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Abstract. We define triangulated piecewise linear constant mean curvature surfaces
using a variational characterization. These surfaces are critical for area amongst continuous
piecewise linear variations which preserve the boundary conditions, the simplicial structures,
and (in the nonminimal case) the volume to one side of the surfaces. We then find explicit
formulas for complete examples, such as discrete minimal catenoids and helicoids.

We use these discrete surfaces to study the index of unstable minimal surfaces, by nu-
merically evaluating the spectra of their Jacobi operators. Our numerical estimates confirm
known results on the index of some smooth minimal surfaces, and provide additional in-
formation regarding their area-reducing variations. The approach here deviates from other
numerical investigations in that we add geometric interpretation to the discrete surfaces.

1. Introduction

Smooth submanifolds, and surfaces in particular, with constant mean curvature (cmc)
have a long history of study, and modern work in this field relies heavily on geometric and
analytic machinery which has evolved over hundreds of years. However, nonsmooth sur-
faces are also natural mathematical objects, even though there is less machinery available
for studying them. For example, consider M. Gromov’s approach of doing geometry using
only a set with a measure and a measurable distance function [9].

Here we consider piecewise linear triangulated surfaces—we call them ‘‘discrete
surfaces’’—which have been brought more to the forefront of geometrical research by com-
puter graphics. We define cmc for discrete surfaces in R3 so that they are critical for volume-
preserving variations, just as smooth cmc surfaces are. Discrete cmc surfaces have both in-
teresting di¤erences from and similarities with smooth ones. For example, they are di¤erent
in that smooth minimal graphs in R3 over a bounded domain are stable, whereas discrete
minimal graphs can be highly unstable. We will explore properties like this in section 2.

In section 3 we will see some ways in which these two types of surfaces are similar.
We will see that: a discrete catenoid has an explicit description in terms of the hyperbolic



cosine function, just as the smooth catenoid has; and a discrete helicoid can be described
with the hyperbolic sine function, just as a conformally parametrized smooth helicoid is;
and there are discrete Delaunay surfaces which have translational periodicities, just as
smooth Delaunay surfaces have.

Pinkall and Polthier [17] used Dirichlet energy and a numerical minimization proce-
dure to find discrete minimal surfaces. In this work, we rather have the goal to describe dis-
crete minimal surfaces as explicitly as possible, and thus we are limited to the more funda-
mental examples, for example the discrete minimal catenoid and helicoid. We note that these
explicit descriptions will be useful test candidates when implementing a procedure that we
describe in the next paragraphs.

Discrete surfaces have finite dimensional spaces of admissible variations, therefore the
study of linear di¤erential operators on the variation spaces reduces to the linear algebra of
matrices. This advantage over smooth surfaces with their infinite dimensional variation
spaces makes linear operators easier to handle in the discrete case.

This suggests that a useful procedure for studying the spectra of the linear Jacobi
operator in the second variation formula of smooth cmc surfaces is to consider the corre-
sponding spectra of discrete cmc approximating surfaces. Although similar to the finite ele-
ment method in numerical analysis, here the finite element approximations will have geo-
metric and variational meaning in their own right.

As an example, consider how one finds the index of a smooth minimal surface, that
is the number of negative points in the spectrum. The standard approach is to replace the
metric of the surface with the metric obtained by pulling back the spherical metric via the
Gauss map. This approach can yield the index: for example, the indexes of a complete
catenoid and a complete Enneper surface are 1 ([7]), the index of a complete Jorge-Meeks
n-noid is 2n� 3 ([12], [11]) and the index of a complete genus k Costa-Ho¤man-Meeks
surface is 2k þ 3 for every ke 37 ([14], [13]). However, this approach does not yield the
eigenvalues and eigenfunctions on compact portions of the original minimal surfaces, as the
metric has been changed. It would be interesting to know the eigenfunctions associated to
negative eigenvalues since these represent the directions of variations that reduce area. The
above procedure of approximating by discrete surfaces can provide this information.

In sections 5 and 6 we establish some tools for studying the spectrum of discrete cmc
surfaces. Then we test the above procedure on two standard cases—a (minimal) rectangle,
and a portion of a smooth minimal catenoid bounded by two circles. In these two cases we
know the spectra of the smooth surfaces (section 4), and we know the discrete minimal sur-
faces as well (section 3), so we can check that the above procedure produces good approx-
imations for the eigenvalues and smooth eigenfunctions (section 7), which indeed must be the
case, by the theory of the finite element method [4], [8]. With these successful tests, we go on
to consider cases where we do not a priori know what the smooth eigenfunctions should be,
such as the Jorge-Meeks 3-noid and the genus 1 Costa surface (section 7).

The above procedure can also be implemented using discrete approximating surfaces
which are found only numerically and not explicitly, such as surfaces found by the method
in [17]. And in fact, we use the method in [17] to find approximating surfaces for the 3-noid
and Enneper surface and Costa surface.
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We note also that Ken Brakke’s surface evolver software [3] is an e‰cient tool for
numerical index calculations using the same discrete ansatz. Our main emphasis here is to
provide explicit formulations for the discrete Jacobi operator and other geometric proper-
ties of discrete surfaces.

Many of the discrete minimal and cmc surfaces introduced here are available as in-
teractive models at EG-Models [19].

2. Discrete minimal and cmc surfaces

We start with a variational characterization of discrete minimal and discrete cmc sur-
faces. This characterization will allow us to construct explicit examples of unstable discrete
cmc surfaces. Note that merely finding minima for area with respect to a volume constraint
would not su‰ce for this as that would produce only stable examples. We will later use these
discrete cmc surfaces for our numerical spectra computations.

The following definitions for discrete surfaces and their variations work equally well
in any ambient space Rn but for simplicity we restrict to R3.

Definition 2.1. A discrete surface in R3 is a triangular meshT which has the topology
of an abstract 2-dimensional simplicial surface K combined with a geometric C0 realization
in R3 that is piecewise linear on each simplex. The geometric realization jK j is determined
by a set of vertices V ¼ fp1; . . . ; pmgHR3. T can be identified with the pair ðK;VÞ. The
simplicial complex K represents the connectivity of the mesh. The 0, 1, and 2 dimensional
simplices of K represent the vertices, edges, and triangles of the discrete surface.

Let T ¼ ðp; q; rÞ denote an oriented triangle of T with vertices p; q; r A V. Let pq
denote an edge of T with endpoints p; q A V.

For p A V, let starðpÞ denote the triangles of T that contain p as a vertex. For an
edge pq, let starðpqÞ denote the (at most two) triangles of T that contain the edge pq.

Definition 2.2. LetV ¼ fp1; . . . ; pmg be the set of vertices of a discrete surfaceT. A
variationTðtÞ of T is defined as a C2 variation of the vertices pi

Figure 1. At each vertex p the gradient of discrete area is the sum of the
p

2
-rotated edge vectors Jðr� qÞ, as in

Equation (1).
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piðtÞ: ½0; eÞ ! R3 so that pið0Þ ¼ pi Ei ¼ 1; . . . ;m:

The straightness of the edges and the flatness of the triangles are preserved as the vertices
move.

In the smooth situation, the variation at interior points is typically restricted to nor-
mal variation, since the tangential part of the variation only performs a reparametrization
of the surface. However, on discrete surfaces there is an ambiguity in the choice of normal
vectors at the vertices, so we allow arbitrary variations. But we will later see (section 7) that
our experimental results can accurately estimate normal variations of a smooth surface when
the discrete surface is a close approximation to the smooth surface.

In the following we derive the evolution equations for some basic entities under sur-
face variations.

The area of a discrete surface is

areaðTÞ :¼
P
T AT

areaT ;

where areaT denotes the Euclidean area of the triangle T as a subset of R3.

LetTðtÞ be a variation of a discrete surfaceT. At each vertex p ofT, the gradient of
area is

‘p areaT ¼ 1

2

P
T¼ð p;q; rÞ A star p

Jðr� qÞ;ð1Þ

where J is rotation of angle
p

2
in the plane of each oriented triangle T. The first derivative of

the surface area is then given by the chain rule

d

dt
areaT ¼

P
p AV

hp 0;‘p areaTi:ð2Þ

The volume of an oriented surface T is the oriented volume enclosed by the cone of the
surface over the origin in R3

volT :¼ 1

6

P
T¼ð p;q; rÞ AT

hp; q
 ri ¼ 1

3

P
T¼ð p;q; rÞ AT

h~NN; pi � areaT ;

where p is any of the three vertices of the triangle T and

~NN ¼ ðq� pÞ 
 ðr� pÞ=jðq� pÞ 
 ðr� pÞj

is the oriented normal of T. It follows that
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‘p volT ¼
P

T¼ð p;q; rÞ A star p
q
 r=6ð3Þ

and

d

dt
volT ¼

P
p AV

hp 0;‘p volTi:ð4Þ

Remark 2.1. Note also that ‘p volT¼
P

T¼ð p;q; rÞ A star p

�
2 � areaT � ~NN þ p
ðr� qÞ

�
=6.

