version 1.30, 1999/12/21 06:59:42 |
version 1.38, 1999/12/21 19:01:45 |
|
|
|
|
\title{¥¿¥¤¥È¥ë̤Äê} |
\title{¥¿¥¤¥È¥ë̤Äê} |
\author{ |
\author{ |
Á°Àî ¤Þ¤µ¤Ò¤Ç, |
Á°Àî ¾½¨\thanks{¿À¸ÍÂç³ØÍý³ØÉô¿ô³Ø²Ê}, |
ÌîϤ Àµ¹Ô, |
ÌîϤ Àµ¹Ô\thanks{ÉÙ»ÎÄ̸¦µæ½ê}, |
¾®¸¶ ¸ùǤ, \\ |
¾®¸¶ ¸ùǤ\thanks{¶âÂôÂç³ØÍý³ØÉô·×»»²Ê³Ø²Ê}, \\ |
±üë ¹¬É×, |
±üë ¹¬É× |
¹â»³ ¿®µ£, |
%\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²ÊÇî»Î²ÝÄøÁ°´ü²ÝÄø¿ô³ØÀ칶}, |
|
\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê¿ô³ØÀ칶}, |
|
¹â»³ ¿®µ£\thanks{¿À¸ÍÂç³ØÍý³ØÉô¿ô³Ø¶µ¼¼}, |
Åļ ¶³»Î |
Åļ ¶³»Î |
|
%\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²ÊÇî»Î²ÝÄø¸å´ü²ÝÄø¾ðÊó¥á¥Ç¥£¥¢²Ê³ØÀ칶·×»»¥·¥¹¥Æ¥à¹ÖºÂ} |
|
\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê¾ðÊó¥á¥Ç¥£¥¢²Ê³ØÀ칶} |
} |
} |
\date{1999ǯ11·î25Æü} |
\date{1999ǯ11·î25Æü} |
%\pagestyle{empty} |
%\pagestyle{empty} |
Line 22 OpenXM ¤Ï¿ô³Ø¥×¥í¥»¥¹´Ö¤Ç¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤¿¤á¤Îµ¬Ì |
|
Line 26 OpenXM ¤Ï¿ô³Ø¥×¥í¥»¥¹´Ö¤Ç¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤¿¤á¤Îµ¬Ì |
|
³Ø¥×¥í¥»¥¹¤ò¸Æ¤Ó½Ð¤·¤Æ·×»»¤ò¹Ô¤Ê¤Ã¤¿¤ê¡¢Â¾¤Î¥Þ¥·¥ó¤Ç·×»»¤ò¹Ô¤Ê¤ï¤»¤¿¤ê¤¹ |
³Ø¥×¥í¥»¥¹¤ò¸Æ¤Ó½Ð¤·¤Æ·×»»¤ò¹Ô¤Ê¤Ã¤¿¤ê¡¢Â¾¤Î¥Þ¥·¥ó¤Ç·×»»¤ò¹Ô¤Ê¤ï¤»¤¿¤ê¤¹ |
¤ë¤³¤È¤¬ÌÜŪ¤Ç¤¢¤ë¡£¤Ê¤ª¡¢ OpenXM ¤È¤Ï Open message eXchange protocol |
¤ë¤³¤È¤¬ÌÜŪ¤Ç¤¢¤ë¡£¤Ê¤ª¡¢ OpenXM ¤È¤Ï Open message eXchange protocol |
for Mathematics ¤Îά¤Ç¤¢¤ë¡£ |
for Mathematics ¤Îά¤Ç¤¢¤ë¡£ |
|
|
|
|
OpenXM ¤Î³«È¯¤Îȯü¤ÏÌîϤÀµ¹Ô¤È¹â»³¿®µ£¤Ë¤è¤ê¡¢ asir ¤È kan/sm1 ¤ò |
OpenXM ¤Î³«È¯¤Îȯü¤ÏÌîϤÀµ¹Ô¤È¹â»³¿®µ£¤Ë¤è¤ê¡¢ asir ¤È kan/sm1 ¤ò |
Áê¸ß¤Ë¸Æ¤Ó½Ð¤¹µ¡Ç½¤ò¼ÂÁõ¤·¤¿¤³¤È¤Ç¤¢¤ë¡£ |
Áê¸ß¤Ë¸Æ¤Ó½Ð¤¹µ¡Ç½¤ò¼ÂÁõ¤·¤¿¤³¤È¤Ç¤¢¤ë¡£ |
\footnote{¤³¤ÎÃÊÍîɬÍ×?} |
%\footnote{¤³¤ÎÃÊÍîɬÍ×?} |
|
|
ȯü¤È¤Ê¤Ã¤¿ asir ¤È kan/sm1 ¤Ç¤Î¼ÂÁõ»þ¤Ë¤Ï¡¢ |
