解析セミナー

                 
神戸大学理学部B棟 (campus map google map bldg. B
世話人 石井 克幸海事科学研究科
_ 上田 好寛海事科学研究科
_ 桑村 雅隆人間発達環境学研究科
_ 高坂 良史海事科学研究科
_ 高岡 秀夫理学研究科
_ 檜垣 充朗理学研究科
多くの方々のご来聴を歓迎いたします。


セミナーのお知らせ


 
 
第5回 11月19日(火) 16時30分から
(理学部B棟314号室にて)
講演者 井口 達雄 氏 (慶應義塾大学理工学部)
講演題目 Initial value problem to a shallow water model with a floating solid body
講演概要 In this talk we are concerned with the well-posedness of the initial value problem to a shallow water model for two-dimensional water waves with a floating solid body. We consider three cases: the body is fixed, the motion of the body is prescribed, and the body moves freely according to Newton's laws. The difficulty of the analysis comes from the fact that we have to treat the contact points, where the water, the air, and the solid body meet. This model yields a new type of free boundary problems for a quasilinear hyperbolic system. We will report that the initial value problem to this model is in fact well-posed. This result is based on the joint research with David Lannes at University of Bordeaux.
 
 
 
第6回 12月5日(木) 16時30分から
(理学部B棟314号室にて)
講演者 三宅 庸仁 氏 (東北大学大学院理学研究科)
講演題目 勾配型非線形項を持つ四階放物型方程式の有限時間爆発解について
講演概要 勾配型の非線形項を持つ四階放物型方程式の初期値問題について考察する.本講演で取り扱う方程式は下に非有界なエネルギー汎関数の勾配流とみなすことができるため,最大存在時間が有界であるような解の存在が期待される.本講演の目的は,最大存在時間が有界であるような解の存在,及びその最大存在時間における解の挙動について得られた研究成果を述べる.また,今回取り扱う方程式において勾配爆発現象が起こり得ることを先行研究及びこれまでの解析を踏まえて述べる.本講演の内容は,石毛和弘先生(東京大学)と岡部真也先生(東北大学)との共同研究に基づく.
 



セミナーの記録(クリックで展開)