Furthermore, if p is an interior vertex, then the boundary of star p is closed andP
T A star p

p
 ðr� qÞ ¼ 0. Hence the q
 r in Equation (3) can be replaced with 2 � areaT � ~NN

whenever p is an interior vertex.

In the smooth case, a minimal surface is critical with respect to area for any variation
that fixes the boundary, and a cmc surface is critical with respect to area for any variation
that preserves volume and fixes the boundary. We wish to define discrete cmc surfaces so
that they have the same variational properties for the same types of variations. So we will
consider variations TðtÞ of T that fix the boundary qT and that additionally preserve
volume in the nonminimal case, which we call permissible variations. The condition that
makes a discrete surface area-critical for any permissible variation is expressed in the fol-
lowing definition.

Definition 2.3. A discrete surface has constant mean curvature (cmc) if there exists a
constant H so that ‘p area ¼ H‘p vol for all interior vertices p. If H ¼ 0 then it is minimal.

This definition for discrete minimality has been used in [17]. In contrast, our definition
of discrete cmc surfaces di¤ers from [15], where cmc surfaces are characterized algorithm-
ically using discrete minimal surfaces in S3 and a conjugation transformation. Compare also
[2] for a definition via discrete integrable systems which lacks variational properties.

Remark 2.2. IfT is a discrete minimal surface that contains a simply-connected dis-
crete subsurfaceT 0 that lies in a plane, then it follows easily from Equation (1) that the dis-
crete minimality of T is independent of the choice of triangulation of the trace of T 0.

2.0.1. Notation from the theory of finite elements. Consider a vector-valued function
vpj A R3 defined on the n interior vertices Vint ¼ fp1; . . . ; png of T. We may extend this
function to the boundary vertices ofT as well, by assuming vp ¼~00 A R3 for each boundary
vertex p. The vectors vpj are the variation vector field of any boundary-fixing variation of
the form

pjðtÞ ¼ pj þ t � vpj þ Oðt2Þ;ð5Þ

that is, p 0j ð0Þ ¼ vpj . We define the vector~vv A R3n by

~vv t ¼ ðvtp1 ; . . . ; v
t
pn
Þ:ð6Þ

The variation vector field ~vv can be naturally extended to a piece-wise linear continuous
R3-valued function v on T, with v in the following vector space:
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Definition 2.4. On a discrete surface T we define the space of piecewise linear
functions

Sh :¼ fv:T ! R3 j v A C0ðTÞ; v is linear on each T A T and vjqT ¼ 0g:

This space is named Sh, as in the theory of finite elements. Note that any compo-
nent function of any function v A Sh has bounded Sobolev H 1 norm.

For each triangle T ¼ ðp; q; rÞ in T and each v A Sh,

vjT ¼ vpcp þ vqcq þ vrcr;ð7Þ

where cp:T ! R is the head function on T which is 1 at p and is 0 at all other vertices of
T and extends linearly to all ofT in the unique way. The functions cpj form a basis (with
scalars in R3) for the 3n-dimensional space Sh.

2.0.2. Non-uniqueness of discrete minimal disks. Uniqueness of a bounded mini-
mal surface with a given boundary ensures that it is stable. For smooth minimal surfaces,
uniqueness can sometimes be decided using the maximum principle of elliptic equations,
which ensures that the minimal surface is contained in the convex hull of its boundary,
and, if the boundary has a 1-1 projection to a convex planar curve, then it is unique for
that boundary and is a minimal graph. The maximum principle also shows that any mini-
mal graph is unique even when the projection of its boundary is not convex. More gener-
ally, stability still holds when the surface merely has a Gauss map image contained in a
hemisphere, as shown in [1] (although their proof employs tools other than the maximum
principle).

However, such statements do not hold for discrete minimal surfaces. Consider the
surface shown in the left-hand side of Figure 2, whose height function has a local maxi-
mum at an interior vertex. This example does not lie in the convex hull of its boundary and
thereby disproves the general existence of a discrete version of the maximum principle. Also,
the three surfaces on the right-hand side in Figure 3 are all minimal graphs over an annular
domain with the same boundary contours and the same simplicial structure, and yet they
are not the same surfaces, hence graphs with given simplicial structure are not unique. And
the left-hand surface in Figure 3 is a surface whose Gauss map is contained in a hemisphere
but which is unstable (this surface is not a graph)—another example of this property is the
first annular surface in Figure 3, which is also unstable. (We define stability of discrete cmc
surfaces in section 5.)

Figure 2. Two views on the left-hand side of a discrete minimal surface that defies the maximum principle. The

two discrete minimal surfaces on the right-hand side with boundary vertices ðx; 0; z1Þ, ð�x; 0; z1Þ, ð0; y; z2Þ, and
ð0;�y; z2Þ in R3 have the same trace in R3 but have di¤erent simplicial structures. Another surprising feature of

these examples is that the innermost triangles form a square, regardless of the values of x; y; z13 z2.
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The influence of the discretization on nonuniqueness, like as in the annular examples
of Figure 3, can also be observed in a more trivial way for a discrete minimal graph over a
simply connected convex domain. The two surfaces on the right-hand side of Figure 2 have
the same trace, i.e. they are identical as geometric surfaces, but they are di¤erent as discrete
surfaces. Interior vertices may be freely added and moved inside the middle planar square
without a¤ecting minimality (see Remark 2.2).

In contrast to existence of these counterexamples we believe that some properties of
smooth minimal surfaces remain true in the discrete setting. We say that a discrete surface
is a disk if it is homeomorphic to a simply connected domain.

Conjecture 2.1. Let THR3 be a discrete minimal disk whose boundary projects in-

jectively to a convex planar polygonal curve, thenT is a graph over that plane.

The authors were able to prove this conjecture with the extra assumption that all
the triangles of the surface are acute, using the fact that the maximum principle (a height
function cannot attain a strict interior maximum) actually does hold when all triangles are
acute.

One can ask if a discrete minimal surface T with given simplicial structure and
boundary is unique if it has a 1-1 perpendicular or central projection to a convex polygonal
domain in a plane. The placement of the vertices need not be unique, as we saw in Remark
2.2, however, one can consider if there is uniqueness in the sense that the trace ofT in R3 is
unique:

Conjecture 2.2. Let GHR3 be a polygonal curve that either ðAÞ: projects injec-
tively to a convex planar polygonal curve, or ðBÞ: has a 1-1 central projection from a point
p A R3 to a convex planar polygonal curve. Let K be a given abstract simplicial disk, and
let g: qK ! G be a given piecewise linear map. If T is a discrete minimal surface that is a

geometric realization of K so that the map qK ! qT equals g, then the trace of T in R3 is

uniquely determined. Furthermore, T is a graph in the case ðAÞ, and T is contained in the

cone of G over p in the case ðBÞ.

We have the following weaker form of Conjecture 2.2, which follows from Corollary
5.1 of section 5 in the case that there is only one interior vertex:

Figure 3. Two unstable and two stable discrete minimal surfaces in R3. The first figure on the left is unstable,

even though it is locally a graph over a horizontal plane, in the sense that the third coordinate of the normal vector

to the surface is never zero. The second figure on the left is one of the four congruent pieces of the first figure. The

middle figure (the leftmost annular graph) is unstable, even though it is a graph over an annular polygonal region

in a horizontal plane; it has area-reducing variations that can deform to either of the last two stable minimal sur-

faces on the right, which have the same simplicial structure.
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Conjecture 2.3. If a discrete minimal surface is a graph over a convex polygonal do-

main, then it is stable.

3. Explicit discrete surfaces

Here we describe explicit discrete catenoids and helicoids, which seem to be the first
explicitly known nontrivial complete discrete minimal surfaces (with minimality defined
variationally).

3.1. Discrete minimal catenoids. To derive an explicit formula for embedded com-
plete discrete minimal catenoids, we choose the vertices to lie on congruent planar polygo-
nal meridians, with the meridians placed so that the traces of the surfaces will have dihedral
symmetry. We will find that the vertices of a discrete meridian lie equally spaced on a smooth
hyperbolic cosine curve. Furthermore, these discrete catenoids will converge uniformly in
compact regions to the smooth catenoid as the mesh is made finer.