ȯü¤È¤Ê¤Ã¤¿ asir ¤È kan/sm1 ¤Ç¤Î¼ÂÁõ»þ¤Ë¤Ï¡¢ |
¤ª¸ß¤¤¤ËÁê¼ê¦¤Î¥³¥Þ¥ó¥Éʸ»úÎó¤òÁ÷¤Ã¤Æ¤¤¤¿¡£ |
¤ª¸ß¤¤¤ËÁê¼ê¦¤Î¥³¥Þ¥ó¥Éʸ»úÎó¤òÁ÷¤Ã¤Æ¤¤¤¿¡£ |
¤³¤ÎÊýË¡¤Ï¸½ºß¤Î OpenXM µ¬Ìó¤Ç¤â·Á¤òÊѤ¨¤Æ²Äǽ¤Ç¤Ï¤¢¤ë¤¬¡¢ |
¤³¤ÎÊýË¡¤Ï¸½ºß¤Î OpenXM µ¬Ìó¤Ç¤â·Á¤òÊѤ¨¤Æ²Äǽ¤Ç¤Ï¤¢¤ë¤¬¡¢ |
Line 45 OpenXM µ¬ÌóÆȼ«¤Î¥Ç¡¼¥¿·Á¼°¤Ç¤¢¤ë CMO ·Á¼°(Common Math |
|
Line 48 OpenXM µ¬ÌóÆȼ«¤Î¥Ç¡¼¥¿·Á¼°¤Ç¤¢¤ë CMO ·Á¼°(Common Math |
|
|
|
\section{OpenXM ¤Î·×»»¥â¥Ç¥ë} |
\section{OpenXM ¤Î·×»»¥â¥Ç¥ë} |
|
|
{\Huge ¤³¤ÎÀá¤Ç¤Ï·×»»¥â¥Ç¥ë¤ÎÏäò¤·¤Ê¤±¤ì¤Ð¤¤¤±¤Þ¤»¤ó¤è¡¢Åļ·¯} |
{\Huge ¤³¤ÎÀá¤Ç¤Ï·×»»¥â¥Ç¥ë¤ÎÏäò¤·¤Ê¤±¤ì¤Ð¤¤¤±¤Þ¤»¤ó} |
|
|
OpenXM µ¬Ìó¤Ç¤Î¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤Ï¥µ¡¼¥Ð¤È¥¯¥é¥¤¥¢¥ó¥È¤Î´Ö¤Ç¹Ô¤Ê¤ï¤ì¤ë¡£ |
OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡£ |
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤È²¾Äꤵ¤ì¤Æ¤ª¤ê¡¢¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ |
¤½¤·¤Æ¡¢¤½¤Î¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤Ï¥µ¡¼¥Ð¤È¥¯¥é¥¤¥¢¥ó¥È¤Î´Ö¤Ç¹Ô¤Ê¤ï¤ì¤ë¡£ |
¤±¼è¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Ï¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤ÎÃæ¤Ë |
¥¯¥é¥¤¥¢¥ó¥È¤«¤é¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢ |
¤Ï¥µ¡¼¥Ð¤Ë¹Ô¤Ê¤ï¤»¤¿¤¤Æ°ºî¤ËÂбþ¤¹¤ë¥Ç¡¼¥¿¤¬¤¢¤ê¡¢¤³¤Î¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤Ã |
¥µ¡¼¥Ð¤«¤é¥¯¥é¥¤¥¢¥ó¥È¤¬¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤ë¤³¤È¤Ë¤è¤Ã¤Æ |
¤¿¥µ¡¼¥Ð¤Ï¤½¤ì¤ËÂбþ¤¹¤ëÆ°ºî¤ò¹Ô¤Ê¤¦¤³¤È¤¬´üÂÔ¤µ¤ì¤Æ¤¤¤ë¡£¤¿¤À¤·¡¢¥µ¡¼¥Ð |
·×»»¤Î·ë²Ì¤¬ÆÀ¤é¤ì¤ë¡£ |
¤ÏÌ¿Îᤵ¤ì¤Ê¤¤¸Â¤ê²¿¤âÆ°ºî¤ò¹Ô¤Ê¤ª¤¦¤È¤Ï¤·¤Ê¤¤¡£ |
|
|
|
|
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤È²¾Äꤵ¤ì¤Æ¤ª¤ê¡¢ |
|
¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ¤±¼è¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Ï¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£ |
|
¤¿¤À¤·¡¢OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤ÎÃæ¤Ë¤Ï¥µ¡¼¥Ð¤Ë¹Ô¤Ê¤ï¤»¤¿¤¤Æ°ºî¤Ë |
|
Âбþ¤¹¤ë¥Ç¡¼¥¿¤¬¤¢¤ê¡¢ |
|
¤³¤Î¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤Ã¤¿¥µ¡¼¥Ð¤Ï¤½¤ì¤ËÂбþ¤¹¤ëÆ°ºî¤ò |
|
¹Ô¤Ê¤¦¤³¤È¤¬´üÂÔ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
¤·¤«¤·¡¢¥µ¡¼¥Ð¤ÏÌ¿Îᤵ¤ì¤Ê¤¤¸Â¤ê²¿¤âÆ°ºî¤ò¹Ô¤Ê¤ª¤¦¤È¤Ï¤·¤Ê¤¤¡£ |
|
¤³¤Î¤¿¤á¡¢¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¤Î¾õÂÖ¤òµ¤¤Ë¤»¤º¤Ë¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢ |
|
°ìö¥á¥Ã¥»¡¼¥¸¤òÁ÷ÉÕ¤·½ª¤¨¤ë¤È |
|
¤¢¤È¤Ï¥µ¡¼¥Ð¤ØÁ÷¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Î·ë²Ì¤ò |
|
¥µ¡¼¥Ð¤«¤éÂԤĤ³¤È¤Ê¤·¤Ë¼¡¤ÎÆ°ºî¤Ë°Ü¤ë¤³¤È¤¬¤Ç¤¤ë¡£ |
|
|
|
|
\section{OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤Î¹½Â¤} |
\section{OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤Î¹½Â¤} |
|
|
{\Huge ¤³¤ÎÀá¤Ç¤Ï¹½Â¤¤ÎÏäò¤·¤Ê¤±¤ì¤Ð¤¤¤±¤Þ¤»¤ó¤è¡¢Åļ·¯} |
%{\Huge ¤³¤ÎÀá¤Ç¤Ï¹½Â¤¤ÎÏäò¤·¤Ê¤±¤ì¤Ð¤¤¤±¤Þ¤»¤ó} |
|
|
OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç¤¢¤ê¡¢¼¡¤Î¤è¤¦¤Ê¹½Â¤¤ò»ý¤Ä¡£ |
OpenXM ¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç¤¢¤ê¡¢ |
\begin{verbatim} |
¼¡¤Î¤è¤¦¤Ê¹½Â¤¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¥Ø¥Ã¥À ¥Ü¥Ç¥£ |
|
\end{verbatim} |
\begin{tabular}{|c|c|} \hline |
¥Ø¥Ã¥À¤ÎŤµ¤Ï8¥Ð¥¤¥È¤Ç¤¢¤ë¤ÈÄê¤á¤é¤ì¤Æ¤¤¤ë¡£¥Ü¥Ç¥£¤ÎŤµ¤Ï¥á¥Ã¥»¡¼¥¸¤´ |
¥Ø¥Ã¥À & \hspace{10mm} ¥Ü¥Ç¥£ \hspace{10mm} \\ \hline |
¤È¤Ë°Û¤Ê¤ë($0$¤Ç¤â¤è¤¤)¡£ |
\end{tabular} |
¥Ø¥Ã¥À¤Ï¼¡¤ÎÆó¤Ä¤Î¾ðÊó¤ò»ý¤Ä¡£ |
|
|
¥Ø¥Ã¥À¤ÎŤµ¤Ï 8 ¥Ð¥¤¥È¤Ç¤¢¤ë¤ÈÄê¤á¤é¤ì¤Æ¤¤¤ë¡£ |
|
¥Ü¥Ç¥£¤ÎŤµ¤Ï¥á¥Ã¥»¡¼¥¸¤´¤È¤Ë°Û¤Ê¤Ã¤Æ¤¤¤ë¤¬¡¢ |
|
Ťµ¤Ï $0$ ¤Ç¤â¤è¤¤¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë |
|
%¤Ê¤ª¡¢¤¹¤Ù¤Æ¤Î¥á¥Ã¥»¡¼¥¸¤Ë ¥Ü¥Ç¥£¤¬É¬ÍפȤ¤¤¦¤ï¤±¤Ç¤Ï¤Ê¤¯¡¢ |
|
%¥Ü¥Ç¥£¤Î¤Ê¤¤¥á¥Ã¥»¡¼¥¸¤â OpenXM µ¬Ìó¤Ë¤Ï¸ºß¤¹¤ë¤³¤È¤Ë |
|
%Ãí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
|
|
|
¥Ø¥Ã¥À¤Ï¼¡¤ÎÆó¤Ä¤Î¾ðÊó¤ò»ý¤Ã¤Æ¤¤¤ë¡£ |
\begin{enumerate} |
\begin{enumerate} |
\item Á°È¾¤Î4¥Ð¥¤¥È¡£¥¿¥°¤È¸Æ¤Ð¤ì¡¢¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤òɽ¤ï¤¹¼±Ê̻ҤǤ¢¤ë¡£ |
\item Á°È¾¤Î 4 ¥Ð¥¤¥È¤Ë¤¢¤ë¡¢¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤òɽ¤ï¤¹¼±Ê̻ҡ£ |
\item ¸åȾ¤Î4¥Ð¥¤¥È¡£¥á¥Ã¥»¡¼¥¸¤Ë¤Ä¤±¤é¤ì¤¿Ä̤·ÈÖ¹æ¤Ç¤¢¤ë¡£ |
¥¿¥°¤È¸Æ¤Ð¤ì¤ë¡£ |
|
\item ¸åȾ¤Î 4 ¥Ð¥¤¥È¤Ë¤¢¤ë¡¢¥á¥Ã¥»¡¼¥¸¤Ë¤Ä¤±¤é¤ì¤¿Ä̤·Èֹ档 |
\end{enumerate} |
\end{enumerate} |
|
¤½¤ì¤¾¤ì¤Î 4 ¥Ð¥¤¥È¤Ï 32 ¥Ó¥Ã¥ÈÀ°¿ô¤È¤ß¤Ê¤µ¤ì¤Æ°·¤ï¤ì¤ë¡£ |
|
¤³¤Î¾ì¹ç¤ËÍѤ¤¤é¤ì¤ëÀ°¿ô¤Îɽ¸½ÊýË¡¤ÎÀâÌÀ¤Ë¤Ä¤¤¤Æ¤Ï¸å½Ò¤¹¤ë¤¬¡¢ |
|
´ðËÜŪ¤Ëɽ¸½ÊýË¡¤Ï¤¤¤¯¤Ä¤«¤ÎÁªÂò»è¤«¤éÁª¤Ö¤³¤È¤¬²Äǽ¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
|
¤Þ¤¿¤½¤ÎÁªÂò¤ÏÄÌ¿®Ï©¤Î³ÎΩ»þ¤Ë°ìÅÙ¤À¤±¤Ê¤µ¤ì¤ë¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
|
|
¤½¤ì¤¾¤ì¤Î4¥Ð¥¤¥È¤Ï32¥Ó¥Ã¥ÈÀ°¿ô¤È¤ß¤Ê¤µ¤ì¤Æ½èÍý¤µ¤ì¤ë¡£ |
%{\Huge °Ê²¼¡¢½ñ¤Ä¾¤·} |
¤³¤Î¾ì¹ç¤ËÍѤ¤¤é¤ì¤ëÀ°¿ô¤Îɽ¸½ÊýË¡¤Ë¤Ä¤¤¤Æ¤Ï¸å½Ò¤¹¤ë¤¬¡¢´ðËÜŪ¤Ë |
|
ɽ¸½ÊýË¡¤Ï¤¤¤¯¤Ä¤«¤ÎÁªÂò»è¤«¤éÁª¤Ö¤³¤È¤¬²Äǽ¤Ç¤¢¤ê¡¢ |
|
¤Þ¤¿ÁªÂò¤ÏÄÌ¿®Ï©¤Î³ÎΩ»þ¤Ë°ìÅÙ¤À¤±¤Ê¤µ¤ì¤ë¤³¤È¤ËÃí°Õ¤·¤Æ¤ª¤³¤¦¡£ |
|
|
|
{\Huge °Ê²¼¡¢½ñ¤Ä¾¤·¤Æ¤Í¡£} |
¥Ü¥Ç¥£¤ÎÃæ¿È¤Ï³Æ¥Ç¡¼¥¿·Á¼°¤Ë¤è¤Ã¤Æ |
|
¤½¤ì¤¾¤ìÆÈΩ¤Ë·è¤á¤é¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤â¤·¡¢ OpenXM µ¬Ìó¤Ç¤Þ¤ÀÄêµÁ¤µ¤ì¤Æ¤¤¤Ê¤¤¥Ç¡¼¥¿·Á¼°¤ò»È¤¤¤¿¤¤¾ì¹ç¤Ï¡¢ |
|
¥á¥Ã¥»¡¼¥¸¤Î¥Ø¥Ã¥À¤Î¥¿¥°¤ò¤Þ¤À»È¤ï¤ì¤Æ¤Ê¤¤À°¿ôÃͤËÀßÄꤷ¡¢ |
|
¥Ü¥Ç¥£¤Ë¥Ç¡¼¥¿¤òËä¤á¹þ¤á¤Ð¤è¤¤¡£ |
|
¤Ê¤ª¡¢¤³¤Î¤è¤¦¤ÊÍÑÅӤˤâ»È¤¨¤ë¤è¤¦¤Ë¡¢ |
|
¥¿¥°¤Ë¤Ï¥·¥¹¥Æ¥à¸ÇͤÎɽ¸½ÍѤ˿侩¤µ¤ì¤Æ¤¤¤ëÀ°¿ô¤ÎÈϰϤ¬¤¢¤ë¡£ |
|
|
¥Ü¥Ç¥£¤ÎÃæ¤Î¥Ç¡¼¥¿¤¬¤É¤Î¤è¤¦¤Ë³ÊǼ¤µ¤ì¤Æ¤¤¤ë¤«¤Ï |
