Geometry of elliptic Painlevé equation

and its Lax formalism

Yasuhiko Yamada (Kobe Univ.)
2008/Dec/20 at Kyushu Univ.

Abstract.

A geometric formulation of Lax pairs for the elliptic
Painlevé equation is presented.
[Ref: arXiv:0811.1796]

Aim.

The Lax formulation of the Painlevé equation is important problem. For discrete cases, it has been studied by Jimbo-Sakai, Boalch, Arinkin-Borodin, Rains Explicit construction of the Lax pair is, however, a very difficult problem in particular for the elliptic case. We will develop a geometric method to construct the Lax equations explicitly.

Plan.

1. Differential Painlevé equations
2. Discrete Painlevé equations
3. Examples of the Lax equations
4. Lax formalism of elliptic Painlevé equations (New)

1. Differential Painlevé equations

We will review the geometric aspects of the classical Painlevé equation P_{VI}.

The sixth Painlevé equation P_{VI} :

$$
\begin{aligned}
& \frac{d^{2} q}{d t^{2}}=\frac{1}{2}\left(\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-t}\right)\left(\frac{d q}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{q-t}\right) \frac{d q}{d t} \\
& \quad+\frac{q(q-1)(q-t)}{t^{2}(t-1)^{2}}\left\{\alpha-\beta \frac{t}{q^{2}}+\gamma \frac{t-1}{(q-1)^{2}}+\left(\frac{1}{2}-\delta\right) \frac{t(t-1)}{(q-t)^{2}}\right\} .
\end{aligned}
$$

Hamiltonian form:

$$
\begin{gathered}
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q}, \\
H=\frac{1}{t(t-1)}\left[q(q-1)(q-t) p^{2}+\left\{\left(a_{1}+2 a_{2}\right)(q-1) q\right.\right. \\
\left.\left.+a_{3}(t-1) q+a_{4} t(q-1)\right\} p+a_{2}\left(a_{1}+a_{2}\right)(q-1)\right], \\
\alpha=\frac{a_{1}^{2}}{2}, \quad \beta=\frac{a_{4}^{2}}{2}, \quad \gamma=\frac{a_{3}^{2}}{2}, \quad \delta=\frac{a_{0}^{2}}{2} .
\end{gathered}
$$

Homogeneous coordinates $(x: y: z)$:

$$
q=\frac{z}{z-x}, \quad p=\frac{y(z-x)}{x z}
$$

The curve $H=\mu$ becomes the cubic pencil:

$$
\begin{gathered}
F(x, y, z)+\mu G(x, y, z)=0 \\
F=-(t-1) y^{2} z+a_{3}(t-1) y z^{2}-a_{4} t x^{2} y+a_{2}\left(a_{1}+a_{2}\right) x^{2} z \\
+t x y^{2}+\left(a_{1}+2 a_{2}+a_{3}-a_{3} t+a_{4} t\right) x y z \\
G=t(t-1) x z(z-x)
\end{gathered}
$$

$H=\mu$ curves:

Intersections of $F=0$ and $G=0$:

$$
\begin{array}{lll}
(0: 0: 1), & \left(1,-a_{2}, 1\right), & (1,0,0), \\
\left(0, a_{3}, 1\right), & \left(1,-a_{1}-a_{2}, 1\right), & \left(1, a_{4}, 0\right),
\end{array}
$$

and

$$
\left((t-1) \varepsilon: 1: t \varepsilon-a_{0} t \varepsilon^{2}\right), \quad\left(1, \varepsilon, \varepsilon^{2}\right)
$$

Vanishing condition at these 9 points $\Rightarrow H=\mu$ curves. (autonomous case)

This gives a geometric characterization of H.
[Kajiwara-Masuda-Noumi-Ohta-Y, FE 48 (2005) 147-160]

Space of initial conditions [Okamoto]:
9 points blown-up of $\mathbb{P}^{2} \backslash\left\{\right.$ divisors $\left.D_{4}^{(1)}\right\}$.

2. Discrete Painlevé equations

We will recall the discrete Painlevé equations and their geometric formulation.

The second order discrete Painlevé equations [H.Sakai].

