version 1.42, 1999/12/22 13:01:20 |
version 1.68, 1999/12/24 08:56:45 |
|
|
\documentclass{jarticle} |
\documentclass{jarticle} |
|
|
\title{¥¿¥¤¥È¥ë̤Äê} |
%% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.67 1999/12/24 08:08:48 tam Exp $ |
\author{ |
|
Á°Àî ¾½¨\thanks{¿À¸ÍÂç³ØÍý³ØÉô¿ô³Ø²Ê}, |
\usepackage{jssac} |
ÌîϤ Àµ¹Ô\thanks{ÉÙ»ÎÄ̸¦µæ½ê}, |
\title{ |
¾®¸¶ ¸ùǤ\thanks{¶âÂôÂç³ØÍý³ØÉô·×»»²Ê³Ø¶µ¼¼}, \\ |
1. °ÕÌ£¤â¤Ê¤¤½¤¾þ²á¾ê¤Ê¸ì¶ç¤ÏÇÓ½ü¤·¤Þ¤·¤ç¤¦¡£\\ |
±üë ¹Ô±û |
2. À«¤È̾¤Î´Ö¤Î2¥Ð¥¤¥È¤Î¶õÇò¤Ï²¿¤«Íýͳ¤¬¤¢¤ë¤Î? |
%\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²ÊÇî»Î²ÝÄøÁ°´ü²ÝÄø¿ô³ØÀ칶}, |
(jssac ¤Îµ¬Ìó¤À¤Ã¤±)\\ |
\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê¿ô³ØÀ칶}, |
3. ¤»¤Ã¤«¤¯ fill ¤·¤Æ¤¤¤ë¤Î¤ò¤¤¤¸¤é¤Ê¤¤¤Ç¤¯¤ì¡£ |
¹â»³ ¿®µ£\thanks{¿À¸ÍÂç³ØÍý³ØÉô¿ô³Ø¶µ¼¼}, |
|
Åļ ¶³»Î |
|
%\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²ÊÇî»Î²ÝÄø¸å´ü²ÝÄø¾ðÊó¥á¥Ç¥£¥¢²Ê³ØÀ칶·×»»¥·¥¹¥Æ¥à¹ÖºÂ} |
|
\thanks{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê¾ðÊó¥á¥Ç¥£¥¢²Ê³ØÀ칶} |
|
} |
} |
\date{1999ǯ11·î25Æü} |
|
%\pagestyle{empty} |
|
|
|
|
\author{±ü ë ¡¡ ¹Ô ±û\affil{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê} |
|
\mail{okutani@math.sci.kobe-u.ac.jp} |
|
\and ¾® ¸¶ ¡¡ ¸ù Ǥ\affil{¶âÂôÂç³ØÍý³ØÉô} |
|
\mail{ohara@kappa.s.kanazawa-u.ac.jp} |
|
\and ¹â »³ ¡¡ ¿® µ£\affil{¿À¸ÍÂç³ØÍý³ØÉô} |
|
\mail{takayama@math.sci.kobe-u.ac.jp} |
|
\and ÅÄ Â¼ ¡¡ ¶³ »Î\affil{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê} |
|
\mail{tamura@math.sci.kobe-u.ac.jp} |
|
\and Ìî Ϥ ¡¡ Àµ ¹Ô\affil{ÉÙ»ÎÄ̸¦µæ½ê} |
|
\mail{noro@para.flab.fujitsu.co.jp} |
|
\and Á° Àî ¡¡ ¾ ½¨\affil{¿À¸ÍÂç³ØÍý³ØÉô} |
|
\mail{maekawa@math.sci.kobe-u.ac.jp} |
|
} |
|
\art{} |
|
|
\begin{document} |
\begin{document} |
\maketitle |
\maketitle |
|
|
\section{OpenXM¤È¤Ï} |
\section{OpenXM¤È¤Ï} |
|
|
OpenXM ¤Ï¿ô³Ø¥×¥í¥»¥¹´Ö¤Ç¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤¿¤á¤Îµ¬Ìó¤Ç¤¢¤ë¡£¿ô³Ø¥×¥í |
OpenXM ¤Ï¿ô³Ø¥×¥í¥»¥¹´Ö¤Ç¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤¿¤á¤Îµ¬Ìó¤Ç¤¢¤ë¡£ |
¥»¥¹´Ö¤Ç¥á¥Ã¥»¡¼¥¸¤ò¤ä¤ê¤È¤ê¤µ¤»¤ë¤³¤È¤Ë¤è¤ê¡¢¤¢¤ë¿ô³Ø¥×¥í¥»¥¹¤«¤é¾¤Î¿ô |
¿ô³Ø¥×¥í¥»¥¹´Ö¤Ç¥á¥Ã¥»¡¼¥¸¤ò¤ä¤ê¤È¤ê¤¹¤ë¤³¤È¤Ë¤è¤ê¡¢ |
³Ø¥×¥í¥»¥¹¤ò¸Æ¤Ó½Ð¤·¤Æ·×»»¤ò¹Ô¤Ê¤Ã¤¿¤ê¡¢Â¾¤Î¥Þ¥·¥ó¤Ç·×»»¤ò¹Ô¤Ê¤ï¤»¤¿¤ê¤¹ |
¤¢¤ë¿ô³Ø¥×¥í¥»¥¹¤«¤é¾¤Î¿ô³Ø¥×¥í¥»¥¹¤ò¸Æ¤Ó½Ð¤·¤Æ·×»»¤ò¹Ô¤Ê¤Ã¤¿¤ê¡¢ |
¤ë¤³¤È¤¬ÌÜŪ¤Ç¤¢¤ë¡£¤Ê¤ª¡¢ OpenXM ¤È¤Ï Open message eXchange protocol |
¾¤Î¥Þ¥·¥ó¤Ç·×»»¤ò¹Ô¤Ê¤ï¤»¤¿¤ê¤¹¤ë¤³¤È¤¬ÌÜŪ¤Ç¤¢¤ë¡£ |
for Mathematics ¤Îά¤Ç¤¢¤ë¡£ |
¤Ê¤ª¡¢ OpenXM ¤È¤Ï Open message eXchange protocol for Mathematics ¤Îά¤Ç¤¢¤ë¡£ |
OpenXM ¤Î³«È¯¤Îȯü¤ÏÌîϤ¤È¹â»³¤Ë¤è¤ê¡¢ asir ¤È kan/sm1 ¤ò |
OpenXM ¤Î³«È¯¤Îȯü¤ÏÌîϤ¤È¹â»³¤Ë¤è¤ê¡¢ |
Áê¸ß¤Ë¸Æ¤Ó½Ð¤¹µ¡Ç½¤ò¼ÂÁõ¤·¤¿¤³¤È¤Ç¤¢¤ë¡£ |
asir ¤È kan/sm1 ¤òÁê¸ß¤Ë¸Æ¤Ó½Ð¤¹µ¡Ç½¤ò¼ÂÁõ¤·¤¿¤³¤È¤Ç¤¢¤ë¡£ |
%\footnote{¤³¤ÎÃÊÍîɬÍ×?} |
|
|
|
%ȯü¤È¤Ê¤Ã¤¿ asir ¤È kan/sm1 ¤Ç¤Î¼ÂÁõ»þ¤Ë¤Ï¡¢ |
|
½é´ü¤Î¼ÂÁõ¤Ç¤Ï¡¢Áê¼ê¦¤Î¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë½¾¤Ã¤¿Ê¸»úÎó¤òÁ÷¤Ã¤Æ¤¤¤¿¡£ |
½é´ü¤Î¼ÂÁõ¤Ç¤Ï¡¢Áê¼ê¦¤Î¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë½¾¤Ã¤¿Ê¸»úÎó¤òÁ÷¤Ã¤Æ¤¤¤¿¡£ |
|
¤³¤ÎÊýË¡¤Ç¤ÏÁê¼ê¦¤Î¥½¥Õ¥È¤¬ asir ¤Ê¤Î¤« kan/sm1 ¤Ê¤Î¤«¤òȽÊ̤¹¤ë¤Ê¤É¤·¤Æ¡¢ |
|
Áê¼ê¦¤Î¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë¹ç¤ï¤»¤¿Ê¸»úÎó¤òºîÀ®¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