%¥µ¡¼¥Ð¤ËÂФ¹¤ëÆ°ºî¤ËÂбþ¤·¤¿¥Ç¡¼¥¿¤Ï SM ·Á¼°¤È¤·¤ÆÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£ |
³Æ¥Ç¡¼¥¿·Á¼°¤¬¤½¤ì¤¾¤ìÆÈΩ¤Ë·è¤á¤é¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
%SM ·Á¼°°Ê³°¤Î¥Ç¡¼¥¿¤Ç¤Ï¡¢¥µ¡¼¥Ð¤Ï¼õ¤±¼è¤Ã¤¿¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤà |
¤â¤·¡¢ OpenXM µ¬Ìó¤Ç¥á¥Ã¥»¡¼¥¸¤Î¤ä¤ê¤È¤ê¤ò¹Ô¤Ê¤¤¤¿¤¤¤¬¡¢ |
%°Ê³°¤ÎÆ°ºî¤ò¤·¤Ê¤¤¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¤Þ¤Àµ¬Ìó¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤Ê¤¤¥Ç¡¼¥¿·Á¼°¤ò»È¤¤¤¿¤¤¾ì¹ç¤Ï¡¢ |
%¤Ä¤Þ¤ê¡¢ SM ·Á¼°¤Î¥Ç¡¼¥¿¤¬¥Ç¡¼¥¿¤ò¼õ¤±¼è¤ë°Ê³°¤ÎÆ°ºî¤ò |
¥¿¥°¤ò¤Þ¤À»È¤ï¤ì¤Æ¤Ê¤µ¤½¤¦¤ÊÃÍ |
%¥µ¡¼¥Ð¤Ë¹Ô¤Ê¤ï¤»¤ëÍ£°ì¤Î¥Ç¡¼¥¿·Á¼°¤Ç¤¢¤ë¡£ |
(¥·¥¹¥Æ¥à¸ÇͤÎɽ¸½¤Î¤¿¤á¤Ë¿ä¾©¤µ¤ì¤Æ¤¤¤ëÃͤ¬¤¢¤ë) |
|
¤ËÀßÄꤷ¡¢ ¥Ü¥Ç¥£¤ÎÉôʬ¤Ë¥Ç¡¼¥¿¤òËä¤á¹þ¤á¤Ð¤è¤¤¡£ |
|
¤Ê¤ª¡¢¤¹¤Ù¤Æ¤Î¥á¥Ã¥»¡¼¥¸¤Ë ¥Ü¥Ç¥£¤¬É¬ÍפȤ¤¤¦¤ï¤±¤Ç¤Ï¤Ê¤¯¡¢ |
|
¥Ü¥Ç¥£¤Î¤Ê¤¤¥á¥Ã¥»¡¼¥¸¤â OpenXM µ¬Ìó¤Ë¤Ï¸ºß¤¹¤ë¤³¤È¤Ë |
|
Ãí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
|
|
|
¥µ¡¼¥Ð¤ËÂФ¹¤ëÆ°ºî¤ËÂбþ¤·¤¿¥Ç¡¼¥¿¤Ï SM ·Á¼°¤È¤·¤ÆÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
SM ·Á¼°°Ê³°¤Î¥Ç¡¼¥¿¤Ç¤Ï¡¢¥µ¡¼¥Ð¤Ï¼õ¤±¼è¤Ã¤¿¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤà |
|
°Ê³°¤ÎÆ°ºî¤ò¤·¤Ê¤¤¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤Ä¤Þ¤ê¡¢ SM ·Á¼°¤Î¥Ç¡¼¥¿¤¬¥Ç¡¼¥¿¤ò¼õ¤±¼è¤ë°Ê³°¤ÎÆ°ºî¤ò |
|
¥µ¡¼¥Ð¤Ë¹Ô¤Ê¤ï¤»¤ëÍ£°ì¤Î¥Ç¡¼¥¿·Á¼°¤Ç¤¢¤ë¡£ |
|
¤³¤Î¥Ç¡¼¥¿¤ò¼õ¤±¼è¤ë°Ê³°¤ÎÆ°ºî¤ÎÃæ¤Ë¤Ï¡¢ |
|
¥Ç¡¼¥¿¤Ë¤Ê¤ó¤é¤«¤Î²Ã¹©¤ò»Ü¤¹Æ°ºî¤âÆþ¤Ã¤Æ¤¤¤ë¡£ |
|
¤³¤Î¥Ç¡¼¥¿¤Ë¤Ê¤ó¤é¤«¤Î²Ã¹©¤ò»Ü¤¹Æ°ºî¤ÎÃæ¤Ë¤Ï |
|
¿ô³ØŪ¤Ê±é»»¤ò¹Ô¤Ê¤¦Æ°ºî¤â´Þ¤Þ¤ì¤Æ¤¤¤ë¡£ |
|
°Ê¸å¡¢¥Ç¡¼¥¿¤Ë¤Ê¤ó¤é¤«¤Î²Ã¹©¤ò»Ü¤¹Æ°ºî¤Î¤³¤È¤ò·×»»¤È¸Æ¤Ö¤³¤È¤Ë¤¹¤ë¡£ |
|
|
|
\section{OpenXM ¤Î·×»»¤Î¿Ê¹ÔÊýË¡} |
\section{OpenXM ¤Î·×»»¤Î¿Ê¹ÔÊýË¡} |
|
|
