Paper

A study of a Fuchsian system of rank 8 in 3 variables and the ordinary differential equations as its restrictions, by Akihito Ebisu, Yoshishige Haraoka, Masanobu Kaneko, Hiroyuki Ochiai, Takeshi Sasaki and Masaaki Yoshida, to appear in Osaka Journal of Mathematics

arXiv 2005.04465, math.CA doi number will be listed later

Explanation of data

The following data are included:

• Equation $Z_3(A)$ is given in Section 1 as a system of differential equations $\{E_1, E_2, E_3\}$ with parameters a_0, a_1, a_2 and a_3 . The parameters A_i are introduced by the relations

$$a_0 = 2A_0, \ a_i = A_i^2 - (A_0 - 1)^2 \quad i = 1, 2, 3.$$

The pfaffian form ω defined in Subsection 1.1 as $de = \omega e$ is given as the 8×8 -matrix M whose components are written as M[i, j], $1 \leq i, j \leq 8$. They are saved in the file **Z3Mmatrix.txt**, where dti denotes the 1-form dt_i .

• The ordinary differential equation of rank 8 denoted as $Z_{\Delta 8}(A)$ is written as

$$z8 = C0 * z0 + C1 * z1 + C2 * z2 + C3 * z3 + C4 * z4 + C5 * z5 + C6 * z6 + C7 * z7,$$

where $zi = d^i z/dt^i$. Let F be the least common multiple of the denominators of the coefficients Ci; then, it is expressed as

$$F = 64(2t+1)^{13}(t-1)^{13}(t+1)^{24}(t+2)^{17}Dt.$$

The coefficients and Dt are saved in the file **ode8mpl.txt**.

• The ordinary differential equation of rank 6 denoted as $Z_{\Delta 6}(A)$ is written as

$$z6 + D5 * z5 + D4 * z4 + D3 * z3 + D2 * z2 + D1 * z1 + D0 * z0 = 0,$$

where the coefficients Di are saved in the file **ode6mpl.txt**. We use the parameters a_0 , a_1 , and p_4 , where $a_2 = a_3 = p$.

• The ordinary differential equation of rank 4 denoted as $Z_{\Delta 4}(A)$ is written as

z4 + E3 * z3 + E2 * z2 + E1 * z1 + E0 * z0 = 0,

where the coefficients Ei are saved in the file **ode4mpl.txt**. We use the parameters a_0 , $p = a_1 = a_2 = a_3$.

• Let $z(t_1, t_2, t_3)$ be any solution of $Z_3(A)$. If it is regarded as a function only of t_1 , it satisfies an ordinary differential equation of rank 8 as

$$P8 * z8 + P7 * z7 + P6 * z6 + P5 * z5 + P4 * z4 + P3 * z3 + P2 * z2 + P1 * z1 + P0 * z0 = 0$$

where $zi = d^i z/dt^i$, $t = t_1$, which we call the section of $Z_3(A)$ relative to t_1 . The coefficients P8 is of the form

$$(t+1)^2(t-1)^2(1-t^2-t_2^2-t_3^2+2t_2t_3t)^4P(t)$$

for a polynomial P(t) of degree 16. Concrete representation of coefficients is not easy and we give in **Z3sectiondata.txt** the coefficients Pi when $t_2 = 5$ and $t_3 = 3$.

- Equation $Z_2(A)$ given in Section 3 is written $de_6 = \omega_6 e_6$, where the Pfaffian form ω_6 is a 6×6 -matrix 1-forms $N_1 dt_1 + N_2 dt_2$. The matrices N_1 and N_2 are saved in the file **Z2Nmatrix.txt**.
- Any solution $z(t_1, t_2)$ of $Z_2(A)$ regarded as a function of $t = t_1$ satisfies an ordinary differential equation of the form

Q6 * z6 + Q5 * z5 + Q4 * z4 + Q3 * z3 + Q2 * z2 + Q1 * z1 + Q0 * z0 = 0

where $z_i = d^i z/dt^i$, $t = t_1$, which we call the section of $Z_2(A)$ relative to t_1 . The coefficients Q6 is of the form

$$(t+1)^2(t-1)^2(t-t_2)^4Q(t)$$

for a polynomial Q(t) of degree 6. The coefficients Qi are given in **Z2sectiondata.txt**.