|
¤³¤Î¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë½¾¤Ã¤¿Ê¸»úÎó¤òÁ÷¤ëÊýË¡¤Ï¡¢ |
|
¸úΨŪ¤Ç¤¢¤ë¤È¤Ï¤¤¤¤Æñ¤¤¤¬¡¢»È¤¤¤ä¤¹¤¤¤È¤â¸À¤¨¤ë¡£ |
|
|
¸½ºß¤Î OpenXM µ¬Ìó¤Ç¤Ï¶¦ÄÌɽ¸½·Á¼°¤Ë¤è¤ë¥á¥Ã¥»¡¼¥¸¤òÍѤ¤¤Æ¤¤¤ë¡£ |
¸½ºß¤Î OpenXM µ¬Ìó¤Ç¤Ï¶¦ÄÌɽ¸½·Á¼°¤Ë¤è¤ë¥á¥Ã¥»¡¼¥¸¤òÍѤ¤¤Æ¤¤¤ë¡£ |
¤³¤ÎÊýË¡¤Ç¤ÏÁê¼ê¦¤Î¥½¥Õ¥È¤¬ asir ¤Ê¤Î¤« kan/sm1 ¤Ê¤Î¤«¤òȽÊ̤·¤Æ¡¢ |
¾åµ¤Îʸ»úÎó¤òÁ÷¤ëÊýË¡¤ÎÍøÅÀ¤òÀ¸¤«¤¹¤¿¤á¡¢ |
Áê¼ê¦¤Î¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë¹ç¤ï¤»¤Æʸ»úÎó¤òºîÀ®¤¹¤ëɬÍפ¬¤Ê¤¤¡£ |
OpenXM µ¬Ìó¤Ç¤Ï¶¦ÄÌɽ¸½·Á¼°¤ÎÃæ¤Îʸ»úÎó¤È¤·¤Æ¡¢ |
¤·¤«¤·¡¢¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë½¾¤Ã¤¿Ê¸»úÎó¤òÁ÷¤ëÊýË¡¤â¡¢ |
¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë½¾¤Ã¤¿Ê¸»úÎó¤òÍѤ¤¤¿¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤â²Äǽ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¸úΨŪ¤Ç¤¢¤ë¤È¤Ï¤¤¤¤Æñ¤¤¤¬¡¢»È¤¤¤ä¤¹¤¤¡£ |
|
¤½¤Î¤¿¤á¡¢ OpenXM µ¬Ìó¤Ç¤Ï¶¦ÄÌɽ¸½·Á¼°¤ÎÃæ¤Îʸ»úÎó¤È¤·¤Æ |
|
ɽ¸½¤·¤ÆÁ÷¤ë¤³¤È¤¬²Äǽ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
|
|
%OpenXM µ¬ÌóÆȼ«¤Î¥Ç¡¼¥¿·Á¼°¤Ç¤¢¤ë CMO ·Á¼°(Common Mathematical Object format) |
OpenXM µ¬Ìó¤Ç¤ÏÄÌ¿®¤ÎÊýË¡¤Ë´ö¤é¤«¤Î¼«Í³ÅÙ¤¬¤¢¤ë¤¬¡¢ |
%°Ê³°¤Ë¤â¡¢ MP ¤ä OpenMath ¤Î XML, binary ɽ¸½·Á¼°¤È¤¤¤Ã¤¿Â¾¤Î·Á¼°¤ò¤â |
¸½ºß¤Î¤È¤³¤í¤Ï TCP/IP ¤òÍѤ¤¤¿ÄÌ¿®¤·¤«¼ÂÁõ¤µ¤ì¤Æ¤¤¤Ê¤¤¡£ |
%°·¤¨¤ë¤è¤¦¤Ë¤·¤Æ¤¢¤ë¡£ |
¤½¤³¤Ç¡¢¤³¤ÎÏÀʸ¤Ç¤Ï¶ñÂÎŪ¤Ê¼ÂÁõ¤Ï TCP/IP ¤òÍѤ¤¤Æ¤¤¤ë¤È²¾Äꤹ¤ë¡£ |
|
|
{\Huge TCP/IP ¼ÂÁõ¤ÎÏÃ} |
|
|
|
OpenXM µ¬Ìó¤Ç¤ÏÄÌ¿®Ï©¤Î³ÎÊݤλÅÊý¤Ë |
|
|
|
|
|
|
|
\section{OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤Î¹½Â¤} |
\section{OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤Î¹½Â¤} |
|
|
%{\Huge ¤³¤ÎÀá¤Ç¤Ï¹½Â¤¤ÎÏäò¤·¤Ê¤±¤ì¤Ð¤¤¤±¤Þ¤»¤ó} |
ÄÌ¿®¤ÎÊýË¡¤Ë¤è¤Ã¤Æ¥á¥Ã¥»¡¼¥¸¤Î¹½Â¤¤ÏÊѤï¤ë¡£ |
|
Á°Àá¤Ç²¾Äꤷ¤¿¤È¤ª¤ê¡¢¤³¤ÎÏÀʸ¤Ç¤Ï TCP/IP ¤Î¾ì¹ç¤Ë¤Ä¤¤¤Æ¤Î¤ßÀâÌÀ¤ò¹Ô¤Ê¤¦¡£ |
|
|
OpenXM ¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç¤¢¤ê¡¢ |
OpenXM µ¬Ìó¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
¼¡¤Î¤è¤¦¤Ê¹½Â¤¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¼¡¤Î¤è¤¦¤Ê¹½Â¤¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
|
\begin{tabular}{|c|c|} \hline |
\begin{tabular}{|c|c|} |
¥Ø¥Ã¥À & \hspace{10mm} ¥Ü¥Ç¥£ \hspace{10mm} \\ \hline |
\hline |
|
¥Ø¥Ã¥À & \hspace{10mm} ¥Ü¥Ç¥£ \hspace{10mm} \\ |
|
\hline |
\end{tabular} |
\end{tabular} |
|
|
¥Ø¥Ã¥À¤ÎŤµ¤Ï 8 ¥Ð¥¤¥È¤Ç¤¢¤ë¤ÈÄê¤á¤é¤ì¤Æ¤¤¤ë¡£ |
¥Ø¥Ã¥À¤ÎŤµ¤Ï 8 ¥Ð¥¤¥È¤Ç¤¢¤ë¤ÈÄê¤á¤é¤ì¤Æ¤¤¤ë¡£ |
Line 67 OpenXM ¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç¤ |
|
Line 73 OpenXM ¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç¤ |
|
|
|
¥Ø¥Ã¥À¤Ï¼¡¤ÎÆó¤Ä¤Î¾ðÊó¤ò»ý¤Ã¤Æ¤¤¤ë¡£ |
¥Ø¥Ã¥À¤Ï¼¡¤ÎÆó¤Ä¤Î¾ðÊó¤ò»ý¤Ã¤Æ¤¤¤ë¡£ |
\begin{enumerate} |
\begin{enumerate} |
\item Á°È¾¤Î 4 ¥Ð¥¤¥È¤Ë¤¢¤ë¡¢¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤òɽ¤ï¤¹¼±Ê̻ҡ£ |
\item Á°È¾¤Î 4 ¥Ð¥¤¥È¡£¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤òɽ¤ï¤¹¼±Ê̻ҤǤ¢¤ê¡¢ |
¥¿¥°¤È¸Æ¤Ð¤ì¤ë¡£ |
¥¿¥°¤È¸Æ¤Ð¤ì¤ë¡£ |
\item ¸åȾ¤Î 4 ¥Ð¥¤¥È¤Ë¤¢¤ë¡¢¥á¥Ã¥»¡¼¥¸¤Ë¤Ä¤±¤é¤ì¤¿Ä̤·Èֹ档 |
\item ¸åȾ¤Î 4 ¥Ð¥¤¥È¡£¥á¥Ã¥»¡¼¥¸¤Ë¤Ä¤±¤é¤ì¤¿Ä̤·ÈÖ¹æ¤Ç¤¢¤ë¡£ |
\end{enumerate} |
\end{enumerate} |
¤½¤ì¤¾¤ì¤Î 4 ¥Ð¥¤¥È¤Ï 32 ¥Ó¥Ã¥ÈÀ°¿ô¤È¤ß¤Ê¤µ¤ì¤Æ°·¤ï¤ì¤ë¡£ |
¤½¤ì¤¾¤ì¤Î 4 ¥Ð¥¤¥È¤Ï 32 ¥Ó¥Ã¥ÈÀ°¿ô¤È¤ß¤Ê¤µ¤ì¤Æ°·¤ï¤ì¤ë¡£ |
¤³¤Î¾ì¹ç¤ËÍѤ¤¤é¤ì¤ëÀ°¿ô¤Îɽ¸½ÊýË¡¤ÎÀâÌÀ¤Ë¤Ä¤¤¤Æ¤Ï¸å½Ò¤¹¤ë¤¬¡¢ |
