Paper

A study of a Fuchsian system of rank 8 in 3 variables and the ordinary differential equations as its restrictions, by Akihito Ebisu, Yoshishige Haraoka, Masanobu Kaneko, Hiroyuki Ochiai, Takeshi Sasaki and Masaaki Yoshida, to appear in Osaka Journal of Mathematics
arXiv 2005.04465, math.CA
doi number will be listed later

Explanation of data

The following data are included:

- Equation $Z_{3}(A)$ is given in Section 1 as a system of differential equations $\left\{E_{1}, E_{2}, E_{3}\right\}$ with parameters a_{0}, a_{1}, a_{2} and a_{3}. The parameters A_{i} are introduced by the relations

$$
a_{0}=2 A_{0}, a_{i}=A_{i}^{2}-\left(A_{0}-1\right)^{2} \quad i=1,2,3 .
$$

The pfaffian form ω defined in Subsection 1.1 as $d e=\omega e$ is given as the 8×8-matrix M whose components are written as $M[i, j], 1 \leq i, j \leq 8$. They are saved in the file Z3Mmatrix.txt, where $d t i$ denotes the 1 -form $d t_{i}$.

- The ordinary differential equation of rank 8 denoted as $Z_{\Delta 8}(A)$ is written as

$$
z 8=C 0 * z 0+C 1 * z 1+C 2 * z 2+C 3 * z 3+C 4 * z 4+C 5 * z 5+C 6 * z 6+C 7 * z 7,
$$

where $z i=d^{i} z / d t^{i}$. Let F be the least common multiple of the denominators of the coefficients $C i$; then, it is expressed as

$$
F=64(2 t+1)^{13}(t-1)^{13}(t+1)^{24}(t+2)^{17} D t .
$$

The coefficients and $D t$ are saved in the file ode8mpl.txt.

- The ordinary differential equation of rank 6 denoted as $Z_{\Delta 6}(A)$ is written as

$$
z 6+D 5 * z 5+D 4 * z 4+D 3 * z 3+D 2 * z 2+D 1 * z 1+D 0 * z 0=0
$$

where the coefficients $D i$ are saved in the file ode6mpl.txt. We use the parameters a_{0}, a_{1}, and $p 4$, where $a_{2}=a_{3}=p$.

- The ordinary differential equation of rank 4 denoted as $Z_{\Delta 4}(A)$ is written as

$$
z 4+E 3 * z 3+E 2 * z 2+E 1 * z 1+E 0 * z 0=0
$$

where the coefficients $E i$ are saved in the file ode4mpl.txt. We use the parameters a_{0}, $p=a_{1}=a_{2}=a_{3}$.

- Let $z\left(t_{1}, t_{2}, t_{3}\right)$ be any solution of $Z_{3}(A)$. If it is regarded as a function only of t_{1}, it satisfies an ordinary differential equation of rank 8 as
$P 8 * z 8+P 7 * z 7+P 6 * z 6+P 5 * z 5+P 4 * z 4+P 3 * z 3+P 2 * z 2+P 1 * z 1+P 0 * z 0=0$
where $z i=d^{i} z / d t^{i}, t=t_{1}$, which we call the section of $Z_{3}(A)$ relative to t_{1}. The coefficients $P 8$ is of the form

$$
(t+1)^{2}(t-1)^{2}\left(1-t^{2}-t_{2}^{2}-t_{3}^{2}+2 t_{2} t_{3} t\right)^{4} P(t)
$$

for a polynomial $P(t)$ of degree 16. Concrete representation of coefficients is not easy and we give in Z3sectiondata.txt the coefficients $P i$ when $t_{2}=5$ and $t_{3}=3$.

- Equation $Z_{2}(A)$ given in Section 3 is written $d e_{6}=\omega_{6} e_{6}$, where the Pfaffian form ω_{6} is a 6×6-matrix 1 -forms $N_{1} d t_{1}+N_{2} d t_{2}$. The matrices N_{1} and N_{2} are saved in the file Z2Nmatrix.txt.
- Any solution $z\left(t_{1}, t_{2}\right)$ of $Z_{2}(A)$ regarded as a function of $t=t_{1}$ satisfies an ordinary differential equation of the form

$$
Q 6 * z 6+Q 5 * z 5+Q 4 * z 4+Q 3 * z 3+Q 2 * z 2+Q 1 * z 1+Q 0 * z 0=0
$$

where $z i=d^{i} z / d t^{i}, t=t_{1}$, which we call the section of $Z_{2}(A)$ relative to t_{1}. The coefficients $Q 6$ is of the form

$$
(t+1)^{2}(t-1)^{2}\left(t-t_{2}\right)^{4} Q(t)
$$

for a polynomial $Q(t)$ of degree 6. The coefficients $Q i$ are given in Z2sectiondata.txt.