We begin with a lemma that prepares the construction of the vertical meridian of the
discrete minimal catenoid, by successively adding one horizontal ring after another starting
from an initial ring. Since our construction will lead to pairwise coplanar triangles, the star
of each individual vertex can be made to consist of four triangles (see Remark 2.2). We now
derive an explicit representation of the position of a vertex surrounded by four such triangles
in terms of the other four vertex positions. The center vertex is assumed to be coplanar with
each of the two pairs of two opposite vertices, with those two planes becoming the plane of
the vertical meridian and the horizontal plane containing a dihedrally symmetric polygonal
ring (consisting of edges of the surface). See Figure 4.

Lemma 3.1. Suppose we have four vertices p ¼ ðd; 0; eÞ, q1 ¼ ðd cos y;�d sin y; eÞ,
q2 ¼ ða; 0; bÞ, and q3 ¼ ðd cos y; d sin y; eÞ, for given real numbers a, b, d, e, and angle y so
that b3 e. Then there exists a choice of real numbers x and y and a fifth vertex q4 ¼ ðx; 0; yÞ
so that the discrete surface formed by the four triangles ðp; q1; q2Þ, ðp; q2; q3Þ, ðp; q3; q4Þ, and
ðp; q4; q1Þ is minimal, i.e.

‘p areaðstar pÞ ¼ 0;

if and only if

2ad >
ðe� bÞ2

1þ cos y
:

Figure 4. The construction in Lemma 3.1 and a discrete minimal catenoid.
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Furthermore, when x and y exist, they are unique and must be of the form

x ¼ 2ð1þ cos yÞd 3 þ ðaþ 2dÞðe� bÞ2

2adð1þ cos yÞ � ðe� bÞ2
;

y ¼ 2e� b:

Proof. First we note that the assumption b3 e is necessary. If b ¼ e, then one may
choose y ¼ b, and then there is a free 1-parameter family of choices of x, leading to a trivial
planar surface.

For simplicity we apply a vertical translation and a homothety about the origin of R3

to normalize d ¼ 1, e ¼ 0, and by doing a reflection if necesary, we may assume b < 0. Let
c ¼ cos y and s ¼ sin y.

We derive conditions for the coordinate components of ‘p area to vanish. The second
component vanishes by symmetry of star p. Using the definitions

c1 :¼
ða� 1Þs2 � b2ð1� cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2ð1� cÞ þ ða� 1Þ2s2

q ; c2 :¼
abþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2b2ð1� cÞ þ ða� 1Þ2s2
q ;

the first (resp. third) component of ‘p area vanishes if

c1 ¼
y2ð1� cÞ � ðx� 1Þs2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2ð1� cÞ þ ðx� 1Þ2s2

q ; resp: c2 ¼
�ðx� 1Þy� 2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2y2ð1� cÞ þ ðx� 1Þ2s2
q :ð8Þ

Dividing one of these equations by the other we obtain

x� 1 ¼ c2yð1� cÞ þ 2c1
c2s2 � c1y

y;ð9Þ

so x is determined by y. It now remains to determine if one can find y so that
c2s

2 � c1y3 0. If x� 1 is chosen as in equation (9), then the first minimality condition of
equation (8) holds if and only if the second one holds as well. So we only need to insert this
value for x� 1 into the first minimality condition and check for solutions y. When c13 0,
we find that the condition becomes

1 ¼ c2s
2 � c1y

jc2s2 � c1yj
y

jyj
�ð1� cÞy2 � 2s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� cÞc22s4 þ 4c21s
2 þ

�
2ð1� cÞc21 þ s2ð1� cÞ

2
c22
�
y2

q :

Since �ð1� cÞy2 � 2s2 < 0, note that this equation can hold only if c2s
2 � c1y and y have

opposite signs, so the equation becomes

1 ¼ ð1� cÞy2 þ 2s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cÞc22s4 þ 4c21s

2 þ
�
2ð1� cÞc21 þ s2ð1� cÞ

2
c22
�
y2

q ;
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which simplifies to

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞy2 þ 2s2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞc22s2 þ 2c21

q :

This implies y2 is uniquely determined. Inserting the value

y ¼Gb;

one finds that the above equation holds. When y ¼ b < 0, we find that c2s
2 � c1y < 0,

which is impossible. When y ¼ �b > 0, we find that c2s
2 � c1y < 0 if and only if

2að1þ cÞ > b2. And when y ¼ �b and 2að1þ cÞ > b2, we have the minimality condition
when

x ¼ 2þ 2cþ ab2 þ 2b2

2aþ 2ac� b2 :

Inverting the transformation we did at the beginning of this proof brings us back to the
general case where d and e are not necessarily 1 and 0, and the equations for x and y be-
come as stated in the lemma.

When c1 ¼ 0, we have ða� 1Þð1þ cÞ ¼ b2 and ðx� 1Þð1þ cÞ ¼ y2, so, in particular,
we have a > 1 and therefore 2að1þ cÞ > b2. The right-hand side of equation (8) implies
y ¼ �b and x ¼ a. Again, inverting the transformation from the beginning of this proof,
we have that x and y must be of the form in the lemma for the case c1 ¼ 0 as well. r

The next lemma provides a necessary and su‰cient condition for when two points lie
on a scaled cosh curve, a condition that is identical to that of the previous lemma. That
these conditions are the same is crucial to the proof of the upcoming theorem.

Lemma 3.2. Given two points ða; bÞ and ðd; eÞ in R2 with b3 e, and an angle y with
jyj < p, there exists an r so that these two points lie on some vertical translate of the modified
cosh curve

gðtÞ ¼

0
@r cosh t

e� b arccosh 1þ 1

r2
ðe� bÞ2

1þ cos y

 !" #
; t

1
A; t A R;

if and only if 2ad >
ðe� bÞ2

1þ cos y
.

Proof. Define d̂d ¼ e� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos y

p . Without loss of generality, we may assume 0 < ae d

and e > 0, and hence �ee b < e. If the points ða; bÞ and ðd; eÞ both lie on the curve gðtÞ,
then

arccosh 1þ d̂d2

r2

 !
¼ arccosh

�
d

r

�
� signðbÞ � arccosh

�
a

r

�
;
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where signðbÞ ¼ 1 if bf 0 and signðbÞ ¼ �1 if b < 0. Note that if b ¼ 0, then a must equal

r (and so arccosh
a

r

� �
¼ 0). This equation is solvable (for either value of signðbÞ) if and only

if

d

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2

r2
� 1

r !
a

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

r2
� 1

r !
¼ 1þ d̂d2

r2
þ d̂d

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ d̂d2

r2

s

when be 0, or

d

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2

r2
� 1

s

a

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

r2
� 1

s ¼ 1þ d̂d2

r2
þ d̂d

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ d̂d2

r2

s

when bf 0, for some r A ð0; a�. The right-hand side of these two equations has the follow-
ing properties:

(1) It is a nonincreasing function of r A ð0; a�.

(2) It attains some finite positive value at r ¼ a.

(3) It is greater than the function 2 d̂d2=r2.

(4) It approaches 2 d̂d2=r2 asymptotically as r! 0.

The left-hand sides of these two equations have the following properties:

(1) They attain the same finite positive value at r ¼ a.

(2) The first one is a nonincreasing function of r A ð0; a�.

(3) The second one is a nondecreasing function of r A ð0; a�.

(4) The second one attains the value d=a at r ¼ 0.

(5) The first one is less than the function 4ad=r2.

(6) The first one approaches 4ad=r2 asymptotically as r! 0.

It follows from these properties that one of the two equations above has a solution for
some r if and only if 2ad > d̂d2. This completes the proof. r

We now derive an explicit formula for discrete minimal catenoids, by specifying the
vertices along a planar polygonal meridian. Then the traces of the surfaces will have dihe-
dral symmetry of order kf 3. The surfaces are tessellated by planar isosceles trapezoids
like a Z2 grid, and each trapezoid can be triangulated into two triangles by choosing a di-
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agonal of the trapeziod as the interior edge. Either diagonal can be chosen, as this does not
a¤ect the minimality of the catenoid, by Remark 2.2.

The discrete catenoid has two surprising features. First, the vertices of a meridian lie
on a scaled smooth cosh curve ( just as the profile curve of smooth catenoids lies on the cosh
curve), and there is no a priori reason to have expected this. Secondly, the vertical spacing
of the vertices along the meridians is constant.

Theorem 3.1. There exists a four-parameter family of embedded and complete discrete

minimal catenoids C ¼ Cðy; d; r; z0Þ with dihedral rotational symmetry and planar meridians.
If we assume that the dihedral symmetry axis is the z-axis and that a meridian lies in the xz-

plane, then, up to vertical translation, the catenoid is completely described by the following
properties:

(1) The dihedral angle is y ¼ 2p

k
, k A N, kf 3.