¤³¤Î¾ì¹ç¤ËÍѤ¤¤é¤ì¤ëÀ°¿ô¤Îɽ¸½ÊýË¡¤Ë¤Ä¤¤¤Æ¤Ï¸å½Ò¤¹¤ë¤¬¡¢ |
´ðËÜŪ¤Ëɽ¸½ÊýË¡¤Ï¤¤¤¯¤Ä¤«¤ÎÁªÂò»è¤«¤éÁª¤Ö¤³¤È¤¬²Äǽ¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
´ðËÜŪ¤Ëɽ¸½ÊýË¡¤Ï¤¤¤¯¤Ä¤«¤ÎÁªÂò»è¤«¤éÁª¤Ö¤³¤È¤¬²Äǽ¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
¤Þ¤¿¤½¤ÎÁªÂò¤ÏÄÌ¿®Ï©¤Î³ÎΩ»þ¤Ë°ìÅÙ¤À¤±¤Ê¤µ¤ì¤ë¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
¤Þ¤¿¤½¤ÎÁªÂò¤ÏÄÌ¿®Ï©¤Î³ÎΩ»þ¤Ë°ìÅÙ¤À¤±¤Ê¤µ¤ì¤ë¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
|
¸½ºß¤ÎOpenXM µ¬Ìó¤Ç¤Ï¡¢¥¿¥°(À°¿ôÃÍ)¤È¤·¤Æ |
|
°Ê²¼¤Î¤â¤Î¤¬ÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
|
%{\Huge °Ê²¼¡¢½ñ¤Ä¾¤·} |
\begin{verbatim} |
|
#define OX_COMMAND 513 |
|
#define OX_DATA 514 |
|
#define OX_SYNC_BALL 515 |
|
#define OX_DATA_WITH_LENGTH 521 |
|
#define OX_DATA_OPENMATH_XML 523 |
|
#define OX_DATA_OPENMATH_BINARY 524 |
|
#define OX_DATA_MP 525 |
|
\end{verbatim} |
|
|
¥Ü¥Ç¥£¤ÎÃæ¿È¤Ï³Æ¥Ç¡¼¥¿·Á¼°¤Ë¤è¤Ã¤Æ |
¥Ü¥Ç¥£¤Î¹½Â¤¤Ï¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤Ë¤è¤Ã¤Æ°Û¤Ê¤ë¡£ |
¤½¤ì¤¾¤ìÆÈΩ¤Ë·è¤á¤é¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¤³¤ÎÏÀʸ¤Ç¤Ï OX\_DATA ¤È \\ |
¤â¤·¡¢ OpenXM µ¬Ìó¤Ç¤Þ¤ÀÄêµÁ¤µ¤ì¤Æ¤¤¤Ê¤¤¥Ç¡¼¥¿·Á¼°¤ò»È¤¤¤¿¤¤¾ì¹ç¤Ï¡¢ |
OX\_COMMAND ¤Ç¼±Ê̤µ¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Ë¤Ä¤¤¤Æ¤Î¤ß¡¢ÀâÌÀ¤¹¤ë¡£ |
¥á¥Ã¥»¡¼¥¸¤Î¥Ø¥Ã¥À¤Î¥¿¥°¤ò¤Þ¤À»È¤ï¤ì¤Æ¤Ê¤¤À°¿ôÃͤËÀßÄꤷ¡¢ |
|
¥Ü¥Ç¥£¤ÎÉôʬ¤Ë¥Ç¡¼¥¿¤òËä¤á¹þ¤á¤Ð¤è¤¤¡£ |
|
¤Ê¤ª¡¢¤³¤Î¤è¤¦¤ÊÍÑÅӤˤâ»È¤¨¤ë¤è¤¦¤Ë¡¢ |
|
¥¿¥°¤Ë¤Ï¥·¥¹¥Æ¥à¸ÇͤÎɽ¸½ÍѤ˿侩¤µ¤ì¤Æ¤¤¤ëÀ°¿ô¤ÎÈϰϤ¬¤¢¤ë¡£ |
|
|
|
|
´û¸¤Î¥á¥Ã¥»¡¼¥¸¤Ç¤ÏÂбþ¤Ç¤¤Ê¤¤¾ì¹ç¤Ï¡¢¿·¤·¤¤¼±Ê̻ҤòÄêµÁ¤¹¤ë¤³¤È¤Ç¿·¤· |
|
¤¤¼ïÎà¤Î¥á¥Ã¥»¡¼¥¸¤òºîÀ®¤¹¤ë¤³¤È¤¬¤Ç¤¤ë¡£¤³¤ÎÊýË¡¤Ï³Æ¿ô³Ø¥½¥Õ¥È¥¦¥§¥¢¤Î |
|
¸ÇͤÎɽ¸½¤ò´Þ¤à¥á¥Ã¥»¡¼¥¸¤òºîÀ®¤·¤¿¤¤¾ì¹ç¤Ê¤É¤Ë͸ú¤Ç¤¢¤ë¡£¿·¤·¤¤¼±ÊÌ»Ò |
|
¤ÎÄêµÁÊýË¡¤Ë¤Ä¤¤¤Æ¤Ï¡¢\cite{OpenXM-1999} ¤ò»²¾È¤¹¤ë¤³¤È¡£ |
|
|
\section{OpenXM ¤Î·×»»¥â¥Ç¥ë} |
\section{OpenXM ¤Î·×»»¥â¥Ç¥ë} |
|
|
{\Huge ¤³¤ÎÀá¤Ç¤Ï·×»»¥â¥Ç¥ë¤ÎÏäò¤·¤Ê¤±¤ì¤Ð¤¤¤±¤Þ¤»¤ó} |
OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡£¤Þ¤¿¡¢ OpenXM µ¬ |
|
Ìó¤Ç¤Ï¥¯¥é¥¤¥¢¥ó¥È¡¦¥µ¡¼¥Ð¥â¥Ç¥ë¤òºÎÍѤ·¤Æ¤¤¤ë¤Î¤Ç¡¢¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤Ï¥µ¡¼ |
|
¥Ð¤È¥¯¥é¥¤¥¢¥ó¥È¤Î´Ö¤Ç¹Ô¤Ê¤ï¤ì¤ë¡£¥¯¥é¥¤¥¢¥ó¥È¤«¤é¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷ |
|
¤ê¡¢¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤«¤é¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤ë¤³¤È¤Ë¤è¤Ã¤Æ·×»»¤Î·ë²Ì¤¬ |
|
ÆÀ¤é¤ì¤ë¡£ |
|
|
OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡£ |
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¡£¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ¤±¼è¤Ã¤¿¥á¥Ã¥»¡¼ |
¤Þ¤¿¡¢ OpenXM µ¬Ìó¤Ç¤Ï¥¯¥é¥¤¥¢¥ó¥È¡¦¥µ¡¼¥Ð¥â¥Ç¥ë¤òºÎÍѤ·¤Æ¤¤¤ë¤Î¤Ç¡¢ |
¥¸¤Ï¡¢¥¿¥°¤¬ OX\_COMMAND ¤Ç¤Ê¤±¤ì¤Ð¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£¥¿¥°¤¬ |
¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤Ï¥µ¡¼¥Ð¤È¥¯¥é¥¤¥¢¥ó¥È¤Î´Ö¤Ç¹Ô¤Ê¤ï¤ì¤ë¡£ |
OX\_COMMAND ¤È¤Ê¤Ã¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤Ç¤¢¤ê¡¢¤³¤Î¥á¥Ã |
¥¯¥é¥¤¥¢¥ó¥È¤«¤é¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢ |
¥»¡¼¥¸¤ò¼õ¤±¼è¤Ã¤¿¥µ¡¼¥Ð¤Ï¤½¤ì¤ËÂбþ¤¹¤ëÆ°ºî¤ò¹Ô¤Ê¤¦¤³¤È¤¬´üÂÔ¤µ¤ì¤Æ¤¤¤ë¡£ |
¥µ¡¼¥Ð¤«¤é¥¯¥é¥¤¥¢¥ó¥È¤¬¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤ë¤³¤È¤Ë¤è¤Ã¤Æ |
|
·×»»¤Î·ë²Ì¤¬ÆÀ¤é¤ì¤ë¡£ |
|
|
|