OpenXM ¤Ë¤ª¤±¤ë·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤Î¤³¤È¤Ç¤¢¤ë¡£´û¤Ë·×»»¥â¥Ç¥ë¤ÎÀá |
OpenXM ¤Ë¤ª¤±¤ë·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤Î¤³¤È¤Ç¤¢¤ë¡£´û¤Ë·×»»¥â¥Ç¥ë¤ÎÀá |
Line 113 OX\_COMMAND ¤Ç¤¢¤ì¤Ð¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£¤«¤é¥¹¥¿¥Ã¥¯¥Þ¥· |
|
Line 127 OX\_COMMAND ¤Ç¤¢¤ì¤Ð¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£¤«¤é¥¹¥¿¥Ã¥¯¥Þ¥· |
|
¾å¤ÎÀâÌÀ¤Ç¤ï¤«¤ë¤è¤¦¤Ë¡¢¥µ¡¼¥Ð¤Ï¥¯¥é¥¤¥¢¥ó¥È¤«¤é¤Î»Ø¼¨¤Ê¤·¤Ë¡¢¼«¤é¥á¥Ã¥»¡¼ |
¾å¤ÎÀâÌÀ¤Ç¤ï¤«¤ë¤è¤¦¤Ë¡¢¥µ¡¼¥Ð¤Ï¥¯¥é¥¤¥¢¥ó¥È¤«¤é¤Î»Ø¼¨¤Ê¤·¤Ë¡¢¼«¤é¥á¥Ã¥»¡¼ |
¥¸¤òÁ÷¤ë¤³¤È¤Ï¤Ê¤¤(Îã³°? ox\_asir ¤Î mathcap)¡£ |
¥¸¤òÁ÷¤ë¤³¤È¤Ï¤Ê¤¤(Îã³°? ox\_asir ¤Î mathcap)¡£ |
|
|
{\Huge °Ê²¼¡¢½ñ¤Ä¾¤·¤Æ¤Í¡¢Åļ·¯} |
{\Huge °Ê²¼¡¢½ñ¤Ä¾¤·} |
|
|
|
|
% ¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø¤Ê¤ó¤é¤«¤Î·×»»¤ò¹Ô¤Ê¤ï¤»¤ë¾ì¹ç¡¢ |
% ¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø¤Ê¤ó¤é¤«¤Î·×»»¤ò¹Ô¤Ê¤ï¤»¤ë¾ì¹ç¡¢ |
Line 270 OpenXM ÂбþÈǤΠasir ¥µ¡¼¥Ð¤Ç¤¢¤ë ox\_asir ¤¬ÊÖ¤¹ Math |
|
Line 284 OpenXM ÂбþÈǤΠasir ¥µ¡¼¥Ð¤Ç¤¢¤ë ox\_asir ¤¬ÊÖ¤¹ Math |
|
¤³¤ÎÀ°¿ôÃÍ¤Ï CMO ·Á¼°¤Ç¤Ï 514 ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¤³¤ÎÀ°¿ôÃÍ¤Ï CMO ·Á¼°¤Ç¤Ï 514 ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
ºÇ½é¤Î¥Ç¡¼¥¿·Á¼°¤ò¶èÊ̤¹¤ëÀ°¿ôÃͰʸå¤ÎÍ×ÁÇ¤Ï |
ºÇ½é¤Î¥Ç¡¼¥¿·Á¼°¤ò¶èÊ̤¹¤ëÀ°¿ôÃͰʸå¤ÎÍ×ÁÇ¤Ï |
³Æ¥Ç¡¼¥¿·Á¼°¤Ë¤è¤Ã¤Æ¤É¤Î¤è¤¦¤Ë»È¤ï¤ì¤ë¤«Äê¤Þ¤Ã¤Æ¤¤¤ë¡£ |
³Æ¥Ç¡¼¥¿·Á¼°¤Ë¤è¤Ã¤Æ¤É¤Î¤è¤¦¤Ë»È¤ï¤ì¤ë¤«Äê¤Þ¤Ã¤Æ¤¤¤ë¡£ |
CMO ·Á¼°¤Ç¤ÏÍý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤Î¥¿¥°¤¬¥ê¥¹¥È¤ÎÃæ¤Ë¼ý¤Þ¤Ã¤Æ¤¤¤ë¡£ |
CMO ·Á¼°¤Ç¤ÏÍý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤Î tag ¤¬¥ê¥¹¥È¤ÎÃæ¤Ë¼ý¤Þ¤Ã¤Æ¤¤¤ë¡£ |
Á°Àá¤Ç CMO ·Á¼°¤Ç¤Ï¿ÇÜĹÀ°¿ô¤òɽ¤¹¥¿¥°¤¬ 20 ¤Ç¤¢¤ë¤³¤È¤ò½Ò¤Ù¤¿¤¬¡¢ |