(2) The vertices of the meridian in the xz-plane interpolate the smooth cosh curve

xðzÞ ¼ r cosh 1

r
az

� �
;

with

a ¼ r
d
arccosh 1þ 1

r2
d2

1þ cos y

 !
;

where the parameter r > 0 is the waist radius of the interpolated cosh curve, and d > 0 is the
constant vertical distance between adjacent vertices of the meridian.

(3) For any given arbitrary initial value z0 A R, the profile curve has vertices of the form
ðxj; 0; zjÞ with

zj ¼ z0 þ jd;

xj ¼ xðzjÞ;

where xðzÞ is the meridian in item 2 above.

(4) The planar trapezoids of the catenoid may be triangulated independently of each
other (by Remark 2.2).

Proof. By Lemma 3.1, if we have three consecutive vertices ðxn�1; zn�1Þ, ðxn; znÞ, and
ðxnþ1; znþ1Þ along the meridian in the xz-plane, they satisfy the recursion formula

xnþ1 ¼
ðxn�1 þ 2xnÞ d̂d2 þ 2x3n

2xnxn�1 � d̂d2
; znþ1 ¼ zn þ d;ð10Þ

where d ¼ zn � zn�1 and d̂d ¼ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos y

p
. As seen in Lemma 3.1, the vertical distance be-
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tween ðxn�1; zn�1Þ and ðxn; znÞ is the same as the vertical distance between ðxn; znÞ and
ðxnþ1; znþ1Þ, so we may consider d and d̂d to be constants independent of n.

In order for the surface to exist, Lemma 3.1 requires that

2xnxn�1 > d̂d2:

This implies that all xn have the same sign, and we may assume xn > 0 for all n. Therefore
the surface is embedded. Also, as the condition 2xnxn�1 > d̂d2 implies

2xnþ1xn ¼
2xnðxn�1 þ 2xnÞ d̂d2 þ 4x4n

2xnxn�1 � d̂d2
>

2xnxn�1 d̂d
2

2xnxn�1 � d̂d2
> d̂d2;

we see, inductively, that xj is defined for all j A Z. Hence the surface is complete.

One can easily check that the function xðzÞ in the theorem also satisfies the recursion
formula (10), in the sense that if xj :¼ xðzjÞ, then these xj satisfy this recursion formula. It
only remains to note that, given two initial points ðxn�1; zn�1Þ and ðxn; znÞ with zn > zn�1,
there exists an r so that these two points lie on the curve xðzÞ with our given d and y (up to
vertical translation) if and only if 2xnxn�1 > d̂d2, as shown in Lemma 3.2. r

Remark 3.1. If we consider the symmetric example with normalized waist radius
r ¼ 1, that is if we choose ðx1; z1Þ ¼ ð1; 0Þ and ðx2; z2Þ ¼ ð1þ d̂d2; dÞ, then the recursion
formula in Equation (10) implies that

ðxn; znÞ ¼
 
1þ

Pn�1
j¼1

2 j�1an�1; j d̂d
2j; ðn� 1Þd

!
; for nf 3;

where an�1; j is defined recursively by an;m ¼ 0 if m < 0 or n < 0 or m > n, a0;0 ¼ 1, an;0 ¼ 2
if n > 0, and an;m ¼ 2an�1;m � an�2;m þ an�1;m�1 if nfmf 1. Thus

an;m ¼ nþm
2m

� �
þ nþm� 1

2m

� �
:

These an;m are closely related to the recently solved refined alternating sign matrix conjec-
ture [5].

Corollary 3.1. There exists a two-parameter family of discrete catenoids C1ðy; z0Þ
whose vertices interpolate the smooth minimal catenoid with meridian x ¼ cosh z.

Proof. The waist radius of the scaled cosh curve must be r ¼ 1. Further, we
must choose the parameter a ¼ 1 which is fulfilled if y and d are related by
1þ cos yþ d2 ¼ ð1þ cos yÞ cosh d. The o¤set parameter z0 may be chosen arbitrarily
leading to a vertical shift of the vertices along the smooth catenoid. Note that if z0 ¼ 0, we
obtain a discrete catenoid that is symmetric with respect to a horizontal reflection. r

Corollary 3.2. For each fixed r and z0, the profile curves of the discrete catenoids

Cðy; d; r; z0Þ approach the profile curve x ¼ r cosh
z

r
of a smooth catenoid uniformly in com-

pact sets of R3 as d; y ! 0.
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Proof. This is a direct consequence of the explicit representation of the meridian.
Since

lim
d!0

1

d
arccosh 1þ 1

r2
d2

1þ cos y

 !
¼

ffiffiffi
2

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos y

p ;

it follows that the profile curve of the discrete catenoid converges uniformly to the curve

x ¼ r cosh
ffiffiffi
2

p
z

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos y

p

as d ! 0. Then, as y ! 0 we approach the profile curve x ¼ r cosh z
r
. r

3.2. Discrete minimal helicoids. We continue on to the derivation of explicit discrete
helicoids, which are a natural second example of complete, embedded discrete minimal
surfaces.

In the smooth setting, there exists an isometric deformation through conjugate sur-
faces from the catenoid to the helicoid (see, for example, [16]). So, one might first try to
make a similar deformation from the discrete catenoids in Theorem 3.1 to discrete minimal
helicoids. But such a deformation is impossible in the space of edge-continuous triangula-
tions. In fact, in order to make an associate family of discrete minimal surfaces, one must
allow non-continuous triangle nets having greater flexibility, as described in [18].

Therefore, we adopt a di¤erent approach for finding discrete minimal helicoids. The
helicoids will be comprised of planar quadrilaterals, each triangulated by four coplanar
triangles, see Figures 5 and 3.2. Each quadrilateral is the star of a unique vertex, and none
of its four boundary edges are vertical or horizontal, and one pair of opposite vertices in its
boundary have the same z-coordinate, and the four boundary edges consist of two pairs of
adjacent edges so that within each pair the adjacent edges are of equal length.

First we derive an explicit representation for a particular vertex star to be minimal, as
this will help us describe helicoids:

Lemma 3.3. Let p be a point with a vertex star consisting of four vertices q1,

Figure 5. Starð pÞ is the portion considered in Lemma 3.3, and starðp 0Þ is one of the planar quadrilaterals that
comprise the discrete helicoid. Note that the vertex p 0 can be moved freely inside the planar quadrilateral starðp 0Þ

without a¤ecting minimality, by Remark 2.2. For this helicoid we have chosen x0 ¼ 0.
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q2, q3, q4 and four triangles 4i ¼ ðp; qi; qiþ1Þ, i A f1; 2; 3; 4g ðmod4Þ. We assume that
p ¼ ðu; 0; 0Þ, q1 ¼ ðb cos y; b sin y; 1Þ, q2 ¼ ðb cos y;�b sin y;�1Þ, q3 ¼ ðt cos y;�t sin y;�1Þ,

q4 ¼ ðt cos y; t sin y; 1Þ with real numbers b < u < t and y A 0;
p

2

� �
. If either

t ¼ �bð1þ 2u2 sin2 yÞ þ 2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2 sin2 y

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2 sin2 y

p
or

b ¼ �tð1þ 2u2 sin2 yÞ þ 2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 sin2 y

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2 sin2 y

p
;

then ‘p area vanishes.

Proof. Consider the conormals J1 ¼ Jðq2 � q1Þ, J2 ¼ Jðq3 � q2Þ, J3 ¼ Jðq4 � q3Þ,

J4 ¼ Jðq1 � q4Þ, where J denotes oriented rotation by angle
p

2
in the triangle 4j containing

the edge being rotated. Then

J1 ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2 sin2 y

p
; 0; 0Þ and J3 ¼ ð�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 sin2 y

p
; 0; 0Þ:

Since hJ4; ðcos y; sin y; 0Þi ¼ 0 and det
�
J4; ðcos y; sin y; 0Þ; ðu� b cos y;�b sin y;�1Þ

�
¼ 0

and jJ4j2 ¼ ðt� bÞ2, we have that the first component of J4 (and also of J2) is

uðt� bÞ sin2 yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2 sin2 y

p :

By symmetry, the second and third components of J2 and J4 are equal but opposite in sign,
hence the second and third components of J1 þ J2 þ J3 þ J4 are zero. So for the minimality
condition to hold at p, we need that the first component of J1 þ J2 þ J3 þ J4 is also zero,
that is, we need

uðt� bÞ sin2 yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2 sin2 y

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2 sin2 y

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 sin2 y

p
¼ 0;

and the solution of this with respect to b or t is as in the lemma. So, for this solution,
‘p area vanishes. r

Theorem 3.2. There exists a family of complete embedded discrete minimal helicoids,

with the connectivity as shown in Figure 5. The vertices, indexed by i; j A Z, are the points

r sinhðx0 þ jdÞ
sin y

�
cosðiyÞ; sinðiyÞ; 0

�
þ ð0; 0; irÞ;

for any given reals y A 0;
p

2

� �
and r; d A R.