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤È²¾Äꤵ¤ì¤Æ¤ª¤ê¡¢ |
%{\large\bf °ÕÌ£ÉÔÌÀ¤Ê½ñ¤Êý¤À¤±¤É¡¢} |
¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ¤±¼è¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Ï¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£ |
¥µ¡¼¥Ð¤Ï¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤é¤Ê¤¤¸Â¤ê¡¢¼«¤é²¿¤«Æ°ºî¤ò¹Ô¤Ê¤ª¤¦¤È¤Ï¤·¤Ê¤¤¡£ |
¤¿¤À¤·¡¢OpenXM ¤Î¥á¥Ã¥»¡¼¥¸¤ÎÃæ¤Ë¤Ï¥µ¡¼¥Ð¤Ë¹Ô¤Ê¤ï¤»¤¿¤¤Æ°ºî¤Ë |
¤³¤ì¤Ï¥¯¥é¥¤¥¢¥ó¥È¤¬Ëè²ó¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ë¤¿¤Ó¤Ë¡¢ |
Âбþ¤¹¤ë¥Ç¡¼¥¿¤¬¤¢¤ê¡¢ |
¤¤¤Ä¤â¥µ¡¼¥Ð¤«¤é¤Î¥á¥Ã¥»¡¼¥¸¤òÂÔ¤ÄɬÍפ¬¤Ê¤¤¤³¤È¤ò°ÕÌ£¤¹¤ë¡£ |
¤³¤Î¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤Ã¤¿¥µ¡¼¥Ð¤Ï¤½¤ì¤ËÂбþ¤¹¤ëÆ°ºî¤ò |
|
¹Ô¤Ê¤¦¤³¤È¤¬´üÂÔ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
¤·¤«¤·¡¢¥µ¡¼¥Ð¤ÏÌ¿Îᤵ¤ì¤Ê¤¤¸Â¤ê²¿¤âÆ°ºî¤ò¹Ô¤Ê¤ª¤¦¤È¤Ï¤·¤Ê¤¤¡£ |
|
¤³¤Î¤¿¤á¡¢¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¤Î¾õÂÖ¤òµ¤¤Ë¤»¤º¤Ë¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢ |
¤³¤Î¤¿¤á¡¢¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¤Î¾õÂÖ¤òµ¤¤Ë¤»¤º¤Ë¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢ |
°ìö¥á¥Ã¥»¡¼¥¸¤òÁ÷ÉÕ¤·½ª¤¨¤¿¸å¡¢ |
°ìö¥á¥Ã¥»¡¼¥¸¤òÁ÷ÉÕ¤·½ª¤¨¤¿¸å¡¢ |
¥µ¡¼¥Ð¤ØÁ÷¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Î·ë²Ì¤ò |
Á÷¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Î·ë²Ì¤ò¥µ¡¼¥Ð¤«¤éÂԤĤ³¤È¤Ê¤·¤Ë¼¡¤ÎÆ°ºî¤Ë°Ü¤ë¤³¤È¤¬¤Ç¤¤ë¡£ |
¥µ¡¼¥Ð¤«¤éÂԤĤ³¤È¤Ê¤·¤Ë¼¡¤ÎÆ°ºî¤Ë°Ü¤ë¤³¤È¤¬¤Ç¤¤ë¡£ |
|
|
|
¤Ê¤ª¡¢¥µ¡¼¥Ð¤ËÂФ¹¤ëÆ°ºî¤ËÂбþ¤·¤¿¥Ç¡¼¥¿¤Ï SM ·Á¼°¤È¤·¤ÆÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
SM ·Á¼°°Ê³°¤Î¥Ç¡¼¥¿¤Ç¤Ï¡¢¥µ¡¼¥Ð¤Ï¼õ¤±¼è¤Ã¤¿¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤà |
|
°Ê³°¤ÎÆ°ºî¤ò¤·¤Ê¤¤¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤Ä¤Þ¤ê¡¢ SM ·Á¼°¤Î¥Ç¡¼¥¿¤¬¥µ¡¼¥Ð¤Ë¥Ç¡¼¥¿¤ò¼õ¤±¼è¤ë°Ê³°¤ÎÆ°ºî¤ò |
|
¹Ô¤Ê¤ï¤»¤ëÍ£°ì¤Î¥Ç¡¼¥¿·Á¼°¤Ç¤¢¤ë¡£ |
|
|
|
|
|
\section{OpenXM ¤Î·×»»¤Î¿Ê¹ÔÊýË¡} |
\section{OpenXM ¤Î·×»»¤Î¿Ê¹ÔÊýË¡} |
|
|
OpenXM ¤Ë¤ª¤±¤ë·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤Î¸ò´¹¤Î¤³¤È¤Ç¤¢¤ë¡£ |
%Á°¤ÎÀá¤È½ÅÊ£¤·¤Æ¤¤¤ë¤Î¤Ç¤â¤¦¾¯¤·¤Á¤ã¤ó¤È¹Í¤¨¤ÆÍߤ·¤¤¤Î¤À¤±¤ì¤É¡¢ |
´û¤Ë·×»»¥â¥Ç¥ë¤ÎÀá¤ÇÀâÌÀ¤·¤¿¤¬¡¢ |
|
OpenXM ¤Ï¥µ¡¼¥Ð¡¦¥¯¥é¥¤¥¢¥ó¥È¥â¥Ç¥ë¤òºÎÍѤ·¤Æ¤¤¤Æ¡¢ |
|
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¹½Â¤¤ò»ý¤Ä¡£ |
|
¥µ¡¼¥Ð¤¬¹Ô¤¦¤Î¤Ï´ðËÜŪ¤Ë¼¡¤Î»öÊÁ¤Ë¸Â¤é¤ì¤ë¡£ |
|
¥¯¥é¥¤¥¢¥ó¥È¤«¤é¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤ë¤È¥µ¡¼¥Ð¤Ï¡¢ |
|
¤Þ¤º¥á¥Ã¥»¡¼¥¸¤Î¼±Ê̻ҤòÄ´¤Ù¡¢ SM ·Á¼°¤Î¥Ç¡¼¥¿¤Ç¤Ê¤±¤ì¤Ð¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
|
SM ·Á¼°¤Î¥Ç¡¼¥¿¤Ç¤¢¤ì¤Ð¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£¤«¤é |
|
¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¥ª¥Ú¥³¡¼¥É¤ò¼è¤ê¤À¤·¡¢ |
|
¤¢¤é¤«¤¸¤áµ¬Ìó¤ÇÄê¤á¤é¤ì¤¿Æ°ºî¤ò¹Ô¤Ê¤¦¡£ |
|
|
|
%¾å¤ÎÀâÌÀ¤Ç¤ï¤«¤ë¤è¤¦¤Ë¡¢ |
Á°Àá¤ÎÀâÌÀ¤Ç¤ï¤«¤ë¤è¤¦¤Ë¡¢ |
¥µ¡¼¥Ð¤Ï¥¯¥é¥¤¥¢¥ó¥È¤«¤é¤Î»Ø¼¨¤Ê¤·¤Ë¡¢ |
¥µ¡¼¥Ð¤Ï¥¯¥é¥¤¥¢¥ó¥È¤«¤é¤Î»Ø¼¨¤Ê¤·¤Ë¡¢ |
¼«¤é¥á¥Ã¥»¡¼¥¸¤òÁ÷¤é¤Ê¤¤¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
¼«¤é¥á¥Ã¥»¡¼¥¸¤òÁ÷¤é¤Ê¤¤¡£ |
%(Îã³°? ox\_asir ¤Î mathcap)¡£ |
%(Îã³°? ox\_asir ¤Î mathcap)¡£ |
|
|
¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ¤±¼è¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Ï¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£ |
|
