Nobuki Takayama, 2019.12.05, et-2, Holonomic functions and algorithms
Holonomic function in one variable Let $f(x)$ be a smooth
$\left(C^{\infty}\right)$ function defined on an open interval U in \mathbf{R}. The function f or its analytic continuation is called a holonomic (analytic)
function when $\exists L \in \mathbf{C}(x)\langle\partial\rangle$ such that $L \bullet f=0$ (L is called an annihilator of f).
Example. $\int_{0}^{+\infty} \exp \left(-x-\theta x^{3}\right) d x$ is a holonomic function, because it is annihilated by an ordinary differential operator with polynomial coefficients.

Theorem

The sum and the product of holonomic functions are holonomic functions. The derivative of any holonomic function is a holonomic function.

Holonomic function of several variables Let
$f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ be a smooth function defined on an open set U in \mathbf{R}^{n}. The function f or its analytic continuation is called a holonomic (analytic) function when there exist n-differential operators $L_{i}, i=1, \ldots, n$ of the form

$$
\begin{equation*}
L_{i}=a_{m_{i}}^{i}(x) \partial_{i}^{m_{i}}+a_{m_{i}-1}^{i}(x) \partial_{i}^{m_{i}-1}+\cdots+a_{0}^{i}(x), \quad \partial_{i}=\frac{\partial}{\partial x_{i}} \tag{1}
\end{equation*}
$$

where $a_{j}^{i}(x) \in \mathbf{C}(x)$ which annihilate the function f. The following important theorem/project follows from the D-module theory.

Theorem (Zeilberger project, 1990)

If $f\left(x_{1}, \ldots, x_{n}\right)$ is a holonomic function in x, then the integral $\int_{\Omega} f(x) d x_{n}$ is a holonomic function in $\left(x_{1}, \ldots, x_{n-1}\right)$ (under some conditions on the set Ω).
Doron Zeilberger: Let's use this fact to prove combinatorial identities and special function identities! We need algorithms for it.

Use the theory of holonomic system
(D-modules)
to study special functions and combinatorics.

(C) dak

Examples of holonomic functions

Which are holonomic (analytic)

functions?

1. $\exp (f(x))$ where f is a rational function,
2. $\frac{1}{\sin x}$ [Hint] Use Th: Any solution of the ordinary differential equation $\left(a_{m}(x) \partial^{m}+\cdots+a_{0}(x)\right) \bullet f=0, a_{i} \in \mathbf{C}[x]$, is holomorphic out of the singular locus $\left\{x \mid a_{m}(x)=0\right\}$.
3. $\Gamma(x)$, [Hint] $\Gamma(x)$ has poles at $x=-n, n \in \mathbf{N}_{0}$.
4. 2^{x},
5. $H(x)$ (Heaviside function),
6. x^{a} where a is a constant,
7. $|x|$,
8. $\int_{-\infty}^{+\infty} \exp \left(-x t^{6}-t\right) d t, x>0$.
9. $\exp (\exp (x))$ [Hint] local theory of linear ODE.

Weyl algebra and holonomic ideal Let D_{n} be the ring of differential operators of polynomial coefficients. D_{n} is a subring of $R_{n}=\mathbf{C}(x)\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ (the ring of diff op with rational function coefficients). For $L=\sum_{(\alpha, \beta) \in E} a_{\alpha, \beta} x^{\alpha} \partial^{\beta} \in D_{n}$, we define

$$
\begin{align*}
\operatorname{ord}_{(u, v)}(L) & =\max _{(\alpha, \beta) \in E}(u \alpha+v \beta) \tag{2}\\
\operatorname{in}_{(u, v)}(L) & =\sum_{\operatorname{ord}\left(x^{\alpha} \partial^{\beta}\right)=\operatorname{ord}(L),(\alpha, \beta) \in E} a_{\alpha, \beta} x^{\alpha} \xi^{\beta} \in \mathbf{C}[x, \xi] \tag{3}
\end{align*}
$$

where $u=(1, \ldots, 1)$ and $v=(1, \ldots, 1)$. Example $L=\left(x_{1}-x_{2}\right) \partial_{1} \partial_{2}+\partial_{1}+\partial_{2}$. We have ord ${ }_{(u, v)}(L)=3$ and $\operatorname{in}_{(u, v)}(L)=\left(x_{1}-x_{2}\right) \xi_{1} \xi_{2}$ I
For a left ideal I of D_{n}, define $\operatorname{in}_{(u, v)}(I)=\left\langle\operatorname{in}_{(u, v)}(L) \mid L \in I\right\rangle$, which is called the (u, v)-initial ideal of I. I is called a holonomic ideal when the (Krull) dimension of $\operatorname{in}_{(u, v)}(I)$ is $n . \operatorname{dim}_{\mathbf{C}(x)} R_{n} / R_{n} I$ is the holonomic rank of I.