Note that these surfaces are invariant under the screw motion that combines vertical
upward translation of distance 2r with rotation about the x3-axis by an angle of 2y. The
term x0 determines the o¤set of the vertices from the z-axis (if x0 ¼ 0, then the z-axis
is included in the edge set), and d determines the horizontal spacing of the vertices. The
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homothety factor is r, which equals the vertical distance between consecutive horizontal
lines of edges.

Proof. Without loss of generality, we may assume r ¼ 1. So for a given i, the ver-
tices are points on the line

�
s
�
cosðiyÞ; sinðiyÞ; i

�
j s A R

�
, for certain values of s. We choose

x0 and d so that the ( j � 2)’th vertex has s-value sj�2 ¼ sinh
�
x0 þ ð j � 2Þd

�
=sin y and the

( j � 1)’th vertex has s-value sj�1 ¼ sinh
�
x0 þ ð j � 1Þd

�
=sin y. Lemma 3.3 implies that the

j’th vertex has s-value

sj ¼ �sj�2ð1þ 2s2j�1 sin
2 yÞ þ 2sj�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2j�2 sin

2 y
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2j�1 sin
2 y

q
;

a recursion formula that is satisfied by

sj ¼ sinhðx0 þ jdÞ=sin y:

Lemma 3.3 implies a similar formula for determining sj�3 in terms of sj�2 and sj�1, with the
same solution. Finally, noting that those vertices whose star is a planar quadrilateral can be
freely moved inside that planar quadrilateral without disturbing minimality of the surface,
the theorem is proved. r

3.3. Discrete cylinders and Delaunay surfaces. Here we describe some ways one can
find discrete analogs of cylinders and Delaunay surfaces. The strategy for constructing
discrete cmc surfaces follows Definition 2.3: position vertices p so that ‘p area is a constant
multiple of ‘p vol. A simple discrete cmc cylinder is obtained by choosing positive reals a
and e and an integer kf 3, and then choosing the vertices to be

pj;l ¼
�
a cosð2pj=kÞ; a sinð2pj=kÞ; el

�
for j; l A Z. We then make a grid of rectangular faces, and cut the faces by diagonals with
endpoints pj;l and pjþ1;lþ1. This is a discrete cmc surface with H ¼ a�1

�
cosðp=kÞ

��1
. It is

interesting to note that H is independent of the value of e. See the left-hand side of Figure 6.

Figure 6. Discrete analogs of cylinders and Delaunay surfaces.

Figure 7. A triply-periodic discrete minimal surface with the symmetry of the Schwarz p-surface. Note that one

can easily construct surfaces like this with many triangles if the fundamental domains consist of only a few tri-

angles. There is an even simpler example with Schwarz p-surface symmetry whose fundamental piece has only

half as many triangles.
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Another special example is to choose positive reals a, b, e, and an integer kf 3, and
to choose the vertices to be

pj;l ¼
�
a cosð2pj=kÞ; a sinð2pj=kÞ; el

�
when j þ l is even;

and

pj;l ¼
�
b cosð2pj=kÞ; b sinð2pj=kÞ; el

�
when j þ l is odd;

for j; l A Z. We then make a grid of quadrilateral faces, and cut the faces by diagonals with
endpoints pj;l and pjþ1;lþ1 if j þ l is even, and by diagonals with endpoints pj;lþ1 and
pjþ1;l if j þ l is odd. By symmetry, it is clear that ‘pj; l area and ‘pj; l vol are parallel at each
vertex; and for each value of e, one can then show the existence of values of a and b so that
H is the same value at all vertices, using an intermediate value argument. Thus a discrete
cmc cylinder is produced. See the second surface in Figure 6.

A third example can be produced by taking the vertices to be

pj;l ¼
�
a cosð2pj=kÞ; a sinð2pj=kÞ; el

�
when l is even;

and

pj;l ¼
�
b cosð2pj=kÞ; b sinð2pj=kÞ; el

�
when l is odd;

for j; l A Z. We then make a grid of isosceles trapezoidal faces, and put an extra vertex in
each of the trapezoidal faces, and connect this extra vertex by edges to each of the four ver-
tices of the surrounding trapezoid. Placing the vertices of the surface numerically as sym-
metric as possible so that Definition 2.3 is satisfied, surfaces like the last two examples in
Figure 6 can be produced.

Remark 3.2. The 2-dimensional boundaries of the tetrahedron, octahedron, and ico-
sahedron are discrete cmc surfaces in our variational characterization, as well as in the sense
of [15]. The boundaries of the cube and dodecahedron are not discrete surfaces in our sense,
as they are not triangulated. However, by adding a vertex to the center of each face and
connecting it by edges to each vertex in the boundary of the face, we can make discrete sur-
faces, and then we can move these face-centered vertices perpendicularly to the faces to ad-
just the mean curvature.

4. Jacobi operator for smooth cmc surfaces

We now begin the study of the spectra of the second variation of cmc surfaces, and in
this section we consider smooth surfaces. In particular, here we explicitly determine the ei-
genvalues and eigenfunctions of the Jacobi operator for portions of smooth catenoids, which
will have applications to section 7. Also, here we state the well-known connection between
the second variation and the Jacobi operator in the smooth case, which motivates the com-
putations we do for the discrete case in sections 5 and 6.

Let F:M ! R3 be an immersion of a compact 2-dimensional surface M. Let ~NN be
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a unit normal vector field on FðMÞ. Let FðtÞ be a smooth variation of immersions for
t A ð�e; eÞ so that Fð0Þ ¼ F and FðtÞjqM ¼ Fð0ÞjqM for all t A ð�e; eÞ. Let ~UUðtÞ be the
variation vector field onFðtÞ. We can assume, by reparametrizingFðtÞ for nonzero t if neces-
sary, that the corresponding variation vector field at t ¼ 0 is ~UUð0Þ ¼ u~NN, with u A CyðMÞ
and ujqM ¼ 0. Let aðtÞ be the area of FðtÞðMÞ and H be the mean curvature of FðMÞ. The
first variational formula is

a 0ð0Þ :¼ d

dt
aðtÞ

����
t¼0

¼ �
Ð
M

hnH~NN; u~NNi dA;

where h ; i and dA are the metric and area form on M induced by the immersion F. We
now assume H is constant, so a 0ð0Þ ¼ �nH

Ð
M

u dA. Let VðtÞ be the volume of FðtÞðMÞ,

then V 0ð0Þ ¼
Ð
M

u dA. The variation is volume preserving if
Ð
M

h~UUðtÞ; ~NNðtÞi dAðtÞ ¼ 0 for all

t A ð�e; eÞ. In particular,
Ð
M

u dA ¼ 0 when t ¼ 0, so a 0ð0Þ ¼ 0 and FðMÞ is critical for area

amongst all volume preserving variations.

The second variation formula for volume preserving variations FðtÞ is

a 00ð0Þ :¼ d 2

dt2
aðtÞ

����
t¼0

¼
Ð
M

fj‘uj2 � ð4H 2 � 2KÞu2g dA ¼
Ð
M

uLu dA;

where K is the Gaussian curvature onM induced by F, and

L ¼ �D� 4H 2 þ 2Kð11Þ

is the Jacobi operator with Laplace-Beltrami operator D.

There are two ways that the index of a smooth cmc surface can be defined: the geo-
metric definition for IndðMÞ ¼ Ind

�
FðMÞ

�
is the maximum possible dimension of a sub-

space S of volume-preserving variation functions u A Cy
0 ðMÞ for which a 00ð0Þ < 0 for all

nonzero u A S. The analytic definition for IndUðMÞ is the number of negative eigenvalues
of the operator L, which equals the maximum possible dimension of a subspaceSU of (not
necessarily volume-preserving) variation functions u A Cy

0 ðMÞ for which
Ð
M

uLu dA < 0 for
all nonzero u A SU. The subscript U stands for ‘‘Unconstrained index’’.

We have IndUðMÞf IndðMÞf IndUðMÞ � 1, see [10]. As it is geometrically more
natural, we want to compute IndðMÞ. But IndUðMÞ is more accessible to computation than
IndðMÞ, and they di¤er only by at most 1.

In the case that we are considering minimal surfaces, as in section 7, the volume con-
straint is not necessary, and hence IndðMÞ ¼ IndUðMÞ.

4.1. Eigenvectors of L for rectangles. Consider the minimal rectangle

M ¼ fðx; y; 0Þ A R3 j 0e xe x0; 0e ye y0g

with natural coordinates ðx; yÞ A R2, and consider functions onM with Dirichlet boundary
conditions. Then L ¼ �D with eigenvalues and eigenfunctions
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lm;n ¼
m2p2

x20
þ n

2p2

y20
; fm;n ¼

2ffiffiffiffiffiffiffiffiffi
x0y0

p sin
mpx

x0
sin
npy

y0

for ðm; nÞ A Zþ 
 Zþ. Hence IndðMÞ ¼ 0.