¼¡¤¤¤Ç¥µ¡¼¥Ð¤Ë SM ·Á¼°¤Î¥Ç¡¼¥¿¤òÁ÷¤ë¤È¡¢ |
¤³¤ÎÊդϥ¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¤È¤³¤í¤Ë½ñ¤³¤¦¡£ |
|
|
|
|
|
¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ¤±¼è¤Ã¤¿¥ª¥Ö¥¸¥§¥¯¥È¤Ï¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£ |
|
¼¡¤¤¤Ç¥µ¡¼¥Ð¤Ë¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤òÁ÷¤ë¤È¡¢ |
½é¤á¤Æ¥µ¡¼¥Ð¤Ï¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤà°Ê³°¤Î¤Ê¤ó¤é¤«¤ÎÆ°ºî¤ò¹Ô¤Ê¤¦¡£ |
½é¤á¤Æ¥µ¡¼¥Ð¤Ï¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤà°Ê³°¤Î¤Ê¤ó¤é¤«¤ÎÆ°ºî¤ò¹Ô¤Ê¤¦¡£ |
¤³¤Î¤È¤¡¢É¬Íפ¬¤¢¤ì¤Ð¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤«¤éɬÍפʤÀ¤±¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤¹¡£ |
¤³¤Î¤È¤¡¢É¬Íפ¬¤¢¤ì¤Ð¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤«¤éɬÍפʤÀ¤±¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤¹¡£ |
¤³¤³¤Ç¡¢¥¯¥é¥¤¥¢¥ó¥È¤«¤é¤ÎÌ¿Îá¤Ë¤è¤ëÆ°ºîÃæ¤Ë¤¿¤È¤¨¥¨¥é¡¼¤¬È¯À¸¤·¤¿¤È¤·¤Æ¤â |
¤³¤³¤Ç¡¢¥¯¥é¥¤¥¢¥ó¥È¤«¤é¤ÎÌ¿Îá¤Ë¤è¤ëÆ°ºîÃæ¤Ë¤¿¤È¤¨¥¨¥é¡¼¤¬È¯À¸¤·¤¿¤È¤·¤Æ¤â |
¥µ¡¼¥Ð¤Ï¥¨¥é¡¼¥ª¥Ö¥¸¥§¥¯¥È¤ò¥¹¥¿¥Ã¥¯¤ËÀѤà¤À¤±¤Ç¡¢ |
¥µ¡¼¥Ð¤Ï¥¨¥é¡¼¥ª¥Ö¥¸¥§¥¯¥È¤ò¥¹¥¿¥Ã¥¯¤ËÀѤà¤À¤±¤Ç¡¢ |
ÌÀ¼¨¤µ¤ì¤Ê¤¤¸Â¤ê¥¨¥é¡¼¤òÊÖ¤µ¤Ê¤¤¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
ÌÀ¼¨¤µ¤ì¤Ê¤¤¸Â¤ê¥¨¥é¡¼¤¹¤é¤â¥¯¥é¥¤¥¢¥ó¥È¤ØÊÖ¤µ¤Ê¤¤¤³¤È¤Ë |
|
Ãí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
|
|
·ë²Ì¤¬À¸¤¸¤ëÆ°ºî¤ò¥µ¡¼¥Ð¤¬¹Ô¤Ê¤Ã¤¿¾ì¹ç¡¢ |
·ë²Ì¤¬À¸¤¸¤ëÆ°ºî¤ò¥µ¡¼¥Ð¤¬¹Ô¤Ê¤Ã¤¿¾ì¹ç¡¢ |
¥µ¡¼¥Ð¤ÏÆ°ºî¤Î·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
¥µ¡¼¥Ð¤ÏÆ°ºî¤Î·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
¥µ¡¼¥Ð¤Ë¹Ô¤Ê¤ï¤»¤¿Æ°ºî¤Î·ë²Ì¤ò¥¯¥é¥¤¥¢¥ó¥È¤¬ÃΤꤿ¤¤¾ì¹ç¡¢ |
¥µ¡¼¥Ð¤Ë¹Ô¤Ê¤ï¤»¤¿Æ°ºî¤Î·ë²Ì¤ò¥¯¥é¥¤¥¢¥ó¥È¤¬ÃΤꤿ¤¤¾ì¹ç¡¢ |
¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·Á÷¿®¤ò¹Ô¤Ê¤¦Ì¿Îá¤ËÂбþ¤·¤¿ SM ·Á¼°¤Î¥Ç¡¼¥¿¤ò |
¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·Á÷¿®¤ò¹Ô¤Ê¤¦Ì¿Îá¤ò¥µ¡¼¥Ð¦¤ØÁ÷¤ì¤Ð¤è¤¤¡£ |
¥µ¡¼¥Ð¦¤ØÁ÷¤ì¤Ð¤è¤¤¡£ |
|
|
|
{\Huge °Ê²¼¡¢½ñ¤Ä¾¤·} |
%{\Huge °Ê²¼¡¢½ñ¤Ä¾¤·} |
|
|
¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø·×»»¤ò¹Ô¤Ê¤ï¤»¡¢·ë²Ì¤òÆÀ¤ë¤È¤¤¤¦¼ê½ç¤òÄɤäƤ¤¤¯¤È¡¢ |
¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢ |
¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¡£ |
·×»»¤Î·ë²Ì¤òÆÀ¤ë¤È¤¤¤¦¼ê½ç¤òÄɤäƤ¤¤¯¤È¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¡£ |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item ¤Þ¤º¡¢¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø·×»»¤µ¤»¤¿¤¤¥Ç¡¼¥¿¤òÁ÷¤ë¡£ |
\item ¤Þ¤º¡¢¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ë¡£ |
¥µ¡¼¥Ð¤ÏÁ÷¤é¤ì¤Æ¤¤¿¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
¥µ¡¼¥Ð¤ÏÁ÷¤é¤ì¤Æ¤¤¿¥á¥Ã¥»¡¼¥¸¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
\item ¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ë¡Ö·×»»¤ò¹Ô¤Ê¤¦Æ°ºî¤ËÂбþ¤·¤¿¥Ç¡¼¥¿¡×¤ò |
\item ¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ë¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤òÁ÷¤ë¤È¡¢ |
Á÷¤ë¤È¡¢¥µ¡¼¥Ð¤ÏɬÍפʤÀ¤±¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·¡¢ |
¥µ¡¼¥Ð¤ÏɬÍפʤÀ¤±¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·¡¢ |
¼Â¹Ô¤·¤¿·×»»¤Î·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
¼Â¹Ô¤·¤¿·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
\item ºÇ¸å¤Ë¡Ö¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·Á÷¿®¤ò¹Ô¤Ê¤¦Ì¿Îá¤ËÂбþ¤·¤¿¥Ç¡¼¥¿¡×¤ò |
