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Estimation and Test 1 Let Ti (t) be (a smooth) function in
t ∈ S ⊂ Rd , dt (the Legesgue) measure on Rd , θ ∈ Rn.

u(θ, t) = exp

(
n∑

i=1

θiTi (t)

)

Z (θ) =

∫
S
u(θ, t)dt normalizing constant

Example: A = (a1, . . . , an), ai ∈ Nd
0 (column vectors). Put

Ti (t) = tai :=
∏d

j=1(tj)
(ai )j .

Example: d = 1, A = (1, 2). u(θ, t) = exp(θ1t + θ2t
2).

Z (θ) =
√
π√

−θ2 exp(θ21/(4θ2))
.

u(θ, t)/Z (θ) defines a probability distribution on S with a
parameter θ (exponential family). The set of Ti (t)’s are called the
sufficient statistics of this distribution.
Fisher’s maximum likelihood estimation (MLE) For given data

t(j) ∈ S , j = 1, . . . ,N, find θ such that
∏N

j=1 u(θ, t(j))/Z (θ)
(probability) takes the maximum.
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Estimation and Test 2

maxargθ

N∏
j=1

u(θ, t(j))/Z (θ)

= maxargθ
∑
j

log u(θ, t(j))− N logZ (θ)

= maxargθ
∑
i

θi
1

N

∑
j

Ti (t(j))− logZ (θ) (1)

− logZ (θ) is an upper convex function. Then the θ wanted is a
solution of the MLE equation

∂

∂θi
logZ =

1

N

∑
j

Ti (t(j))= T̄i (2)

Example: A = (1, 2), θ2 = −1
2 ,

1
N

∑
j t(j) =

∂
∂θ1

logZ = − θ1
2θ2

= θ1
(mean).
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Estimation and Test 3 , Example.
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θ2 = −1/2 (fixed). 100 Data as the
histgram with T̄1 = 6.0 and MLE
θ1 = T̄1 = 1

100

∑100
j=1 t1(j) = 6.0

(mean).
It is easy, because an explicit expres-
sion of ∂i • logZ , ∂i =

∂
∂θi

is known
and there is no difficulty of solving the
MLE equation.

Problem How do we solve the MLE equation?
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Estimation and Test 4 (Interlude—Theory)

Theorem (See, e.g., L.D.Brown (1986)∗,
Michalek-Sturmfels-Uhler-Zwiernik (2015) †)

1. C = {θ ∈ Rn | logZ(θ) < ∞}. C is convex.

2. K = convT (S)‡. Under some conditions, ∇ logZ is a bijection from C
to the interior of K.

A is a d × n matrix with entries in N0 with rankA = d and with an
(1, 1, . . . , 1)-row. Fix β ∈ Nd

0 .

Theorem (T-Kuriki-Takemura (2018) §)

Z(β; p) =
∑

Ac=β,c∈Nn
0

pc

c!
=

∑
Ac=β,c∈Nn

0

exp(
∑n

i=1 θici )

c!
, pi = exp(θi )

If the dimension of New(Z) (as poly in p) is n − d, then ∇ logZ is a bijection
from Rn/ImAT to relint(New(Z)).

∗Th 3.6 in “Fundamentals of Statistical Exponential Families with
Applicatioins in Statistical Decision Theory”

†Th 2.2 in “Exponential Varieties”
‡T (t) = (T1(t), . . . ,Td(t))
§Th 1 in “A-hypergeometric distributions and Newton polytopes”
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Estimation and Test 5. There exists a solution of MLE, and ...
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Estimation and Test 6 Numerical values of Z and its
derivatives are needed for the gradient descent to solve the MLE
equation.

1. Numerical Integration of Z and Monte-Carlo simulation:
General. Need good random number/vector/matrix
generators. No high precision output.

2. Series expansion of Z : Fast and high precision in the case of
one variable. Slow for several variable case. How to derive
series expansions and connection formulas?

3. Approximation of Z : Saddle point method, Euler
characteristic method, ... No global approximation. How to
derive an approximation?

We proposed the holonomic gradient method (HGM) ∗ and the
holonomic gradient descent (HGD).

