Mathematica OX server Manual

Edition : auto generated by oxgentexi on May 9, 2024

OpenXM.org

@overfullrule=0pt

[ << ] [ < ] [ Up ] [ > ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1 Mathematica Functions

This chapter describes interface functions for Mathematica ox server ox_math. These interface functions are defined in the file ‘mathematica.rr’. You need to load the file before using the interface functions. by the command load("m")$. The file ‘mathematica.rr’ is at ‘$(OpenXM_HOME)/lib/asir-contrib’.

Note: ox_reset does not work.

[258] load("mathematica.rr")$
m Version 19991113. mathematica.start, mathematica.tree_to_string, mathematica.n_Eigenvalues
[259] mathematica.start();
ox_math has started.
ox_math: Portions copyright 2000 Wolfram Research, Inc. 
See OpenXM/Copyright/Copyright.mathlink  for details.
0
[260] mathematica.n_Eigenvalues([[1,2],[4,5]]);
[-0.464102,6.4641]

Mathematica is the trade mark of Wolfram Research Inc. This package requires Mathmatica Version 3.0, so you need Mathematica to make this package work. See http://www.wolfram.com. The copyright and license agreement of the mathlink is put at OpenXM/Copyright/Copyright.mathlink Note that the licence prohibits to connect to a mathematica kernel via the internet.

Author of ox_math: Katsuyoshi Ohara.


[ << ] [ < ] [ Up ] [ > ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1 Functions


[ << ] [ < ] [ Up ] [ > ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1.1 mathematica.start

mathematica.start()

:: Start ox_math on the localhost.

return

Integer

P = mathematica.start()
Reference

ox_launch


[ << ] [ < ] [ Up ] [ > ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1.2 mathematica.tree_to_string

mathematica.tree_to_string(t)

:: translates Mathematica tree data t into a string that can be understandable by asir as far as possible.

return

String

t

List

[267] mathematica.start();
0
[268] ox_execute_string(0,"Expand[(x-1)^2]");
0
[269] A=ox_pop_cmo(0);  
[Plus,1,[Times,-2,x],[Power,x,2]]
[270] mathematica.tree_to_string(A);
(1)+((-2)*(x))+((x)^(2))
[271] eval_str(@);
x^2-2*x+1
[259] mathematica.tree_to_string(["List",1,2]);
[1 , 2]
[260] mathematica.tree_to_string(["Plus",2,3]);
(2)+(3)
[261] mathematica.tree_to_string(["Complex",2.3,4.55]);
mathematica.complex(2.3 , 4.55)
[362] mathematica.tree_to_string(["Plus",["Complex",1.2,3.5],1/2]);
(mathematica.complex(1.2 , 3.5))+(1/2)
[380] eval_str(@);
(1.7+3.5*@i)
Reference

ox_pop_cmo, eval_str, mathematica.rtomstr


[ << ] [ < ] [ Up ] [ > ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1.3 mathematica.rtomstr

mathematica.rtomstr(t)

:: translate the object t into a string that can be understandable by Mathematica as far as possible.

return

String

t

Object

[259] mathematica.rtomstr([1,2,3]);
{1,2,3}
[260] mathematica.rtomstr([[1,x,x^2],[1,y,y^2]]);
{{1,x,x^2},{1,y,y^2}}

Let us see one more example. The following function mathematica.inverse(M) outputs the inverse matrix of the matrix M by calling ox_math. It translates asir matrix M into a Mathematica expression by r_tostr(M) and makes Mathematica compute the inverse matrix of M by ox_execute_string.

def inverse(M) {
  P = 0;
  A = mathematica.rtomstr(M);
  ox_execute_string(P,"Inverse["+A+"]");
  B = ox_pop_cmo(B);
  C = mathematica.tree_to_string(B);
  return(eval_str(C));
}

[269] M=[[1,x,x^2],[1,y,y^2],[1,z,z^2]];
[[1,x,x^2],[1,y,y^2],[1,z,z^2]]
[270] A=mathematica.inverse(M)$
[271] red(A[0][0]);
(z*y)/(x^2+(-y-z)*x+z*y)
Reference

ox_execute_string, ToExpression(Mathematica), mathematica.tree_to_string


[ << ] [ < ] [ Up ] [ > ] [ >> ]         [Top] [Contents] [Index] [ ? ]

Index

Jump to:   M  
Index Entry  Section

M
mathematica.rtomstr 1.1.3 mathematica.rtomstr
mathematica.start 1.1.1 mathematica.start
mathematica.tree_to_string 1.1.2 mathematica.tree_to_string

Jump to:   M  

[Top] [Contents] [Index] [ ? ]

Table of Contents


[Top] [Contents] [Index] [ ? ]

Short Table of Contents


[Top] [Contents] [Index] [ ? ]

About This Document

This document was generated on May 9, 2024 using texi2html 5.0.

The buttons in the navigation panels have the following meaning:

Button Name Go to From 1.2.3 go to
[ << ] FastBack Beginning of this chapter or previous chapter 1
[ < ] Back Previous section in reading order 1.2.2
[ Up ] Up Up section 1.2
[ > ] Forward Next section in reading order 1.2.4
[ >> ] FastForward Next chapter 2
[Top] Top Cover (top) of document  
[Contents] Contents Table of contents  
[Index] Index Index  
[ ? ] About About (help)  

where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:


This document was generated on May 9, 2024 using texi2html 5.0.