
HGM の不安定性をどう回避するか?
高山信毅 (神戸大)

HGM の三つの step

1. パラメータ付定積分のみたす線形偏微分方程式系を代数的ア
ルゴリズム等で見つける.

2. 初期条件を計算
3. 微分方程式の数値解析で, パラメータ付定積分の値を決める.

Step 3 がむつかしくなる場合の例, 困難の回避の方法.
“Algorithms to Reduce the Instability of the HGM and Tricks
Useful for the HGM”, preprint (expository, technical).

1. このスライドの PDF: Nobuki Takayama [search]
2. http:
//www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html
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復習: Runge-Kutta 法

dF

dt
= P(t)F (1)

where P(t) is an r × r matrix and F (t) is a column vector valued
unknown function. Let E be the r × r identity matrix.

F1 = F0 + hk1 = (E + hP(t0))F0, k1 = P(t0)F0.

F (t0+h)−F1 = F (t0)+F ′(t0)h+O(h2)−F1 = O(h2), F ′(t0) = P(t0)F0

The 4th order Runge-Kutta (RK) method.

ki+1 = P(t0 + ci+1h)(F0 + ai+1kih), k0 = 0 (2)

F1 = F0 + h(b1k1 + b2k2 + b3k3 + b4k4) (3)

Determine the constants so that F1 − F (t0 + h) = O(h5) where F (t) is the

solution with the initial condition F (t0) = F0. a1 = c1 = 0, b1 = 1/6, b2 =

1/3, b3 = 1/3, b4 = 1/6, c2 = c3 = c4 = 1/2, a2 = a3 = 1/2, a4 = 1.

E.Hairer, S.P.Norsett, G.Wanner, Solving ordinary differential
equations I, II, 1993, 1996, Springer
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Matrix factorial

Q(t, h) = E + hP(t), for the first order RK

or Q(t, h) is an analogous matrix for the 4th order RK. Then,
Fk+1 = Q(k)Fk (Q(k) = Q(t0 + kh, h) in short). We call

Q(k)Q(k − 1) · · ·Q(1)Q(0)

the matrix factorial. Applying the matrix factorial to F0, we obtain
Fk+1 (approximate solution).
Methods for exact evaluation of matrix factorials (the binary splitting and the

modular method)∗. 以下おまけ話題.
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5×5 contingency table, a benchmark

test of evaluating the normalizing

constant (A-hypergeometric polyno-

mial) with 32 processes from [tgkt].

N is a parameter in the marginal sum.

∗[tgkt] Y.Tachibana, Y.Goto, T.Koyama, N.Takayama, Holonomic Gradient
Method for Two Way Contingency Tables, arxiv:1803.04170 3 / 27



復習: adaptive Runge-Kutta method

Let F1 be the vector determined by RK (of the 4th order) of the
step size 2h (not h). Let F2 be the vector determined by RK two
times with the step size h.

|F (t0 + 2h)− F1| = ϕ(2h)5 + O(h6) (4)

where ϕ depends only on the solution F and t0. We also have

|F (t0 + 2h)− F2| = ϕh5 + ϕ′h5 + O(h6) (5)

Assume ϕ = ϕ′. Taking the difference of (5) and (4), we have

|F2 − F1| ∼ 30ϕh5 + O(h6) (6)

The good point of this identity is that we can estimate ϕ without
knowing the true solution F (t) and estimate the coeficient of the
error. We put ∆(h) = 30ϕh5.

4 / 27



復習: adaptive Runge-Kutta method 続き
Let us assume

∆ = ε|F0| (7)

Then, ϕ = |F0|ε/(30h5). Then the relative error
|(F (t + h0)− F1)/F0| is bounded by

|ϕ|h5

|F0|
+ O(h6) =

ε

30
+ O(h6) (8)

When we want to make the relative error smaller than ε
30 , we need

to make ∆(h) (difference of 2h step and two times of h step)
smaller than ε|F0|.
In order to choose the next h,
use the following relation

h0
h1

=

(
∆(h0)

∆(h1)

)1/5

--> load("ak2.rr");

--> QQ=rk_mat2(newmat(2,2,[[0,1],[t,0]]))$

--> base_replace(QQ[0],QQ[1]);

[ 1/24*h^4*t^2+(1/48*h^5+1/2*h^2)*t+1/6*h^3+1 1/6*h^3*t+1/12*h^4+h ]