EII. $E_{8}^{(1)}$

Mul. $\quad E_{8}^{(1)} \rightarrow E_{7}^{(1)} \rightarrow E_{6}^{(1)} \rightarrow D_{5}^{(1)} \rightarrow A_{4}^{(1)} \rightarrow A_{2+1}^{(1)} \rightarrow A_{1+1}^{(1)} \rightarrow A_{1}^{(1)} \rightarrow \mathcal{D}_{6}$

(Mul.) q-Painlevé equations:

(EII.) Elliptic Painlevé equation:
Cubic curve passing through 9 points on \mathbb{P}^{2}.
Curve of degree $(2,2)$ passing through 8 points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

$q-P_{\mathrm{VI}}$ equation: [Jimbo-Sakai(96)]

$$
\begin{gathered}
T:\left(f, g, a_{i}, b_{i}\right) \mapsto\left(\dot{f}, \dot{g}, \dot{a_{i}}, \dot{b_{i}}\right) \\
\dot{f} f=\frac{\left(\dot{g}-b_{1}\right)\left(\dot{g}-b_{2}\right)}{\left(\dot{g}-b_{3}\right)\left(\dot{g}-b_{4}\right)} a_{3} a_{4} \\
\dot{g} g=\frac{\left(f-a_{1}\right)\left(f-a_{2}\right)}{\left(f-a_{3}\right)\left(f-a_{4}\right)} b_{3} b_{4} \\
\left(\begin{array}{ccc}
\dot{a_{1}}, & \dot{a_{2}}, & \dot{a_{3}}, \\
\dot{a_{4}} \\
\dot{b_{1}}, & \dot{b_{2}}, & \dot{b_{3}}, \\
\dot{b_{4}}
\end{array}\right)=\left(\begin{array}{lll}
q a_{1}, & q a_{2}, & a_{3}, \\
q b_{1} \\
q & q b_{2}, & b_{3}, \\
b_{4}
\end{array}\right) \\
q=\frac{a_{3} a_{4} b_{1} b_{2}}{a_{1} a_{2} b_{3} b_{4}}
\end{gathered}
$$

$D_{5}^{(1)}$-symmetry, $A_{3}^{(1)}$-configuration.

$$
\begin{aligned}
& (f, g)=\left(0, b_{1} / q\right),\left(0, b_{2} / q\right),\left(\infty, b_{3}\right),\left(\infty, b_{4}\right), \\
& \left(a_{1}, 0\right), \quad\left(a_{2}, 0\right),\left(a_{3}, \infty\right),\left(a_{4}, \infty\right) . \\
& g=\infty \\
& g=0 \\
& f=0 \\
& f=\infty
\end{aligned}
$$

Elliptic Painlevé equation ($E_{8}^{(1)}$-symmetry) on $\mathbb{P}^{1} \times \mathbb{P}^{1}$
Example. $\dot{P}=T_{12}(P)$
Parameters P_{1}, \ldots, P_{8} : On the fixed curve C_{0} of degree $(2,2)$ passing through P_{1}, \ldots, P_{8},

$$
\begin{aligned}
& \dot{P}_{1}+P_{2}+\cdots+P_{8}=0, \quad \dot{P}_{1}+\dot{P}_{2}=P_{1}+P_{2} \\
& \dot{P}_{i}=P_{i}, \quad(i \neq 1,2)
\end{aligned}
$$

Dependent variable P : On the moving curve C of degree $(2,2)$ passing through P_{2}, \ldots, P_{8}, P,

$$
\dot{P}_{1}+\dot{P}=P_{2}+P
$$

Explicit form of the equation :

$$
\dot{f}=\frac{F_{1}(f, g)}{F_{0}(f, g)}, \quad \dot{g}=\frac{G_{1}(f, g)}{G_{0}(f, g)},
$$

where $\lambda F_{0}+\mu F_{1}=0$ [or $\lambda G_{0}+\mu G_{1}=0$] is the pencil of rational curves of degree $(5,4)$ [or $(4,5)$] with base points at $\left(P_{1}, P_{2}, \ldots, P_{8}\right)$ of multiplicity $(0,4,2,2, \ldots, 2)$.

3. Examples of the Lax equations

Examples of Lax equations for $P_{\mathrm{VI}}, q-P_{\mathrm{VI}_{\mathrm{I}}}, q-E_{6}^{(1)}$ and their geometry are discussed.