\item ºÇ¸å¤Ë¡Ö¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·Á÷¿®¤ò¹Ô¤Ê¤¦Ì¿Îá¡×¤ò |
¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤«¤é·×»»·ë²Ì¤ÎÆþ¤Ã¤Æ¤¤¤ë |
¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤«¤é·×»»·ë²Ì¤ÎÆþ¤Ã¤Æ¤¤¤ë |
¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·¡¢¥¯¥é¥¤¥¢¥ó¥È¤ØÁ÷½Ð¤¹¤ë¡£ |
¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·¡¢¥¯¥é¥¤¥¢¥ó¥È¤ØÁ÷½Ð¤¹¤ë¡£ |
\end{enumerate} |
\end{enumerate} |
|
|
|
\section{OpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó} |
|
|
|
OpenXM µ¬Ìó¤Ç¤Ï¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤ÈÄêµÁ¤·¤Æ¤¤¤ë¡£°Ê²¼¡¢OpenXM |
|
¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤È¸Æ¤Ö¡£¤³¤ÎÀá¤Ç¤ÏOpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ |
|
¤·¤è¤¦¡£ |
|
|
|
¤µ¤Æ¡¢OpenXM µ¬Ìó¤Ï¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¥ª¥Ö¥¸¥§¥¯¥È¤Î¹½Â¤¤Þ¤Ç¤Ïµ¬Äꤷ¤Ê¤¤¡£ |
|
¤Ä¤Þ¤ê¡¢¥ª¥Ö¥¸¥§¥¯¥È¤Î¹½Â¤¤Ï³Æ¿ô³Ø¥·¥¹¥Æ¥à¤´¤È¤Ë°Û¤Ê¤Ã¤Æ¤¤¤ë¤È¤¤¤¦¤³¤È¤Ç |
|
¤¢¤ë¡£OpenXM µ¬Ìó¤ÏÄÌ¿®»þ¤Ë¤ä¤ê¤È¤ê¤µ¤ì¤ë¶¦Ä̤Υǡ¼¥¿·Á¼°¤Ë¤Ä¤¤¤Æ¤Ïµ¬Äê |
|
¤¹¤ë¤¬¡¢OpenXM µ¬Ìó¤ËÂбþ¤·¤¿³Æ¿ô³Ø¥·¥¹¥Æ¥à¤Ï¡¢ÄÌ¿®Ï©¤«¤é¥Ç¡¼¥¿¤ò¼õ¤±¼è¤Ã |
|
¤¿ºÝ¤Ë¡¢³Æ¿ô³Ø¥·¥¹¥Æ¥à¤Î¸ÇͤΥǡ¼¥¿¹½Â¤¤ËÊÑ´¹¤·¤Æ¤«¤é¥¹¥¿¥Ã¥¯¤ËÀѤळ¤È |
|
¤ò°ÕÌ£¤¹¤ë¡£¤³¤ÎÊÑ´¹¤Ï1ÂÐ1Âбþ¤Ç¤¢¤ëɬÍפϤʤ¤¡£ |
|
|
|
¼¡¤Ë OpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤ÎÌ¿Îᥳ¡¼¥É¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£OpenXM ¥¹¥¿¥Ã¥¯ |
|
¥Þ¥·¥ó¤Ë¤ª¤±¤ë¤¹¤Ù¤Æ¤ÎÌ¿Îá¤Ï4¥Ð¥¤¥È¤ÎŤµ¤ò»ý¤Ä¡£OpenXM µ¬Ìó¤Î¾¤Îµ¬Äê¤È |
|
ƱÍͤˡ¢4¥Ð¥¤¥È¤Î¥Ç¡¼¥¿¤Ï32¥Ó¥Ã¥ÈÀ°¿ô¤È¸«¤Ê¤µ¤ì¤ë¤Î¤Ç¡¢¤³¤ÎÏÀʸ¤Ç¤â¤½¤Î |
|
ɽµ¤Ë¤·¤¿¤¬¤¦¡£OpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤ËÂФ¹¤ëÌ¿Îá¤Ï¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¤³ |
|
¤È¤Ï¤Ê¤¤¡£¸½ºß¤Î¤È¤³¤í¡¢OpenXM µ¬Ìó¤Ç¤Ï°Ê²¼¤ÎÌ¿Î᤬ÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
|
|
\begin{verbatim} |
|
#define SM_popSerializedLocalObject 258 |
|
#define SM_popCMO 262 |
|
#define SM_popString 263 |
|
|
|
#define SM_mathcap 264 |
|
#define SM_pops 265 |
|
#define SM_setName 266 |
|
#define SM_evalName 267 |
|
#define SM_executeStringByLocalParser 268 |
|
#define SM_executeFunction 269 |
|
#define SM_beginBlock 270 |
|
#define SM_endBlock 271 |
|
#define SM_shutdown 272 |
|
#define SM_setMathCap 273 |
|
#define SM_executeStringByLocalParserInBatchMode 274 |
|
#define SM_getsp 275 |
|
#define SM_dupErrors 276 |
|
|
|
#define SM_DUMMY_sendcmo 280 |
|
#define SM_sync_ball 281 |
|
|
|
#define SM_control_kill 1024 |
|
#define SM_control_reset_connection 1030 |
|
#define SM_control_to_debug_mode 1025 |
|
#define SM_control_exit_debug_mode 1026 |
|
#define SM_control_ping 1027 |
|
#define SM_control_start_watch_thread 1028 |
|
#define SM_control_stop_watch_thread 1029 |
|
\end{verbatim} |
|
|
|
°Ê²¼¡¢¤É¤¦¤¤¤¦¤È¤¤Ë·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤफ¥¨¥é¡¼¤Î¾ì¹ç¤É¤¦¤¹¤ë¤«¤ÎÀâÌÀ¤¬ |
|
ɬÍפǤ¢¤í¤¦¡£ |
|
|
\section{CMO ¤Î¥Ç¡¼¥¿¹½Â¤} |
\section{CMO ¤Î¥Ç¡¼¥¿¹½Â¤} |
|
|
OpenXM ´Ö¤Ç¤ä¤ê¤È¤ê¤µ¤ì¤ë¥á¥Ã¥»¡¼¥¸¤ò¼ÂºÝ¤ËºîÀ®¤¹¤ë¾ì¹ç¡¢ |
OpenXM µ¬Ìó¤Ç¤Ï¡¢¿ô³ØŪ¥ª¥Ö¥¸¥§¥¯¥È¤òɽ¸½¤¹¤ëÊýË¡¤È¤·¤Æ CMO ·Á¼°(Common |
|
Mathematical Object format)¤òÄêµÁ¤·¤Æ¤¤¤ë¡£¤³¤Î CMO ·Á¼°¤Ë¤·¤¿¤¬¤Ã¤¿¥Ç¡¼ |
|
