koyama，N．Takayama，Holonomic Gradient Method for Two Wav Contingency Tables．arxiv：1803．04170

[^1]: ${ }^{\ddagger}$ [dots] F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix, https://arxiv.org/abs/1707.02564.

[^2]: ${ }^{\S}$ M．Kang，M．S．Alouini，Largest Eigenvalue of Complex Wishart Matrices and Performance Analysis of MIMO MRC Systems，IEEE Journal on Selected Areas in Communications 21 （2003），418－426．
 ${ }^{1}$ channel matrix H is $N_{T} \times N_{R}$ complex valued random matrix．The column vector X satisfies $E[X]=M$ and the convariance is $\Sigma^{-1} . S \equiv \Sigma^{-1} H H^{*}$ 三

[^3]: ＊＊［koyama2019］T．Koyama，An integral formula for the powered sum of the independent，identically and normally distributed random variables，preprint．
 Old version is at arxiv https：／／arxiv．org／abs／1706．03989
 ${ }^{\dagger \dagger}$［mot2014］N．Marumo，T．Oaku，A．Takemura，Properties of powers of functions satisfying second－order linear differential equations with applications to statistics，arxiv：1405．4451

[^4]: ＊［euler2019］N．Takayama，L．Jiu，S．Kuriki，Y．Zhang，Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix，arxiv：1903．10099

[^5]: ${ }^{\dagger}$ R．Vidunas，A．Takemura，Differential relations for the largest root distribution of complex non－central Wishart matrices，arxiv：1609．01799