∗ hgm openxm : search ⇒ a page of references of HGM

Some introductory references.
Hibi, eds. “Gröbner bases : statistics and software systems” (2013)
Sattelberger-Sturmfels, “D-Modules and Holonomic Functions” (2019)
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What is HGM (holonomic gradient method)? It works for

holonomic functions and holonomic distributions.
Three Steps of HGM

1. Finding a holonomic system satisfied by the normalizing
constant. We may use computational ∗ or theoretical methods
to find it. Translating it to a Pfaffian system.

2. Finding an initial value vector for the Pfaffian system. This is
equivalent to evaluating the normalizing constant and its
derivatives at a point.

3. Solving the Pfaffian system numerically. We use several
methods in numerical analysis.

∗There are algorithms to obtain it (by Gröbner basis in the ring of
differential operators).
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Example of HGM Z (θ) =
∫∞
−∞ exp(θ1t + θ2t

2)dt.

1. Z is annihilated by

θ1∂1 + 2θ2∂2 + 1, ∂2
1 − ∂2

Put F = (Z , ∂2 • Z )T .

∂F

∂θ1
= PF ,

∂F

∂θ2
= QF

,

P =

( −1
θ1

−2θ2
θ1

1
θ1θ2

2θ2−1/2θ21
θ1θ2

)
, Q =

(
0 1
−1
2

θ22

−5/2θ2+1/4θ21
θ22

)

2. Z (0,−1/2) =
√
π.

3. F (θ1 + h1, θ2 + h2) ∼ F (θ) + h1P(θ)F (θ) + h2Q(θ)F (θ),
hi ’s are small numbers (1st order Runge-Kutta method).
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Statistical Test 1 How “rare” is the event?
(Sloppy) Example: Assume “people feels comfortable when the temperature is
25C and the distribution of feeling comfortable follows the normal distribution
with the mean=25 and the standard deviation 3”.
We prepare a room of 20C and make an interview to a randomly chosen person
if this person feels comfortable. If this person says “comfortable”, we should
reject this assumption, because∫ 20

−∞
N(25, 3; t)dt ∼ 0.05, N(m, s; t) = e−

(t−m)2

2s /Z ,Z =
√
2πs

and then it is “rare” that randomly chosen person says “comfortable” ∗

This example motivates, e.g., the problem of evaluating
I (P; θ)/I (S ; θ) where S the whole event space, P ⊂ S and

I (P; θ) =

∫
P
exp

(
n∑

i=1

θiTi (t)

)
.

∗In text books of statistics, the definition of “rare” is not rigorously given.
They usually assume that the sum or integration of the tail probability is the
probability of “rare”.
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Test and A-hypergeometric system Let Ti (t) = tai and put

I (P; θ) =

∫
P

exp

(
n∑

i=1

θiTi (t) + (−β − 1) log t

)
dt.

Theorem (Nishiyama-T, 2010†)
When P is a polytope, the function I (P; θ) satisfies the following incomplete
A-hypergeometric system.

We call the following system of differential equations HA(β, g) an incomplete
A-hypergeometric system:(

n∑
j=1

aijθj∂j − βi

)
• f = gi , (i = 1, . . . , d)

(
n∏

i=1

∂ui
i −

n∏
j=1

∂
vj
j

)
• f = 0

with u, v ∈ Nn
0 running over all u, v such that Au = Av).

Here, N0 = {0, 1, 2, . . .}, and β = (β1, . . . , βd) ∈ Cd are parameters and

g = (g1, . . . , gd) where gi are given holonomic functions.
†Incomplete A-Hypergeometric Systems
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Summary

1. The exponential family is an important class of distributions
in statistics. When the sufficient statistics Ti (t)’s are
monomials or logarithmic functions, we obtain an incomplete
A-hypergeometric system when the domain is, e.g, a
polyhedron, which are used in statistical test ‡.

2. The MLE equation has a unique solution under some
conditions. In order to obtain the “exact” numerical solution,
we need to evaluate the normalizing constant Z and its
derivatives. So is statistical tests.

3. The HGM (holonomic graidient method) and the HGD
(holonomic gradient descent) are new (algorithmic) method
for the numerical evaluation for “holonomic” distributions.
The methods are applied to several important distributions
and software packages are provided.

‡In statistics, we often integrate by a delta measure. The integral is no
longer A-hypergeometric.
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