Some important theorems on holonomic ideal

when J is a holonomic left ideal, then $I=R_{n} J$ is a zero-dimensional ideal in R_{n}. (In other words, the holonomic rank $\operatorname{dim}_{\mathbf{C}_{(x)}} R_{n} / I$ of I is finite) When J is a holonomic left ideal such that $J \neq D_{n}$, we have
Theorem (Bernstein inequality)
(Krull)dim $\operatorname{in}_{(u, v)}(J) \geq n$.
Theorem (Cor. of Kashiwara 1978)
If I is a zero-dimensional left ideal in R_{n}, then, $I \cap D_{n}$ is a holonomic ideal.
Note. The ideal $I \cap D_{n}$ is called the Weyl closure of I. An algorithm to construct generators of the Weyl closure from generators of I was given by H.Tsai (2002). It is implemented in Macaulay 2 (WeylClosure).

Supplemental Exercise

1. For $f=\exp \left(1 /\left(x_{1}^{3}-x_{2}^{2} x_{3}^{2}\right)\right)$, define polynomials p_{i} and q_{i} by

$$
p_{i} / q_{i}=\left(\partial f / \partial x_{i}\right) / f
$$

We have $q_{1}=q_{2}=q_{3}\left(x_{1}^{3}-x_{2}^{2} x_{3}^{2}\right)^{2}, p_{1}=-3 x_{1}^{2}, p_{2}=2 x_{2} x_{3}^{2}, p_{3}=2 x_{2}^{2} x_{3}$. Show that

$$
q_{i} \partial_{i}-p_{i}, \quad i=1,2,3
$$

generate a zero dimensional ideal $/$ in R_{3} but they do not generate a holonomic ideal in D_{3}.
2. Compute the Weyl closure of I.

An answer

loadPackage "Dmodules"
$D=Q Q[x, y, z, d x, d y, d z$, WeylAlgebra $=>\{x=>d x, y=>d y, z=>d z\}] ;$
I = ideal $\left(\left(x^{\wedge} 3-y^{\wedge} 2 * z^{\wedge} 2\right)^{\wedge} 2 * d x+3 * x^{\wedge} 2\right.$,

$$
\left(x^{\wedge} 3-y^{\wedge} 2 * z^{\wedge} 2\right)^{\wedge} 2 * d y-2 * y * z^{\wedge} 2
$$

$$
\left.\left(x^{\wedge} 3-y^{\wedge} 2 * z^{\wedge} 2\right)^{\wedge} 2 * d z-2 * y^{\wedge} 2 * z\right)
$$

$\operatorname{II=inw}(I,\{1,1,1,1,1,1\})$;
print(dim II); --- the output 4 implies that it is not holonomic.
J=WeylClosure I;
print(toString(J));
$\mathrm{JJ}=\mathrm{inw}(\mathrm{J},\{1,1,1,1,1,1\})$;
print(dim JJ); --- the output 3 implies that it is holonomic.
J contains $-y \partial_{x} \partial_{y}+z \partial_{x} \partial_{z}, \ldots$.

Holonomic Schwartz distribution A distribution f on \mathbf{R}^{n} is called a holonomic (Schwartz) distribution when it is annihilated by a holonomic ideal.

Theorem

When $f\left(x_{1}, \ldots, x_{n}\right)$ is a holonomic distribution, $g\left(x^{\prime}\right)=\int_{\mathbf{R}^{n-m}} f(x) d x_{m+1} \cdots d x_{n}$ is a holonomic distribution of m-variables x^{\prime} (under some conditions).
Exercise Which are holonomic distributions?

1. $\frac{1}{\sin x}$,
2. $H(x)$ (Heaviside function),
3. $|\sin x|$,
4. $|x|$,
5. $\int_{0}^{1} \exp \left(-x^{3} y+x\right) d x=\int_{\mathbf{R}} \exp \left(-x^{3} y+x\right) H(x) H(1-x) d x$,
6. $\frac{1}{\pi} \int_{-\infty}^{\infty} e^{i \xi x \frac{\sin \xi}{\xi}} d \xi$ [Hint] $2 \sin \xi / \xi$ is the Fourier transform of $H(1-x) H(1+x)$ as a distribution.

Algorithms and implementations

To obtain differential
equation for the integral $g\left(x^{\prime}\right)$, we need an elimination alg. of a left ideal / in D_{n} and a right ideal:

$$
\left.\left(I+\partial_{1} D_{n}+\cdots+\partial_{m} D_{n}\right)\right) \cap \mathbf{C}\left\langle x_{m+1}, \ldots, x_{n}, \partial_{m+1}, \ldots, \partial_{n}\right\rangle
$$

1. Creative telescoping (D.Zeilberger, 1980's - 2010's).
2. T (kan/sm1, ..., 1980's - 2000's)
3. T.Oaku, algorithms for b-functions, restrictions, and algebraic local cohomology groups (1997)
4. F.Chyzak's heuristics (2000's), C.Kouchan's heuristics (2010's)*
5. Risa/Asir, Macaulay 2, Singular.
6. T.Oaku (2013), Annihilator of the Heaviside function with the support on a semi-algebraic set.
7. Annihilators and b-functions for f^{s} (Nabeshima (this conference), ...).
[^0]
[^0]: *HolonomicFunctions.m on Mathematica