Á°Àá¤Ç CMO ·Á¼°¤Ç¤Ï¿ÇÜĹÀ°¿ô¤òɽ¤¹ tag ¤¬ 20 ¤Ç¤¢¤ë¤³¤È¤ò½Ò¤Ù¤¿¤¬¡¢ |
¤³¤Î¥ê¥¹¥È¤Ë 20 ¤¬´Þ¤Þ¤ì¤Æ¤¤¤ë¤Î¤Ç¡¢ |
¤³¤Î¥ê¥¹¥È¤Ë 20 ¤¬´Þ¤Þ¤ì¤Æ¤¤¤ë¤Î¤Ç¡¢ |
ox\_asir ¤Ï CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤ò¼õ¤±¼è¤ì¤ë¤³¤È¤¬¤ï¤«¤ë¡£ |
ox\_asir ¤Ï CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤ò¼õ¤±¼è¤ì¤ë¤³¤È¤¬¤ï¤«¤ë¡£ |
|
|
|
%%¤³¤Î¥ê¥¹¥È¤ÎÍ×ÁǤϤޤ¿¥ê¥¹¥È¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
|
%¤³¤ÎºÇ¸å¤ÎÉôʬ¤â¤Þ¤¿¥ê¥¹¥È¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
|
%¤¢¤ë¥Ç¡¼¥¿·Á¼°¤ÇÍý²ò²Äǽ¤Ê¤â¤Î¤òɽ¸½¤·¤¿¥ê¥¹¥È¤òÍ×ÁǤȤ·¤Æ¤¤¤ë¡£ |
|
%{\tt [514,[1, 2, $\cdots$]]} ¤ÎºÇ½é¤Î 514 ¤Ï¤³¤Î¥ê¥¹¥È¤¬ CMO ·Á¼° |
|
%¤Ç¤ÎÍý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤òɽ¤·¤Æ¤¤¤ë¤³¤È¤ò¼¨¤·¤Æ¤ª¤ê¡¢ |
|
%¤½¤Î¸å¤Î¥ê¥¹¥È¤Ç¤Ï CMO ÁؤÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿¤Î¤¦¤Á¡¢ |
|
%Íý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤Î tag ¤¬Ê¤ó¤Ç¤¤¤ë¡£ |
|
|
¤Ê¤ª¡¢¥Ç¡¼¥¿¤¬¼õ¤±¼è¤ì¤ë¤³¤È¤È¡¢ |
¤Ê¤ª¡¢¥Ç¡¼¥¿¤¬¼õ¤±¼è¤ì¤ë¤³¤È¤È¡¢ |
¥Ç¡¼¥¿¤ÎÏÀÍý¹½Â¤¤¬Íý²ò¤Ç¤¤ë¤³¤È¤È¤Ï¤Þ¤Ã¤¿¤¯ÊÌʪ¤Ç¤¢¤ë¤Î¤Ç |
¥Ç¡¼¥¿¤ÎÏÀÍý¹½Â¤¤¬Íý²ò¤Ç¤¤ë¤³¤È¤È¤Ï¤Þ¤Ã¤¿¤¯ÊÌʪ¤Ç¤¢¤ë¤Î¤Ç |
Ãí°Õ¤¹¤ëɬÍפ¬¤¢¤ë¡£ |
Ãí°Õ¤¹¤ëɬÍפ¬¤¢¤ë¡£ |
Line 321 OpenXM ¤ËÂбþ¤·¤¿¥½¥Õ¥È¥¦¥§¥¢¤ò¥¯¥é¥Ã¥¯¤·¤Æ¤â |
|
Line 343 OpenXM ¤ËÂбþ¤·¤¿¥½¥Õ¥È¥¦¥§¥¢¤ò¥¯¥é¥Ã¥¯¤·¤Æ¤â |
|
|
|
\section{¾¤Î¥×¥í¥¸¥§¥¯¥È} |
\section{¾¤Î¥×¥í¥¸¥§¥¯¥È} |
|
|
¾¤Î¥×¥í¥¸¥§¥¯¥È¤Ë¤Ä¤¤¤Æ´ö¤Ä¤«¾Ò²ð¤¹¤ë¡£ |
¾¤Î¥×¥í¥¸¥§¥¯¥È¤Ë¤Ä¤¤¤Æ¤â¿¨¤ì¤Æ¤ª¤³¤¦¡£ |
|
|
OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
¥³¥ó¥Ô¥å¡¼¥¿¾å¤Çɽ¸½¤¹¤ëÊýË¡¤ò·èÄꤷ¤Æ¤¤¤ë¡£ |
¥³¥ó¥Ô¥å¡¼¥¿¾å¤Çɽ¸½¤¹¤ëÊýË¡¤ò·èÄꤷ¤Æ¤¤¤ë¡£ |
Line 329 OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
|
Line 351 OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
|
¥ª¥Ö¥¸¥§¥¯¥È¤ÎÊÑ´¹¼ê½ç¤Ë¤Ä¤¤¤Æ¤â½Ò¤Ù¤é¤ì¤Æ¤¤¤ë¡£ |