4.2. Eigenvectors of L for catenoids. The catenoid is given as a conformal map

F: ðx; yÞ A R ! ðcos x cosh y; sin x cosh y; yÞ A R3;

with R ¼ S1 
 ½y0; y1�. The metric, Laplace-Beltrami operator, and Gauss curvature are

ds2 ¼ cosh2 y � ðdx2 þ dy2Þ; D ¼

q2

q2x
þ q2

q2y

cosh2ðyÞ
; K ¼ �cosh�4 y:

We put Dirichlet boundary conditions on the two boundary curves of R.

Lemma 4.1. The catenoid F has an L2-basis of eigenfunctions for its Jacobi operator
L ¼ �Dþ 2K of the form sinðmxÞ f ðyÞ or cosðmxÞ f ðyÞ, for m A NW f0g. The function f is
a solution of the 2nd-order ordinary di¤erential equation

fyy ¼ ðm2 � l cosh2 y� 2 cosh�2 yÞ f ;ð12Þ

with eigenvalue l A R of L and Dirichlet boundary conditions f ðy0Þ ¼ f ðy1Þ ¼ 0.

Therefore, the eigenvalues l and eigenfunctions of L are determined by the solutions of
Equation (12) with f ðy0Þ ¼ f ðy1Þ ¼ 0.

Proof. It is well known that L, with respect to the Dirichlet boundary condition, has
a discrete spectrum in R, and that, for all l A R, kerðL� lÞ is a finite dimensional space of
smooth functions. Furthermore, an orthonormal basis of the L2 space over R (with respect
to ds2) can be obtained as a set of smooth eigenfunctions of L satisfying the Dirichlet
boundary condition.

Define the symmetric operator D ¼ i q
qx
. To see that D is symmetric, for functions u

and v that are 2p-periodic in x we have

q

qx
u; v

� �
L2

þ u;
q

qx
v

� �
L2

¼
Ð
R

ðuxvþ uvxÞ cosh2 y dx dy ¼ 0;

which implies that the operator
q

qx
is skew symmetric, and so D is symmetric.

Note that DL ¼ LD, so D: kerðL� lÞ ! kerðL� lÞ. Since D is symmetric, it has a
basis of eigenfunctions in each finite dimensional space kerðL� lÞ. So we can choose a set
of functions that is simultaneously an L2-basis of eigenfunctions for both D and L. Since
the eigenfunctions of D must be of the form emxif ðyÞ with m A Z, the first part of the lemma
follows.
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An eigenfunction sinðmxÞ f ðyÞ of L satisfies

L
�
sinðmxÞ f ðyÞ

�
¼ l sinðmxÞ f ðyÞ

¼ m
2 sinðmxÞ f ðyÞ
cosh2 y

� sinðmxÞ fyyðyÞ
cosh2 y

� 2 sinðmxÞ f ðyÞ
cosh4 y

;

and a similar computation holds for an eigenfunction cosðmxÞ f ðyÞ. Hence f satisfies Equa-
tion (12). r

5. Second variation of area

We now consider the spectra of the second variation for discrete cmc surfacesTðtÞ as
in Definition 2.2, and we begin with a technical and explicit computation of the second
variation in this section.

Lemma 5.1. For a compact discrete cmc H surfaceT with vertex set V,

d 2

d 2t
areaðTÞ

����
t¼0

¼
P
p AV

hp 0; ð‘p areaÞ0 �Hð‘p volÞ0i

for any permissible variation.

Proof. Di¤erentiating Equation (2) and using Definition 2.3, we have

ðareaÞ00ð0Þ ¼
P
p AV

hp 00;H‘p voliþ
P
p AV

hp 0; ð‘p areaÞ0i:

For a minimal discrete surface, the first term on the right hand side vanishes. For a discrete
cmc surface with H3 0, the variation pðtÞ is volume preserving for all t, so by Equation (4)
we have

P
p AV

hp 0;‘p voli ¼ 0 Et)
P
p AV

hp 00;‘p voliþ hp 0; ð‘p volÞ0i ¼ 0;

proving the lemma. r

Definition 5.1. A discrete minimal or cmc surface T is stable if ðareaÞ00ð0Þf 0 for
any permissible (i.e. volume-preserving and boundary-fixing) variation.

For any permissible variation as in Equation (5) with~vv A R3n as in Equation (6), the
second variation ðareaÞ00ð0Þ is a bilinear form which can be represented by a symmetric
3n
 3n matrix Q, so that ~vv tQ~vv equals ðareaÞ00ð0Þ. We now decompose ðareaÞ00ð0Þ into the
sum of two terms

~vv tQa~vv :¼
P
p AV

hvp; ð‘p areaÞ0i and �H~vv tQV~vv :¼ �H
P
p AV

hvp; ð‘p volÞ0i;ð13Þ

for any permissible variation with variation vector field~vv. In the next two propositions we
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determine the components of the matrices Qa and QV satisfying Equation (13), thus giving
us the components of Q ¼ Qa �HQV .

Proposition 5.1. The hessian of the area function from Sh to R is a symmetric bi-

linear form with 3n
 3n matrix representation Qa, with respect to the basis fcpjg of Sh. Qa
can be considered as an n
 n grid with a 3
 3 entry Qai; j for each pair of interior vertices
pi; pj A Vint ofT, so that

~vv tQa~vv ¼
P
p AV

hvp; ð‘p areaÞ0i

for the variation vector field~vv of any permissible variation. The entry Qai; j is 0 if the vertices
pi; pj are not adjacent, and is

Qai; j ¼
1

2

P
T¼ðpi;pj ; rÞ A starðpipjÞ;

~eeij :¼pi�pj

~eeij � J tð~eeijÞ � Jð~eeijÞ �~eetij
j~eeijj2

� cot yT ~NNT � ~NNtT

for pi and pj adjacent and unequal, where yT is the interior angle of the triangle T ¼ ðpi; pj; rÞ
at r, and is

Qai; i ¼
1

4

P
T¼ðpi ;q; rÞ A starðpiÞ

jr� qj2

areaT
~NNT ~NN

t
T

when the vertices are both equal to pi. Here, ~NNT (or just ~NN ) denotes the oriented unit normal
vector of the triangle T ¼ ðp; q; rÞ.

Proposition 5.2. The hessian of the volume function from Sh to R is a symmetric bi-

linear form with 3n
 3n matrix representation QV , with respect to the basis fcpjg of Sh. QV
has a 3
 3 entry QVi; j for each pair of vertices pi; pj A Vint ofT, so that

~vv tQV~vv ¼
P
p AV

hvp; ð‘p volÞ0i

for the variation vector field ~vv of any permissible variation. We have QVi; i ¼ 0, and QVi; j ¼ 0
when the vertices pi and pj are not adjacent, and

QVi; j ¼
1

6

0 r2;3 � r1;3 r1;2 � r2;2
r1;3 � r2;3 0 r2;1 � r1;1
r2;2 � r1;2 r1;1 � r2;1 0

0
@

1
A

for adjacent unequal pi and pj, where ðpi; pj; rkÞ are the two triangles in starðpipjÞ and
rk ¼ ðrk;1; rk;2; rk;3Þ for k ¼ 1; 2, and ðpi; pj; r2Þ is properly oriented and ðpi; pj; r1Þ is not.

The proofs of these two propositions are technical computations, so we give them in
an appendix to this paper.

Corollary 5.1. If a discrete cmc surfaceT has only one interior vertex, then it is stable.
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Proof. The single interior vertex is denoted by p1, and starðp1Þ ¼T. Then Qa ¼Qa1;1
and QV ¼ QV1;1 are 3
 3 matrices. By Propositions 5.1 and 5.2, QV ¼ 0 and for any vector
up A R3 at p we have that utpQ

aup equals

1

4

P
T¼ð p;q; rÞ AT

jr� qj2

areaT
utp

~NN~NNtup ¼
1

4

P
T¼ð p;q; rÞ AT

jr� qj2

areaT
hup; ~NNi2 f 0;

so ðareaÞ00ð0Þf 0 for all permissible variations. r

6. Jacobi operator for discrete cmc surfaces

Since we know the second variation matrix Q explicitly (section 5), we are now able
to find the discrete Jacobi operator for compact discrete cmc surfacesT, analogous to L in
the smooth case (see Equation (11)). In this section, we find the correct matrix for the discrete
Jacobi operator; this matrix has the eigenvalues and eigenfunctions of the second variation
of T.