Lax pair for $P_{\text {VI }}$: [R.Fuchs(1907)]

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial z^{2}}+\left(\frac{1-a_{4}}{z}+\frac{1-a_{3}}{z-1}+\frac{1-a_{0}}{z-t}-\frac{1}{z-q}\right) \frac{\partial y}{\partial z} \\
& +\left\{\frac{a_{2}\left(a_{1}+a_{2}\right)}{z(z-1)}-\frac{t(t-1) H}{z(z-1)(z-t)}+\frac{q(q-1) p}{z(z-1)(z-q)}\right\} y=0, \\
& \frac{\partial y}{\partial t}+\frac{z(z-1)(q-t)}{t(t-1)(q-z)} \frac{\partial y}{\partial z}+\frac{z p(q-1)(q-t)}{t(t-1)(z-q)} y=0 .
\end{aligned}
$$

Monodromy preserving deformation on $\mathbb{P}^{1} \backslash\{0,1, t, \infty\}$.

The Lax pair for q - P_{VI} [Jimbo-Sakai(96)]

$$
\begin{gathered}
\left\{\frac{\left(a_{1}-z\right)\left(a_{2}-z\right)}{a_{1} a_{2}(z-f)} T_{z}-\left(c_{0}+c_{1} z+\frac{c_{2} z}{z-f}+\frac{c_{3} z}{z-q f}\right)\right. \\
\left.\quad+\frac{a_{1} a_{2}\left(z-q a_{3}\right)\left(z-q a_{4}\right)}{b_{3} b_{4} q^{2}(z-q f)} T_{z}^{-1}\right\} y=0, \\
\left\{q g T_{z}-a_{1} a_{2}+z(z-f) T^{-1}\right\} y=0 .
\end{gathered}
$$

Where $y=y(z), T_{z} y=y(q z), T y=\dot{y}(z)$ and

$$
\begin{aligned}
& c_{0}=-\frac{a_{1} a_{2}}{f}\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}\right), \quad c_{1}=\frac{1}{q}\left(\frac{1}{b_{3}}+\frac{1}{b_{4}}\right), \\
& c_{2}=\frac{\left(f-a_{1}\right)\left(f-a_{2}\right)}{q f g}, \quad c_{3}=\frac{\left(f-a_{3}\right)\left(f-a_{4}\right) g}{b_{3} b_{4} f} .
\end{aligned}
$$

Other cases? Experiments using Padé approach.
$f(z) \rightarrow \frac{N(z)}{D(z)} \rightarrow$ differential (or difference) equations whose fundamental solution is $\{N(z), f(z) D(z)\}$.

Appropriate input function $f(z)$ gives Lax equations.

$$
\begin{aligned}
& \frac{\left(1 / c_{1}, c_{2} / a_{2}\right)_{j}}{\left(1 / a_{2}, a_{1} / c_{1}\right)_{j}}=\frac{P_{m}\left(q^{-j}\right)}{Q_{n}\left(q^{-j}\right)}, \quad(j=0,1, \ldots, m+n) \\
& P_{m}(z)=\sum_{i=0}^{m} A_{i} \frac{(z)_{i}}{\left(q a_{2} z\right)_{i}}, \quad Q_{n}(z)=\sum_{i=0}^{n} B_{i} \frac{(z)_{i}}{\left(q c_{1} z\right)_{i}}
\end{aligned}
$$

A version of Padé interpolation with prescribed poles and zeros [Zhedanov-Spridonov].
\rightarrow Lax pair for $q-E_{6}^{(1)}$-Painlevé equation:

$$
\begin{aligned}
& \left\{K_{1}\left(T_{z}-1\right)+K_{2}+K_{3}\left(T_{z}^{-1}-1\right)\right\} y=0 \\
& \left\{C_{1} T_{a_{2}}+C_{2}+C_{3}\left(T_{z}^{-1}-1\right)\right\} y=0
\end{aligned}
$$