[ 1/6*h^3*t^2+(1/6*h^4+h)*t+1/24*h^5+1/2*h^2 1/24*h^4*t^2+(1/16*h^5+1/2*h^2)*t+1/48*h^6+1/3*h^3+1 ]
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小話: 複素領域でODEを数値解析 (とばす)

d

dz
F = P(z)F , z ∈ C

We want to solve the differential equation along the path

z = z0 + (z1 − z0)t, 0 ≤ t ≤ 1, z0, z1 ∈ C

with the initial value F (z0) = F0. By d/dz = (z1 − z0)
−1d/dt,

dF

dt
= (z1 − z0)P(z0 + (z1 − z0)t)F (9)

Decompose (z1 − z0)P(z0 + (z1 − z0)t) into the real part and the
imaginary part as P1(t) +

√
−1P2(t) Put F = u +

√
−1v .

d

dt

(
u
v

)
=

(
P1 −P2

P2 P1

)(
u
v

)
(10)

c2rsys(P(t));
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Defusing method (heuristic) 1

dF

dt
= P(t)F (11)

F (t0) = F true
0 ∈ Rn (12)

F true
0 is the initial value of F at t = t0.

Situation

1. The initial value has at most 3 digits of accuracy. We
denote this initial value F0.

2. The property |F | → 0 when t → +∞ is known, e.g., from a
background of the statistics.

3. There exists a solution F̃ of (11) such that |F̃ | ≫ 0,
t → +∞.

Under this situation, the HGM works only for a very short interval
of t because the error of the initial value vector makes the fake
solution F̃ dominant and it hides the true solution F (t). We call
this bad behavior of the HGM the instability of the HGM.
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Defusing method 2. 例.

Example

d

dt
F =

 −1 1 0
0 −1 1
0 0 0

F

The solution space is spanned by F 1 = (exp(−t), 0, 0)T ,
F 2 = (0, exp(−t), 0)T , F 3 = (1, 1, 1)T . The initial value
(1, 0, 0)T at t = 0 yields the solution F 1. Add some errors
(1, 10−30, 10−30)T to the initial value. Then, we have
t value F1 by RK difference F1 − F 1

50 1.92827e-22 9.99959e-31
60 8.75556e-27 1.00000e-30

70 1.39737e-30 1.00000e-30

80 1.00002e-30 1.00000e-30
We can see the instability.
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Defusing method 3. Airy function を以下の例に
From the Airy differential equation y ′′(t)− ty(t) = 0 by
F = (y(t), y ′(t))T ,

P(t) =

(
0 1
t 0

)
.

Ai(t) =
1

π
lim

b→+∞

∫ b

0
cos

(
s3

3
+ ts

)
ds

(Airy function) is a solution of the Airy differential equation. We
want to obtain values of Ai(x) by RK.†

The figure is a graph of Airy
Ai(t) function and Airy Bi(t)
function drawn by Mathemat-
ica. The function F (t) =
(Ai(t),Ai′(t))T satisfies the
condition 2 of the Situation 1
of the instability problem.

†More advanced method is “S.Chevillard, M.Mezzarobba, Multiple-precision
evaluation of the Airy Ai function with reduced cancellation, arxiv:1212.4731”.
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Defusing method 4. Algorithm

Fk+1 = Q(k)Fk . Q = Q(N − 1) · · ·Q(1)Q(0).

Algorithm

1. Obtain eigenvalues λ1 > λ2 > · · · > λr > 0 (assumption) of
Q and the corresponding eigenvectors v1, . . . , vr .

2. Let λm be the eigenvalue which is almost equal to 0.

3. Express the initial value vector F0 containing errors in terms
of vi ’s as

F0 = f1v1 + · · ·+ frvr , fi ∈ R (13)

4. Choose a constant c such that F ′
0 := c(fmvm + · · ·+ frvr )

approximates F0.

5. Determine FN by FN = QF ′
0 with the new initial value vector

F ′
0. 要するに Q の大きい固有値に対応する固有空間の分を
初期値から除く.