We begin with an explicit form for the L2 inner product on Sh with respect to the
basis fcp1 ; . . . ;cpng:

Lemma 6.1. The L2 norm

hu; viL2 :¼
Ð
T

hu; vi dA ¼
P
THT

Ð
T

hujT ; vjTi dA

on T for u; v A Sh has the positive definite 3n
 3n matrix representation

S ¼ ðhcpi ;cpjiL2I3
3Þ
n
i; j¼1;

so that hu; viL2 ¼~uutS~vv, where ~uu;~vv A R3n are the vector fields associated to u; v. S consists of
3
 3 blocks Si; j in an n
 n grid with

Sj; j ¼
P

T A starðpjÞ

areaT

6
� I3
3; resp: Si; j ¼

P
T A starðpi pjÞ

areaT

12
� I3
3

when pi and pj are adjacent, and Si; j ¼ 0 when pi and pj are not adjacent.

Proof. Noting that, for each triangle THT,

Ð
T

c2p dA ¼ areaT

6
;
Ð
T

cpcq dA ¼ areaT

12

for any distinct vertices p and q of T, and using Equation (7), we have that, for any two
functions u; v A Sh, hu; viL2 equals

P
pj AVint

hupj ; vpji
P

T A starðpjÞ

areaT

6
þ

P
pi AVint

adjacent to pj

hupj ; vpii
P

T A starðpi pjÞ

areaT

12

0
B@

1
CA:

Hence the 3
 3 blocks Si; j are as in the lemma. r
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We now define the discrete Jacobi operator Lh: Sh ! Sh associated to the second
variation formula for the surface (recall Equations (5), (6), and (7)).

Definition 6.1. For v A Sh with associated vector field~vv, we define the discrete Jacobi
operator Lhv on v to be the function in Sh associated to the vector field S

�1Q~vv.

LhðShÞHSh, so we can consider the eigenvalue problem for Lh. We also desire Lh
to be linear and symmetric (

Ð
T

utLhv ¼
Ð
T

vtLhu for all u; v A Sh). With these properties, the

above choice of Lh is canonical:

Proposition 6.1. Lh: Sh ! Sh is the unique linear operator so that
Ð
T

utLhv dA is sym-

metric in u and v and

Ð
T

vtLhv dA ¼~vv tQ~vv

for all v A Sh.

Proof. The map Lh is clearly linear, and

Ð
T

utLhv dA ¼ hu;LhviL2 ¼~uutSðS�1Q~vvÞ ¼~uutQ~vv

for all u; v A Sh. Hence, since Q is symmetric,
Ð
T

utLhv dA is symmetric in u and v.

Uniqueness of Lh with the above properties follows from the following:

Ð
T

utLhv dA ¼ 1

2

Ð
T

ðuþ vÞtLhðuþ vÞ dA�
Ð
T

utLhu dA�
Ð
T

vtLhv dA

 !

¼ 1

2

�
ð~uuþ~vvÞ tQð~uuþ~vvÞ �~uutQ~uu�~vv tQ~vv

�
:

Hence
Ð
T

utLhv dA is uniquely determined for all u A Sh, so Lhv is uniquely determined for

each v A Sh. r

Since S�1Q is self-adjoint with respect to the L2 inner product on Sh, all the eigen-
values of S�1Q are real.

Definition 6.2. The spectrum of the second variation of TðtÞ at t ¼ 0 is the set of
eigenvalues of S�1Q.

Remark 6.1. Another way to see that S�1Q is the correct discrete Jacobi operator is
to consider the Rayleigh quotient
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~vv tQ~vv

hv; viL2
¼~vv tSðS�1Q~vvÞ

~vv tS~vv
:

The standard minmax procedure for producing eigenvalues from the Rayleigh quotient will
produce the eigenvalues of S�1Q.

7. Approximating spectra of smooth cmc surfaces

Using our explicit form for S�1Q of the discrete Jacobi operator Lh, we can now im-
plement the procedure described in the second half of the introduction.

If a sequence of compact cmc discrete surfaces fTgyi¼1 converges (in the Sobolev H 1

norm as graphs over the limiting surface) to a smooth compact cmc surface F:M ! R3,
then standard estimates from the theory of finite elements (see, for example, [4] or [8]) imply
that the eigenvalues and eigenvectors (piece-wise linearly extended to functions) of the op-
erators Lh of the Tj converge to the eigenvalues and eigenfunctions of the Jacobi operator
L of F (convergence is in the L2 norm for the eigenfunctions).

For the first two examples here—a planar square and rotationally symmetric portion
of a catenoid—we know the approximating discrete minimal surfaces exactly, and we know
the eigenvalues and eigenfunctions of L for the smooth minimal surfaces exactly, so we can
check that convergence of the eigenvalues and eigenfunctions does indeed occur.

In the final two examples—symmetric portions of a trinoid and a Costa surface—the
spectra of the smooth minimal surfaces is unknown, so we see estimates for the eigenvalues
and eigenfunctions for the first time. Our experiments confirm the known values 3 and 5 re-
spectively for the indexes of these unstable surfaces, and additionally show us the directions
of variations that reduce area. Thus we have approximations for maximal spaces of varia-
tion vector fields on the smooth minimal surfaces for which the associated variations reduce
area. (For the approximating discrete surfaces in these examples, we do not have an explicit
form; however, the theory of finite elements applies and we can still expect convergence of
the eigenvalues and eigenfunctions in L2 norm, if we choose the discrete aproximations so
that they converge in H 1 norm to the smooth minimal surfaces.)

7.1. The flat minimal square. Considering the square M ¼ f0e xe p; 0e ye pg
included in R3 as a smooth minimal surface, the eigenvalues and eigenfunctions of L are

mm;n ¼ m2 þ n2 and fm;n ¼
2

p
sinðmxÞ sinðnyÞ for m; n A Zþ (section 4).

Now we consider the discrete minimal surfaceT that isM with a regular square n
 n

grid. In each subsquare of dimension
p

n

 p

n
, we draw an edge from the lower left corner to

the upper right corner, producing a discrete minimal surface with 2n2 congruent triangles

with angles
p

4
,
p

4
, and

p

2
.
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For this T, S�1Q has no negative eigenvalues, as expected, since the smooth mini-
mal square is stable. However, we must take tangential motions into account in the dis-
crete case, and we find that (when writing the eigenvalues in increasing order) the first two-
thirds of the eigenvalues are 0 and their associated eigenvectors are entirely tangent to the
surface. The final one-third of the eigenvalues are positive, with eigenvectors that are ex-
actly perpendicular to the surface. Examples of these perpendicular vector fields are shown
in Figure 8 for n ¼ 15. (There are 196 interior vertices, and so there are 588 eigenvalues lj
of S�1Q and l0 ¼ � � � ¼ l391 ¼ 0 and lj > 0 when j A ½392; 587�.) The eigenvectors shown
in these figures and their eigenvalues are close to those of the smooth operator L of M.
We have l392 ¼ 2:022Am1;1, l393 ¼ 5:094Am1;2, l394 ¼ 5:148Am2;1, l395 ¼ 8:347Am2;2,
l396 ¼ 10:434Am1;3, l397 ¼ 10:445Am3;1.

7.2. Discrete minimal catenoids. By Corollary 3.2, we know that the discrete mini-
mal catenoids converge to smooth catenoids as the meshes are made finer. Hence the eigen-
values and eigenvectors of the discrete catenoids converge to the eigenvalues and eigen-
functions of the smooth catenoid. For the discrete catenoids with relatively fine meshes, we
find that two-thirds of the eigenvectors are approximately tangent to the surface, and the
remaining ones are approximately perpendicular. The approximately perpendicular ones
(considered as functions which are multiplied by unit normal vectors) and their eigenvalues
converge to the eigenfunctions and eigenvalues of the smooth catenoid (computed in sec-
tion 4).

Consider the example shown in the Figures 9 and 10. Here the catenoid has
9
 14 ¼ 126 interior vertices, so the matrix S�1Q has dimension 378
 378. The first ei-
genvalue of this matrix is l0A�0:542 and lj > 0 for all j A ½1; 377�, as expected, since the
smooth complete catenoid has index 1 ([7]). Note that l0 is very close to the negative eigen-
value for the smooth case, described in the caption of Figure 9 (the closest matching smooth

Figure 8. The eigenvectors of the discrete square with n ¼ 15 associated to the first six positive eigenvalues

described in section 7.1. Note that these eigenvectors closely resemble linear combinations of eigenfunctions of

the Laplacian on the smooth square in section 4.1, for example the first two resemble sinðxÞ sinðyÞ and
sinðxÞ sinð2yÞ � sinð2xÞ sinðyÞ and the last resembles sinð3xÞ sinðyÞ þ sinðxÞ sinð3yÞ.
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catenoid portion satisfies y1 ¼ �y0 ¼ 1:91). The first eigenfunction in the discrete case (also
Figure 9) is also very close to the first eigenfunction in the smooth case.