$$
\begin{aligned}
& K_{1}=(1-z)\left(c_{2}-a_{2} q z\right)\left(1-c_{1} q^{n+1} z\right)\left(1-a_{2} q^{m+1} z\right)(z-f) \\
& K_{2}=z\left(1-q^{m}\right)\left(1-a_{2} q\right)\left(\bigcirc+\bigcirc z+\bigcirc z^{2}\right) \\
& K_{3}=\left(1-a_{2} z\right)\left(a_{1}-c_{1} z\right)\left(1-a_{2} q z\right)\left(1-q^{m+n}\right)(q z-f) \\
& C_{1}=\bigcirc\left(a_{1}-c_{2}\right)\left(1-a_{2} q\right)\left(c_{2}-a_{2} q z\right)\left(1-a_{2} q^{m+1} z\right)(z-f) \\
& C_{2}=\left(1-a_{2} q z\right)\left(\bigcirc+\bigcirc z+\bigcirc z^{2}\right) \\
& C_{3}=a_{2} q\left(1-c_{2} q^{n}\right)\left(1-a_{2} z\right)\left(a_{1}-c_{1} z\right)\left(1-q^{m+n} z\right)\left(1-a_{2} q z\right)
\end{aligned}
$$

Where \bigcirc are some rational functions in f, g variables.

The coefficients \bigcirc are complicated functions of f, g
\simeq The coefficient H is a complicated function of p, q Recall that H has a geometric characterization. Question:

Can we characterize these coefficients \bigcirc (or the Lax equation itself) by some geometric conditions?

The coefficients \bigcirc are complicated functions of f, g
\simeq The coefficient H is a complicated function of p, q Recall that H has a geometric characterization. Question:

Can we characterize these coefficients \bigcirc (or the Lax equation itself) by some geometric condition?

Yes!
P_{VI} case: The Lax equation

$$
\bigcirc y^{\prime \prime}+\bigcirc y^{\prime}+\bigcirc y=0
$$

is characterized as the nodal curve of degree 4 in \mathbb{P}^{2} passing through the $9+3+2$ points:

$$
\begin{aligned}
& (0: 0: 1), \quad\left(1:-a_{2}: 1\right), \quad(1: 0: 0), \\
& \left(0: a_{3}: 1\right),\left(1:-a_{1}-a_{2}: 1\right),\left(1: a_{4}: 0\right), \\
& \quad\left((t-1) \varepsilon: 1: t \varepsilon-a_{0} t \varepsilon^{2}\right)_{\left(\varepsilon^{3}=0\right)} \\
& \quad\left((z-1) \varepsilon: 1: z \varepsilon+z \varepsilon^{2}\right)_{\left(\varepsilon^{3}=0\right)} \\
& \left(\frac{1}{z+\varepsilon}: \frac{y^{\prime}(z+\varepsilon)}{y(z+\varepsilon)}: \frac{1}{z+\varepsilon-1}\right)_{\left(\varepsilon^{2}=0\right)}
\end{aligned}
$$

$q-P_{\mathrm{VI}}$ case: The Lax equation

$$
\left\{\bigcirc T_{z}+\bigcirc+\bigcirc T_{z}^{-1}\right\} y=0
$$

is characterized as the degree $(3,2)$ curve in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ passing through the $8+2+2$ points:

$$
\begin{gathered}
\left(0, b_{1} / q\right),\left(0, b_{2} / q\right),\left(\infty, b_{3}\right),\left(\infty, b_{4}\right) \\
\left(a_{1}, 0\right),\left(a_{2}, 0\right),\left(a_{3}, \infty\right),\left(a_{4}, \infty\right) \\
(z, \infty),(z / q, 0) \\
\left(z, \frac{a_{1} a_{2}}{q} \frac{y(z)}{y(q z)}\right),\left(\frac{z}{q}, \frac{a_{1} a_{2}}{q} \frac{y(z / q)}{y(z)}\right),
\end{gathered}
$$

$q-E_{6}^{(1)}$ case: The Lax equation

$$
\left\{\bigcirc T_{z}+\bigcirc+\bigcirc T_{z}^{-1}\right\} y=0
$$

is characterized as the degree $(3,2)$ curve passing through $8+2+2$ points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

$$
\begin{aligned}
\left(q^{-m-n}, 0\right), & \left(\frac{a_{1}}{c_{1}}, 0\right), \quad\left(0, a_{2}\right), \quad\left(0, \frac{a_{1} a_{2}}{c_{2}}\right) \\
\left(u, \frac{1}{u}\right), & u=q^{-1}, a_{2} q^{m} c_{1} q^{n}, \frac{a_{2}}{c_{2}} \\
& (q z, 0), \quad\left(\frac{1}{z}, z\right)
\end{aligned}
$$

and

$$
\left(u, G_{u}\right), \quad \frac{y(u, t)}{y(u / q, t)}=\frac{\left(1-a_{2} u\right) G_{u}}{a_{2}\left(1-u G_{u}\right)}, \quad u=z, q z
$$

$q-E_{6}^{(1)}$ Lax curves:

Experiments using the Padé approach,
\rightarrow similar structure for $q-E_{7}^{(1)}, q-E_{8}^{(1)}$.
Taking a hint from these, one can formulate the general Lax equations including the elliptic case.