¥ª¥Ö¥¸¥§¥¯¥È¤ÎÊÑ´¹¼ê½ç¤Ë¤Ä¤¤¤Æ¤â½Ò¤Ù¤é¤ì¤Æ¤¤¤ë¡£ |
ɽ¸½ÊýË¡¤Ï°ì¤Ä¤À¤±¤Ç¤Ê¤¯¡¢ XML ɽ¸½¤ä binary ɽ¸½¤Ê¤É¤¬ |
ɽ¸½ÊýË¡¤Ï°ì¤Ä¤À¤±¤Ç¤Ê¤¯¡¢ XML ɽ¸½¤ä binary ɽ¸½¤Ê¤É¤¬ |
ÍÑ°Õ¤µ¤ì¤Æ¤¤¤ë¡£ |
ÍÑ°Õ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
¾ÜºÙ¤Ï |
|
|
%°Ê²¼¡¢Ä´¤Ù¤ëɬÍפ¢¤ê¡£ |
http://www.openmath.org/omsoc/index.html A.M.Cohen |
%NetSolve |
|
|
|
%MP |
|
|
|
%MCP |
°Ê²¼¤Ï½ñ¤¤¤Æ¤ëÅÓÃæ¡£ |
|
|
|
NetSolve |
|
|
|
http://www.cs.utk.edu/netsolve/ |
|
|
|
|
|
MP |
|
|
|
http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html |
|
|
|
|
|
MCP |
|
|
|
http://horse.mcs.kent.edu/~pwang/ |
|
|
|
|
\section{¸½ºßÄ󶡤µ¤ì¤Æ¤¤¤ë¥½¥Õ¥È¥¦¥§¥¢} |
\section{¸½ºßÄ󶡤µ¤ì¤Æ¤¤¤ë¥½¥Õ¥È¥¦¥§¥¢} |
|
|
¸½ºß OpenXM µ¬³Ê¤ËÂбþ¤·¤Æ¤¤¤ë¥¯¥é¥¤¥¢¥ó¥È¥½¥Õ¥È¥¦¥§¥¢¤Ë¤Ï |
¸½ºß OpenXM µ¬³Ê¤ËÂбþ¤·¤Æ¤¤¤ë¥¯¥é¥¤¥¢¥ó¥È¤Ë¤Ï |
asir, sm1, Mathematica ¤¬¤¢¤ë¡£ |
asir, sm1, Mathematica ¤¬¤¢¤ë¡£ |
¤³¤ì¤é¤Î¥¯¥é¥¤¥¢¥ó¥È¥½¥Õ¥È¥¦¥§¥¢¤«¤é |
¤³¤ì¤é¤Î¥¯¥é¥¤¥¢¥ó¥È¤«¤é |
OpenXM µ¬³Ê¤ËÂбþ¤·¤¿¥µ¡¼¥Ð¤ò¸Æ¤Ó½Ð¤¹¤³¤È¤¬¤Ç¤¤ë¡£ |
OpenXM µ¬³Ê¤ËÂбþ¤·¤¿¥µ¡¼¥Ð¤ò¸Æ¤Ó½Ð¤¹¤³¤È¤¬¤Ç¤¤ë¡£ |
¸½ºß OpenXM µ¬Ìó¤ËÂбþ¤·¤Æ¤¤¤ë¥µ¡¼¥Ð¥½¥Õ¥È¥¦¥§¥¢¤Ë¤Ï¡¢ |
¸½ºß OpenXM µ¬Ìó¤ËÂбþ¤·¤Æ¤¤¤ë¥µ¡¼¥Ð¥½¥Õ¥È¥¦¥§¥¢¤Ë¤Ï¡¢ |
asir, sm1, gnuplot, Mathematica ¤Ê¤É¤¬¤¢¤ê¡¢ |
asir, sm1, gnuplot, Mathematica ¤Ê¤É¤¬¤¢¤ê¡¢ |
Line 349 OpenXM µ¬³Ê¤ËÂбþ¤·¤¿¥µ¡¼¥Ð¤ò¸Æ¤Ó½Ð¤¹¤³¤È¤¬¤Ç¤¤ë¡£ |
|
Line 385 OpenXM µ¬³Ê¤ËÂбþ¤·¤¿¥µ¡¼¥Ð¤ò¸Æ¤Ó½Ð¤¹¤³¤È¤¬¤Ç¤¤ë¡£ |
|
¤Þ¤¿¡¢ OpenMath µ¬³Ê¤Î XML ɽ¸½¤Çɽ¸½¤µ¤ì¤¿¥Ç¡¼¥¿¤È CMO ·Á¼°¤Î |
¤Þ¤¿¡¢ OpenMath µ¬³Ê¤Î XML ɽ¸½¤Çɽ¸½¤µ¤ì¤¿¥Ç¡¼¥¿¤È CMO ·Á¼°¤Î |
¥Ç¡¼¥¿¤òÊÑ´¹¤¹¤ë¥½¥Õ¥È¥¦¥§¥¢¤¬ JAVA ¤Ë¤è¤Ã¤Æ¼ÂÁõ¤µ¤ì¤Æ¤ª¤ê¡¢ |
¥Ç¡¼¥¿¤òÊÑ´¹¤¹¤ë¥½¥Õ¥È¥¦¥§¥¢¤¬ JAVA ¤Ë¤è¤Ã¤Æ¼ÂÁõ¤µ¤ì¤Æ¤ª¤ê¡¢ |
OMproxy ¤È¤¤¤¦Ì¾Á°¤ÇÄ󶡤µ¤ì¤Æ¤¤¤ë¡£ |
OMproxy ¤È¤¤¤¦Ì¾Á°¤ÇÄ󶡤µ¤ì¤Æ¤¤¤ë¡£ |
|
|
|
|
\end{document} |
\end{document} |