7.3. Discrete minimal trinoids and Costa surfaces. Since the trinoid has index 3, we
find that approximating discrete surfaces with relatively fine meshes have 3 negative eigen-
values. And we can look at the corresponding eigenvector fields (which estimate the eigen-
functions in the smooth case), shown in Figure 11. For the approximating discrete trinoid
in Figure 11, the first four eigenvalues are approximately �3:79;�1:31;�1:31; 0:014, so we
indeed have 3 negative eigenvalues and the second eigenvalue has multiplicity 2.

Figure 9. On the left is the eigenvector associated to the negative eigenvalue l0A�0:542 of an unstable discrete
catenoid. In the middle we have also shown this R3n-vector field on the domain grid (where each R3-vector is

vertical with length equal to that of the corresponding R3-vector in the R3n-eigenvector field on the discrete

catenoid), to show the close resemblance to the eigenfunction on the right for the smooth case. The function f ðyÞ
(computed numerically) on the right is the eigenfunction when m ¼ 0 for the catenoid FðRÞ in Section 4 with

y1 ¼ �y0 ¼ 1:91. The corresponding eigenvalue is lA�0:54, and all other eigenvalues are positive.

Figure 10. Two-thirds of the eigenvectors are approximately tangential to the surface. For example, in the first

row we show the R3n-eigenvector fields associated to the eigenvalues l1, l2, and l3 (whose values are just slightly

greater than 0). One-third of the eigenvectors are approximately perpendicular to the surface, and the second row

shows such eigenvector fields, associated to the eigenvalues l147, l171, l204, and l210. The final row shows projected

versions of the eigenvectors in the second row, for use in comparing with the eigenfunctions of the smooth case

considered in section 4. These projected versions are made just as in Figure 9.
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Similarly, the genus 1 Costa surface has index 5, and approximating discrete surfaces
with relatively fine meshes have 5 negative eigenvalues. See Figure 12.

A. Appendix

Here we give the proofs of Propositions 5.1 and 5.2. For notating area and volume,
we shall now frequently use ‘‘a’’ and ‘‘V ’’ instead of ‘‘area’’ and ‘‘vol’’, for brevity. We will
also use jT j or jðp; q; rÞj to signify the area of a triangle T ¼ ðp; q; rÞ.

Proof of Proposition 5.1. If ~vv and ~ww are variation vector fields for any pair of per-
missible variations, we can define a bilinear form Qað~vv; ~wwÞ :¼

1

2

P
T¼ð p;q; rÞ AT

� hvp 
 wr � vr 
 wp þ vq 
 wp � vp 
 wq þ vr 
 wq � vq 
 wr; ~NNi

þ 1

2jT j hvp 
 ðr� qÞ þ vq 
 ðp� rÞ þ vr 
 ðq� pÞ;

wp 
 ðr� qÞ þ wq 
 ðp� rÞ þ wr 
 ðq� pÞi

� 1

2jT j hvp 
 ðr� qÞ þ vq 
 ðp� rÞ þ vr 
 ðq� pÞ; ~NNi

� hwp 
 ðr� qÞ þ wq 
 ðp� rÞ þ wr 
 ðq� pÞ; ~NNi:

Figure 11. Variation vector fields for three area-reducing variations of a discrete approximation of a compact

portion of a trinoid. The lower row has overhead views of these variation vector fields, as well as an overhead view

of the variation vector field associated to the fourth (and first positive) eigenvalue. (The direction of the eigen-

vector field in the second overhead view has been reversed from the corresponding figure just above it.)
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Using

~NN 0 ¼ ðq� pÞ 
 ðr 0 � p 0Þ þ ðq 0 � p 0Þ 
 ðr� pÞ
2jT j

�
~NN

2jT j hðq� pÞ 
 ðr 0 � p 0Þ þ ðq 0 � p 0Þ 
 ðr� pÞ; ~NNi;

it follows that Qað~vv;~vvÞ ¼
P
p AV

hvp; ð‘paÞ0i. Qa is clearly bilinear, and the last two terms

of Qa are obviously symmetric in ~vv and ~ww. The first term is also symmetric in ~vv and ~ww,
since vp 
 wr � vr 
 wp ¼ wp 
 vr � wr 
 vp, vq 
 wp � vp 
 wq ¼ wq 
 vp � wp 
 vq, and
vr 
 wq � vq 
 wr ¼ wr 
 vq � wq 
 vr.

Figure 12. The first five eigenvector fields (whose corresponding eigenvalues are the five negative ones) for a

discrete approximation of a compact portion of a genus 1 Costa surface.
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It only remains to determine an explicit form for Qa. For a given interior vertex
p, suppose ~vv and ~ww are nonzero only at p, that is, that ~vv t ¼ ð0 t; . . . ; 0 t; vtp; 0 t; . . . ; 0 tÞ and
~wwt ¼ ð0 t; . . . ; 0 t;wtp; 0 t; . . . ; 0 tÞ. Then

Qað~vv; ~wwÞ ¼ Qappðvp;wpÞ

¼ 1

4

P
T¼ð p;q; rÞ A starð pÞ

1

jT j hvp 
 ðr� qÞ;wp 
 ðr� qÞi

� 1

jT j hvp 
 ðr� qÞ; ~NNihwp 
 ðr� qÞ; ~NNi

¼ 1

4

P
T¼ð p;q; rÞ A starð pÞ

1

jT j v
t
p

�
jr� qj2I � ðr� qÞðr� qÞt

�
�
ðr� qÞ 
 ~NN

��
ðr� qÞ 
 ~NN

�t�
wp

¼ 1

4

P
T¼ð p;q; rÞ A starð pÞ

jr� qj2

jT j vtpð~NN~NNtÞwp;

hence Qapp is of the form in the proposition.

Now suppose ~vv t ¼ ð0 t; . . . ; 0 t; vtp; 0 t; . . . ; 0 tÞ and ~wwt ¼ ð0 t; . . . ; 0 t;wtq; 0 t; . . . ; 0 tÞ for
some given unequal interior vertices p and q. If p and q are not connected by some edge
of the surface, then clearly Qað~vv; ~wwÞ ¼ 0, so assume that p and q are adjacent. Note that
starðpqÞ then contains two triangles ðp; q; rjÞ for j ¼ 1; 2 and precisely one of them is prop-
erly oriented. Noting also that the normal vector ~NN of a triangle changes sign when the
orientation of the triangle is reversed, we have the following equation:

Figure 13. The first eigenvector field for a discrete approximation of a compact portion of an Enneper surface.

The associated first eigenvalue is negative and is the only negative eigenvalue that is not approximately zero,

corresponding to the fact that the smooth Enneper surface has index 1. Those other negative (approximately zero)

eigenvalues have corresponding eigenvector fields that appear roughly tangent to the surface.
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Qað~vv; ~wwÞ ¼ Qapqðvp;wqÞ ¼
1

2

P
T¼ð p;q; rkÞ;k¼1;2

hvp 
 wq; ~NNi

þ 1

2jT j hvp
ðrk� qÞ;wq
ðp� rkÞi�
1

2jT j hvp
 ðrk� qÞ; ~NNihwq
ðp� rkÞ; ~NNi

¼ 1

4

P2
k¼1

1

jT j v
t
p

�
ðp� rkÞðq� rkÞt � ðq� rkÞðp� rkÞ t � hp� rk; q� rki~NN~NNt

�
wq:

For a triangle ðp; q; rÞ, one can check that

ðp� rÞðq� rÞt � ðq� rÞðp� rÞ t ¼ 2jðp; q; rÞj
jp� qj2

�
ðp� qÞ

�
Jðp� qÞ

� t � Jðp� qÞðp� qÞ t�;
so Qapq is as in the proposition. r

Proof of Proposition 5.2.

P
p AV

hp 0; ð‘pVÞ0i ¼
P
p AVint

vp;
1

6

P
ð p;q; rÞ A starð pÞ

ðq
 rÞ0
* +

¼ 1

6

P
p AVint

P
q adjacent to p;q3p

hvp 
 vq; r2 � r1i
 !

;

where ðp; q; r2Þ is the properly oriented triangle in starðpqÞ, and ðp; q; r1Þ is the non-properly
oriented triangle in starðpqÞ. Thus we have

P
p AV

hp 0; ð‘pVÞ0i ¼
P
p AVint

P
q adjacent to p;q3p

vtpðQVpqÞvq

 !
;

where QVpq is a 3
 3 matrix defined as in the proposition. Thus QVpp ¼ 0, and the fact that
QVpq is skew-symmetric in p and q implies Q

V is symmetric. r
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