We call this algorithm the defusing method . This is a heuristic
algorithm .
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Defusing method 5. Airy の例

Example

t0 = 0, h = 10−3, N = 10× 103, 4-th order Runge-Kutta
scheme. We have λ1 = 9.708× 109, v1 = (−5.097,−159.919)T

and λ2 = 3.247× 10−7, v2 = (−5.097, 37.16)T = (a, b). Then,
m = 2. We assume the 3 digits accuracy of the value Ai(0) as
0.355 and set F ′

0 = (0.355, 0.355b/a). Then, the obtained value
F5000 at t = 5 is (0.00010808,−0.00024685) by the defusing
method. We have the following accurate value by Mathematica
In[1]:= N[AiryAi[5]]; Out[1]= 0.00010834

On the other hand, we appy the 4th order Runge-Kutta method
with h = 10−3 for F0 = (0.355,−0.259)T , which has the
accuracy of 3 digits. It gives the value at t = 5 as
(−0.147395,−0.322215), which is a completely wrong value, and
the value at t = 10 as (−102173,−320491), which is a blow-up
solution.
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Example: defusing method for Hk
n (x , y), 1

Hk
n (x , y) =

∫ x

0
tke−t

0F1(; n; yt)dt.

Proposition (dots)

The function u = Hk
n (x , y) satisfies

{θy (θy + n − 1) + y(θx − θy − k − 1)} • u = 0,

(θx − θy − k − 1 + x) θx • u = 0.

where θx = x ∂
∂x ,θy = y ∂

∂y . The holonomic rank of this system is 4.

The ODE of y direction is unstable for Hk
n .

‡

‡[dots] F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, Holonomic
Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a
Complex Noncentral Wishart Matrix, https://arxiv.org/abs/1707.02564.
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余談: Hk
n (x , y) はどう応用される?

Theorem (Kang-Alouini§)

When the matrix Σ−1MM∗¶ has the positive eigenvalues
0 < λ1 < λ2 < · · · < λs , then the cummulative distribution
function of the largest eigenvalue ϕs of S for the threshold x is

P (ϕs ≤ x) =
exp(−

∑s
i=1 λi )

Γ(t − s + 1)s
∏

1≤i<j≤s(λj − λi )
detΨ(x)

where Ψ(x) is a matrix valued function of which (i , j) element is

Ht−i
t−s+1(x , λj) =

∫ x

0
y t−i exp(−y) 0F1( ; t − s + 1; yλj) dy

§M. Kang, M. S. Alouini, Largest Eigenvalue of Complex Wishart Matrices
and Performance Analysis of MIMO MRC Systems, IEEE Journal on Selected
Areas in Communications 21 (2003), 418–426.

¶channel matrix H is NT × NR complex valued random matrix. The column
vector X satisfies E [X ] = M and the convariance is Σ−1. S = Σ−1HH∗.
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Defusing Method for Hk
n , 2.

The ODE of y direction is unstable for Hk
n .

By the DEtools[formal sol] function of Maple, we have

h1 = (xy)−1/2(1/2+n) exp(−2(xy)1/2)(1 + O(1/y 1/2)),

h2 = y−k−1(1 + O(1/y)),

h3 = (xy)−1/2(1/2+n) exp(2(xy)1/2)(1 + O(1/y 1/2)),

h4 = y 1−n+k exp(y)(1 + O(1/y)),

when y → +∞. What is the asymptotic behavior of the function Hk
n (x , y)

when x is fixed? We compare the value of h4 and the value by a numerical
integration in Mathematica∥.

y Ratio

1000 7.36595030875893e-452
2000 2.64621603289928e-881
3000 2.67723893601667e-1311

where

Ratio = (H10
1 (1/2, y))/(y 1−n+k exp(y)), which suggests that Hk

n is expressed by
h1, h2, h3 without the dominant component h4.

∥The method to evaluate hypergeometric functions in Mathematica is still a
black box. It is not easy to give a numerical evaluator of hypergeometric
functions which matches to Mathematica in all ranges of parameters and
independent variables.
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Defusing method for Hk
n , 3
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is the value by the defusing method

and H is the exact value.
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小技 1. 例 χr 分布, 1.