4. Lax formalism of elliptic Painlevé equation

Lax equations for the elliptic Painlevé equation are described explicitly in terms of the point configurations.

- $C_{0}: \varphi_{2,2}(f, g)=0:$ Elliptic curve on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- $P_{z}=\left(f_{z}, g_{z}\right):$ Parametrization of $C_{0} . \quad z \in \mathbb{C} / \Gamma$ is the Jacobian parameter which plays the role of the independent variable of the Lax equation.
- $P_{i}=\left(f_{i}, g_{i}\right)=P_{u_{i}}(i=1, \ldots, 8): 8$ points on C_{0}.

$$
\delta=\sum_{i=1}^{8} u_{i}(\neq 0)
$$

- Involution: $P=(f, g) \leftrightarrow P^{*}=\left(f, g^{*}\right)$ on C_{0}.
- We will consider the time evolution $T=T_{12}$ such that

$$
T\left(u_{1}\right)=u_{1}-\delta, \quad T\left(u_{2}\right)=u_{2}+\delta, \quad T\left(u_{i}\right)=u_{i} \quad(i \neq 1,2)
$$

Definition. The Lax equations

$$
\begin{aligned}
& L_{1}=\left\{\bigcirc T_{z}+\bigcirc+\bigcirc T_{z}^{-1}\right\} y=0 \\
& L_{2}=\left\{\bigcirc T+\bigcirc+\bigcirc T_{z}^{-1}\right\} y=0
\end{aligned}
$$

are defined as the curves on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of degree $(3,2)$ and passing through the following $11(+1)$ points:

$$
\begin{array}{lll}
L_{1}: & P_{1}, \ldots, P_{8}, P_{z},\left(P_{z-\delta}^{*}\right), & Q_{z}, Q_{z-\delta} \\
L_{2}: & P_{2}, \ldots, P_{8}, P_{z+u_{1}-u_{2}}, P_{z-\delta}^{*},\left(P_{2}\right), & Q_{2}, Q_{z-\delta}
\end{array}
$$

where

$$
\begin{array}{ll}
Q_{z} & : f=f_{z}, \quad\left(g-g_{z}\right) y(z)=\left(g-g_{z}^{*}\right) y(z+\delta) \\
Q_{z-\delta} & : f=f_{z-\delta}, \quad\left(g-g_{z-\delta}\right) y(z-\delta)=\left(g-g_{z-\delta}^{*}\right) y(z), \\
Q_{2} & : f=f_{2}, \quad\left(g-g_{2}\right) y(z)=\left(g-g_{2}^{*}\right) T y(z)
\end{array}
$$

From equations $L_{1}=0, L_{2}=0$, one can derive other 3-term equations $L_{3}=0, \cdots, L_{6}=0$:

The last one L_{6} is the 3 term equation for $\dot{y}=T y$:

$$
L_{6}=\left\{\bigcirc T_{z}+\bigcirc+\bigcirc T_{z}^{-1}\right\} \dot{y}=0
$$

which should be compared with $L_{1}=0$.

The equation L_{6} is too huge (of degree $(7,6)$). However, by analysing its geometric characterization, we can prove

Theorem(Compatibility). The equation $L_{6}=0$ is equivalent to the time evolution $T\left(L_{1}\right)=0$.

This means that the huge equation $L_{6}=0$ shrinks down to $L_{1}=0$, when it is written in terms of \dot{f}, \dot{g}.

The proof of the Theorem is based on some classical (antique) algebraic geometry of plane curves. (arXiv:0811.1796)

Concluding Remark.

- It is known that the geometry (the Okamoto space) determines the Painlevé equation itself (Takano's theory). Sakai showed that this is also true for discrete cases. Now, we can say that the geometry knows also the Lax equations.
- The Lax equation has been a source of various non-trivial results for the Painlevé equations. Since our result is concrete enough, it may serve for further study. It will be interesting if we can say anything about the solutions y or (f, g) from the geometry.

Thank you.