¥¿¤Ï¡¢¼±Ê̻Ҥ¬ OX\_DATA ¤Ç¤¢¤ë¤è¤¦¤Ê¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£¤Ë¤Ê¤ë¤³¤È¤òÁÛÄꤷ |
|
¤Æ¤¤¤ë¡£ |
|
|
|
CMO ·Á¼°¤Ë¤ª¤±¤ë¥Ç¡¼¥¿¹½Â¤¤Ï¼¡¤Î¤è¤¦¤Ê¹½Â¤¤ò¤â¤Ä¡£ |
|
\begin{verbatim} |
|
¥Ø¥Ã¥À ¥Ü¥Ç¥£ |
|
\end{verbatim} |
|
¥Ø¥Ã¥À¤Ï4¥Ð¥¤¥È¤Ç¤¢¤ë¡£ |
|
¥Ü¥Ç¥£¤ÎŤµ¤Ï¤½¤ì¤¾¤ì¤Î¥Ç¡¼¥¿¤Ë¤è¤Ã¤Æ°Û¤Ê¤ë¤¬¡¢0¤Ç¤â¤è¤¤¡£ |
|
|
|
\begin{verbatim} |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
\end{verbatim} |
|
|
|
|
|
%OpenXM µ¬Ìó¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤ò¼ÂºÝ¤ËºîÀ®¤¹¤ë¾ì¹ç¡¢ |
CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¿ÇÜĹÀ°¿ô¤òÍý²ò¤·¤Æ¤ª¤¯¤È¡¢ |
CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¿ÇÜĹÀ°¿ô¤òÍý²ò¤·¤Æ¤ª¤¯¤È¡¢ |
CMO ·Á¼°¤Î¾¤Î¥Ç¡¼¥¿¹½Â¤¤À¤±¤Ç¤Ê¤¯¡¢ OX ·Á¼°¡¢ SM ·Á¼°¤Î¥Ç¡¼¥¿¤ò |
CMO ·Á¼°¤Î¾¤Î¥Ç¡¼¥¿¹½Â¤¤À¤±¤Ç¤Ê¤¯¡¢ |
Íý²ò¤¹¤ë½õ¤±¤Ë¤Ê¤ë¤È»×¤¨¤ë¤Î¤Ç¡¢ CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤Î |
OpenXM µ¬Ìó¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ëÍÍ¡¹¤Ê¥Ç¡¼¥¿¹½Â¤¤òÍý²ò¤¹¤ë½õ¤±¤Ë¤Ê¤ë¤È»×¤¨¤ë¤Î¤Ç¡¢ |
¥Ç¡¼¥¿¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£ |
¤³¤³¤Ç¤Ï CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤Î¥Ç¡¼¥¿¹½Â¤¤Ë¤Ä¤¤¤Æ¤Î¤ßÀâÌÀ¤¹¤ë¡£ |
|
|
CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿¤Ï¿ÇÜĹÀ°¿ô°Ê³°¤Ë¤â |
CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿¤Ï¿ÇÜĹÀ°¿ô°Ê³°¤Ë¤â |
ʸ»úÎó¤ä¥ê¥¹¥È¹½Â¤¤Ê¤É¤¬¤¢¤ë¡£¤É¤Î¤è¤¦¤Ê¥Ç¡¼¥¿¤Ç¤¢¤ë¤«¤Ï |
ʸ»úÎó¤ä¥ê¥¹¥È¹½Â¤¤Ê¤É¤¬¤¢¤ë¡£¤É¤Î¤è¤¦¤Ê¥Ç¡¼¥¿¤Ç¤¢¤ë¤«¤Ï |
¥Ç¡¼¥¿¤ÎÀèƬ¤Ë¤¢¤ë¥¿¥°¤ò¸«¤ì¤ÐȽÊ̤Ǥ¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¥Ç¡¼¥¿¤ÎÀèƬ 4 ¥Ð¥¤¥È¤Ë¤¢¤ë(¥á¥Ã¥»¡¼¥¸¤Î¼±Ê̻ҤȤÏÊ̤ˤ¢¤ë)¥¿¥°¤ò¸«¤ì¤Ð |
¤³¤ì¤Ï¥á¥Ã¥»¡¼¥¸¤Î¥Ç¡¼¥¿¤ÎȽÊ̤λÅÊý¤È¤ª¤Ê¤¸¤Ç¤¢¤ë¡£ |
ȽÊ̤Ǥ¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤³¤ì¤Ï¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ÎȽÊ̤λÅÊý¤È¤ª¤Ê¤¸¤Ç¤¢¤ë¡£ |
¤Ê¤ª¡¢¥¿¥°¤Ï³Æ¥Ç¡¼¥¿Ëè¤Ë 32 bit ¤ÎÀ°¿ô¤Çɽ¤µ¤ì¤Æ¤ª¤ê¡¢ |
¤Ê¤ª¡¢¥¿¥°¤Ï³Æ¥Ç¡¼¥¿Ëè¤Ë 32 bit ¤ÎÀ°¿ô¤Çɽ¤µ¤ì¤Æ¤ª¤ê¡¢ |
¿ÇÜĹÀ°¿ô¤Ï 20 ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¿ÇÜĹÀ°¿ô¤Ï 20 ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤è¤¯»È¤ï¤ì¤ë¤È»×¤ï¤ì¤ë CMO ·Á¼°¤Î¥¿¥°¤ò¤¢¤²¤Æ¤ª¤¯¡£ |
|
\begin{verbatim} |
|
#define CMO_INT32 2 /* 32 ¥Ó¥Ã¥ÈÀ°¿ô */ |
|
#define CMO_STRING 4 /* ʸ»úÎó */ |
|
#define CMO_MATHCAP 5 /* mathcap(¸å½Ò) */ |
|
#define CMO_LIST 17 /* ¥ê¥¹¥È¹½Â¤ */ |
|
#define CMO_ZZ 20 /* ¿ÇÜĹÀ°¿ô */ |
|
\end{verbatim} |
|
|
¤³¤³¤Ç 32 bit ¤ÎÀ°¿ô¤Îɽ¸½ÊýË¡¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ëɬÍפ¬¤¢¤ë¡£ |
¤³¤³¤Ç 32 bit ¤ÎÀ°¿ô¤Îɽ¸½ÊýË¡¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ëɬÍפ¬¤¢¤ë¡£ |
OpenXM ¤Ç¤Ï¥Ð¥¤¥ÈÎó¤Ç 32 bit ¤ÎÀ°¿ô 20 ¤ò |
OpenXM µ¬Ìó¤Ç¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç 32 bit ¤ÎÀ°¿ô 20 ¤ò |
{\tt 00 00 00 14} ¤Èɽ¤¹ÊýË¡¤È {\tt 14 00 00 00} ¤Èɽ¤¹ÊýË¡¤¬¤¢¤ë¡£ |
{\tt 00 00 00 14} ¤Èɽ¤¹ÊýË¡¤È {\tt 14 00 00 00} ¤Èɽ¤¹ÊýË¡¤¬¤¢¤ë¡£ |
¤³¤Îɽ¸½ÊýË¡¤Î°ã¤¤¤Ï¥¯¥é¥¤¥¢¥ó¥È¤È¥µ¡¼¥Ð¤ÎºÇ½é¤ÎÀܳ»þ¤Ë |
¤³¤Îɽ¸½ÊýË¡¤Î°ã¤¤¤Ï¥¯¥é¥¤¥¢¥ó¥È¤È¥µ¡¼¥Ð¤ÎºÇ½é¤ÎÀܳ»þ¤Ë |
ÁÐÊý¤Î¹ç°Õ¤Ç·èÄꤹ¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
ÁÐÊý¤Î¹ç°Õ¤Ç·èÄꤹ¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¤Ê¤ª¡¢¹ç°Õ¤¬¤Ê¤¤¾ì¹ç¤Ë¤Ï |
¤Ê¤ª¡¢¹ç°Õ¤¬¤Ê¤¤¾ì¹ç¤Ë¤ÏÁ°¼Ô¤Îɽ¸½ÊýË¡ |
Á°¼Ô¤Îɽ¸½ÊýË¡(°Ê¸å¡¢¤³¤Îɽ¸½ÊýË¡¤ò network byte order ¤È¸Æ¤Ö)¤ò |
(°Ê¸å¡¢¤³¤Îɽ¸½ÊýË¡¤ò¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¤È¸Æ¤Ö)¤ò |