Koyama∗∗ gave an integral formula of a generalization of χ2

distribution motivated by the work of Marumo, Oaku, Takemura††

Theorem (koyama2019)
The probability density function f (x) = d

dxP(
∑n

k=1 X
r
k < x) (Xk ’s

are i.i.d random normal variables with m = 0, σ = 1, r ≥ 3) is
expressed by the following integrals.

f (x) =
1

π

1

2πn/2

∫ ∞

0

exp(−xs) Im
[
φ3(s) exp(

√
−1π/r) + φ0(s)

]n
ds, r odd

f (x) =
1

π

(
2

π

)n/2 ∫ ∞

0

exp(−xs) Im
[
φ3(s) exp(

√
−1π/r)

]n
ds, r even

(14)

∗∗[koyama2019] T. Koyama, An integral formula for the powered sum of the
independent, identically and normally distributed random variables, preprint.
Old version is at arxiv https://arxiv.org/abs/1706.03989

††[mot2014] N.Marumo, T.Oaku, A.Takemura, Properties of powers of
functions satisfying second-order linear differential equations with applications
to statistics, arxiv:1405.4451
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小技 1. 例 χr 分布, 2.
Here,

φ3(s) =

∫ ∞

0
exp(−str ) exp

(
−e2π

√
−1/r

2
t2

)
dt (15)

for s > 0 and

φ0(s) =

∫ ∞

0
exp(−str − t2/2)dt (16)

We will evaluate the following integral when r = 4 as an example.

f (x) =
1

π

(
2

π

)n/2 ∫ ∞

0

exp(−xs) Im
[
φ3(s) exp(

√
−1π/r)

]n
ds,
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小技 1. 例 χr 分布, 3.
It seems that it is not a good method to evaluate f (x) itself by the HGM,
because the rank of the holonomic system for the integrand becomes very high
when n increases [mot2014].

It will be a good method to generate a table of φ3 by the HGM and use a one

dimensional numerical integration method to obtain the value of the PDF f (x).

Note that the HGM is a good method to generate a table of values.

Trick: use HGM as a subprocedure of a numerical integration.

2 4 6 8 10

0.05

0.10

0.15

The PDF f (x) for r = 4, n =
1, 3, 5

--> load("test-ak2.rr");

--> Ans=hgm_phi3(R=6,X=100)$ // evaluate by hgm. H=0.001

...

Time=[ 41.2335 0 2313312788 41.2705 ]

--> Ans[0];

[100,[ (0.4229-0.012354*@i) ...]]
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小技 1. 例 χr 分布, 4.

Proposition

The cummulative distribution function (CDF) P(
∑n

i=1 X
r
i < y) is

approximately expressed as∫ b

0

1− exp(−ys)

s
ξ(s)ds + cα

b−α

α
− cαy

α

∫ ∞

by
e−tt−α−1dt (17)

where b is a sufficiently large number, α = n/r , and ξ(s) is given
in (18) and (19).

ξ(s) =
1

π

1

(2π)n/2
Im [φ3(s) exp(

√
−1π/r) + φ0(s)]

n r is odd(18)

ξ(s) =
1

π

(
2

π

)n/2

Im [φ3(s) exp(
√
−1π/r)]n r is even (19)

cα is a constant (see the preprint as to the explicit value).
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小技 1. 例 χr 分布, 5.

The CDF Fn(y) for y ∈ [0, 10],
r = 4, n = 1, 3, 5, 7, 9, 10 (from
the top to the bottom).

The CDF Fn(y) for y ∈ [10, 210],

n = 10, 30, 50, 70, 90, 100. Note that

n = 90, 100 cases (two lower curves)

give wrong values because of numer-

ical error of high powers n.
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ところで φ3 の微分方程式, 1
Put

f (x1, x2) =

∫ ∞

−∞
exp(x1z

2 + x2z
r )dz (20)

Lemma
The function f satisfies the following A-hypergeometric system

(2θ1 + rθ2 + 1) • f = 0 (21)

(∂r1
1 − ∂2) • f = 0, (r = 2r1 is even) (22)

(∂r
1 − ∂2

2) • f = 0, (r is odd) (23)

where θi = xi∂i = xi
∂
∂xi

.
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ところで φ3 の微分方程式, 2

Lemma
Fix x1 to a number. The function f (x1, x2) annihilated by the
following ordinary differential operator(

−r

2

)r1 r1−1∏
k=0

(
θ2 +

2k + 1

r

)
− x r11 ∂2 (r is even) (24)

(
−r

2

)r r−1∏
k=0

(
θ2 +

2k + 1

r

)
− x r1∂

2
2 (r is odd) (25)

φ3(s) = f
(
− e2π

√
−1/r

2 ,−s
)
.
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小技, 例 E [χ(Mx)], 1.
The expected Euler characteristic for the largest eigenvalue of a real Wishart
matrix is numerically evaluated for a small sized Wishart matrix by HGM ∗. Let
A = (aij) be a real m × n matrix valued random variable with the density

p(A)dA, dA =
∏

daij .

We assume that p(A) is smooth and n ≥ m ≥ 2. Define a manifold

M = {hgT | g ∈ Sm−1, h ∈ S ∈ Sn−1} ≃ Sm−1 × Sn−1/ ∼

where (h, g) ∼ (−h,−g) and h and g are regarded as column vectors and hgT

is a rank 1 m × n matrix. Put

f (U) = tr(UA) = gTAh, U ∈ M

and
Mx = {hgT ∈ M | f (U) = gTAh ≥ x}

We are interested in E [χ(Mx)].

∗[euler2019] N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, Computations of the
Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart
Matrix, arxiv:1903.10099
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小技, 例 E [χ(Mx)], 2.

Assume m = n = 2 and p(A) is a Gaussian distribution

p(A)dA =
1

(2π)mn/2 det(Σ)n/2
exp

{
−1

2
Tr (A−M)TΣ−1(A−M)

}
dA.

The mean is expressed by the variable M = (mij). We gave an integral
representation of E(χ(Mx)) in [euler2019]. Moreover, we derived an ODE of
rank 11 for (26) by the computer algebra package HolonomicFunctions.m

(C.Koutchan).

E [χ(Mx)]

=
1

2π2

∫ ∞

x

dσ

∫ ∞

−∞
db

∫ ∞

−∞
ds

∫ ∞

−∞
dt

s1s2(σ
2 − b2)

(1 + s2)(1 + t2)
exp

{
−1

2
R̃
}
,(26)

where R̃ is a rational function in σ, b, s, t, s1, s2,m11,m21,m22. More precisely,
put

R = s1 (b sin θ sinϕ+ σ cos θ cosϕ−m11)
2 + s2 (σ sin θ cosϕ− b cos θ sinϕ−m21)

2

+s1 (σ cos θ sinϕ− b sin θ cosϕ)2 + s2 (b cos θ cosϕ+ σ sin θ sinϕ−m22)
2 ,

replace sin, cos in R by

sin θ =
2s

1 + s2
, cos θ =

1− s2

1 + s2
, sinϕ =

2t

1 + t2
, cosϕ =

1− t2

1 + t2
.

and we set this R̃. We want to evaluate it when m11 = 1,m21 = 2,m22 = 3
(means) and s1 = 103, s2 = 102,
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小技, 例 E [χ(Mx)], 3.

bigfloat, 冪級数を使うのを躊躇しない
Trick: Do not hesitate to use the bigfloat and powerseries. We
use series solutions as a basis of interpolation or extrapolation.
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The extrapolation function with pow-
erseries of 20000 terms. Solid line is
the extrapolation function, which di-
verges when x > 3.8633. Dots are
values by simulations.

We use bigfloat of size 380 to deter-

mine series solutions.
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計算のチャレンジと問題など 1.

Computational Try

R.Vidunas and A.Takemura† derived a system of linear partial
differential equations for the outage probability P(ϕs ≤ x). Try
to make a numerical analysis of this system with Gröbner basis,
the defusing method, or the method to obtain a stabile system.

Problem
Derive a good system of non-linear equations satisfied by
detΨ(x). The theory of holonomic quantum field and Hirota
bilinear equations might help to solve this problem. If we can
find such system, try a numerical analysis of it.

Computational Try

Try the defusing method for Hk
n (x , y) upto y ∼ 108, which lies

in a range to apply to practical problems.

†R.Vidunas, A.Takemura, Differential relations for the largest root
distribution of complex non-central Wishart matrices, arxiv:1609.01799
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計算のチャレンジと問題など 2.

Computational Try
The defusing method for non-linear equation needs to compute a
composition of non-linear functions instead of the matrix factorial. What is
the size of a problem feasible by current computer algebra systems?

Computational Try
Marumo, Oaku, Takemura gave a method to derive a linear ODE for φn.
The function φ3 for r = 4 satisfies a 2nd order linear ODE. Try to make a
numerical analysis of the system for φn

3 with the defusing method, or the
method to obtain a stabile system.

Problem
Give a method for a high precision evalution of the hypergeometric function

rF1 and rF0. Refer, e.g., to the paper by S.Chevillard and M.Mezzarobba.

Computational Try
Try to make a numerical analysis of the ODE of rank 11 for E [χ(Mx)] with
the defusing method, or the method to obtain a stabile system.
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