»È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
»È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¤Þ¤¿¡¢Éé¤Î¿ô¤òɽ¸½¤¹¤ëɬÍפ¬¤¢¤ë¤È¤¤Ë¤Ï¡¢ |
¤Þ¤¿¡¢Éé¤Î¿ô¤òɽ¸½¤¹¤ëɬÍפ¬¤¢¤ë¤È¤¤Ë¤Ï¡¢ |
2 ¤ÎÊä¿ôɽ¸½¤ò»È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
2 ¤ÎÊä¿ôɽ¸½¤ò»È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
|
ɽ¸½¤·¤¿¤¤Â¿ÇÜĹÀ°¿ô¤ÎÀäÂÐÃͤò 2 ¿Ê¿ô¤Çɽ¤·¤¿¾ì¹ç¤Î·å¿ô¤ò $n$ ¤È |
CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤Ï¡¢ Gnu MP¥é¥¤¥Ö¥é¥êÅù¤ò»²¹Í¤Ë¤·¤Æ¤ª¤ê¡¢ |
¤·¤¿¤È¤¡¢¼¡¤Ë¤¯¤ë¥Ç¡¼¥¿¤Ï $[(n+31)/32]$ ¤ò 32 bit ¤ÎÀ°¿ô¤È¤Ê¤ë¡£ |
Éä¹çÉÕ¤ÀäÂÐÃÍɽ¸½¤òÍѤ¤¤Æ¤¤¤ë¡£ |
¤³¤ì¤Ï¿ÇÜĹÀ°¿ô¤ÎÀäÂÐÃͤò $2^{32}$ ¿Ê¿ô¤Çɽ¤·¤¿¾ì¹ç¤Î·å¿ô¤È¤È¤Ã¤Æ¤â¤è¤¤¡£ |
¥¿¥°°Ê¹ß¤Î·Á¼°¤Ï¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¡£ |
¤¿¤À¤·¡¢É½¸½¤·¤¿¤¤¿ô¤¬Éé¤Î¾ì¹ç¤Ï $[(n+31)/32]$ ¤ò 32 bit ¤ÎÀ°¿ô¤Çɽ¤·¤¿Ãͤò |
|
2 ¤ÎÊä¿ôɽ¸½¤ÇÉé¤Ë¤·¤Æ¡¢Àµ¤Î¾ì¹ç¤È¶èÊ̤¹¤ë¡£ |
|
|
|
ɽ¸½¤·¤¿¤¤Â¿ÇÜĹÀ°¿ô¤ÎÀäÂÐÃͤ¬ $2^{32}$ ¿Ê¿ô¤Ç $(b_0 b_1 ... b_k)_{2^{32}}$ |
\begin{tabular}{|c|c|c|c|c|} \hline |
¤Èɽ¤»¤ë¤È¤¡¢¼¡¤Ë¤¯¤ë¥Ç¡¼¥¿¤Ï $b_0$, $b_1$, $\cdots$, $b_k$ ¤ò |
$f$ & $b_0$ & $b_1$ & $\cdots$ & $b_{n-1}$ \\ \hline |
¤½¤ì¤¾¤ì 32 bit ¤ÎÀ°¿ô¤Çɽ¸½¤·¤¿ÃͤȤʤ롣 |
\end{tabular} |
%°Ê²¼¤Ï½ñ¤Ä¾¤·¤ÎɬÍפ¬¤¢¤ë¤«¤â... |
|
¤Ê¤ª¡¢ GNU MP LIBRARY ¤òÍѤ¤¤ë¤È¡¢ |
|
C ¸À¸ì¤«¤é¿ÇÜĹÀ°¿ô¤äǤ°ÕÀºÅÙÉâÆ°¾®¿ô¤ò°·¤¦¤³¤È¤¬¤Ç¤¤ë¡£ |
|
$b_0$, $b_1$, $\cdots$, $b_k$ ¤ò¤½¤ì¤¾¤ì 32 bit À°¿ô¤Çɽ¸½¤·¤¿ÃÍ¤Ï |
|
¤³¤Î GNU MP LIBRARY ¤ÇÍѤ¤¤é¤ì¤Æ¤¤¤ë¿ÇÜĹÀ°¿ô¤Ç»È¤ï¤ì¤Æ¤¤¤ë·Á¼°¤ò |
|
»²¹Í¤Ë¤·¤Æ¹ç¤ï¤»¤Æ¤¢¤ë¡£ |
|
|
|
|
¤³¤³¤Ç¡¢ 1 ¤Ä¤ÎÏÈ¤Ï 4 ¥Ð¥¤¥È¤òɽ¤·¡¢ |
|
$f$ ¤ÏÉä¹çÉÕ¤ 32 ¥Ó¥Ã¥ÈÀ°¿ô¤ò¡¢ |
|
$b_0$, $b_1$, $\cdots$, $b_{n-1}$ ¤ÏÉä¹ç¤Ê¤· 32 ¥Ó¥Ã¥ÈÀ°¿ô¤òɽ¤·¤Æ¤¤¤ë¡£ |
|
¤µ¤é¤Ë¡¢ $|f| = n$ ¤¬À®¤êΩ¤¿¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
|
¤³¤Î¥ª¥Ö¥¸¥§¥¯¥È¤Ï |
|
\[ \mbox{sgn}(f) \times \{ b_0 (2^{32})^0 + b_1 (2^{32})^1 + \cdots |
|
+ b_{n-1} (2^{32})^{n-1} \} \] |
|
¤È¤¤¤¦À°¿ô¤Ç¤¢¤ë¤ÈÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£ |
|
¤¿¤À¤·¡¢ |
|
\[ \mbox{sgn}(f) = \left\{ \begin{array}{ll} |
|
1 & f>0 \\ |
|
0 & f=0 \\ |
|
-1 & f<0 \\ \end{array} \right. \] |
|
¤Ç¤¢¤ë¡£ |
|
|
¤³¤³¤Ç¶ñÂÎÎã¤ò¤À¤½¤¦¡£ |
¤³¤³¤Ç¶ñÂÎÎã¤ò¤À¤½¤¦¡£ |
$4294967298 = 1 \times 2^{32} + 2$ ¤ò network byte order ¤Î¿ÇÜĹÀ°¿ô¤Ç |
$4294967298 = 1 \times 2^{32} + 2$ ¤ò CMO ·Á¼°¤Î |
ɽ¸½¤¹¤ë¤È¡¢ |
¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¡¢Â¿ÇÜĹÀ°¿ô¤Çɽ¸½¤¹¤ë¤È¡¢ |
\begin{center} |
\begin{center} |
{\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01} |
{\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01} |
\end{center} |
\end{center} |
Line 220 $4294967298 = 1 \times 2^{32} + 2$ ¤ò network byte ord |
|
Line 311 $4294967298 = 1 \times 2^{32} + 2$ ¤ò network byte ord |
|
¤È¤Ê¤ë¡£ |
¤È¤Ê¤ë¡£ |
|
|
|
|
\section{MathCap ¤Ë¤Ä¤¤¤Æ} |
\section{mathcap ¤Ë¤Ä¤¤¤Æ} |
|
|
¥µ¡¼¥Ð¤ª¤è¤Ó¥¯¥é¥¤¥¢¥ó¥ÈÁÐÊý¤È¤â¤Ë OpenXM ¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë |
OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³Æ¥½¥Õ¥È¥¦¥§¥¢¤¬À© |
¥á¥Ã¥»¡¼¥¸¤ÎÃæ¤Î¥Ç¡¼¥¿·Á¼°¤ò¤¹¤Ù¤Æ¼õ¤±¼è¤ì¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¡£ |
¸Â¤¹¤ëÊýË¡¤òÍÑ°Õ¤·¤Æ¤¤¤ë¡£¤³¤ì¤Ï³Æ¥½¥Õ¥È¥¦¥§¥¢¤Î¼ÂÁõ¤Ë¤è¤Ã¤Æ¤Ï¤¹¤Ù¤Æ¤Î¥á¥Ã |
¤·¤«¤â¡¢ OpenXM µ¬Ìó¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿·Á¼°¤À¤±¤¬ |
¥»¡¼¥¸¤ò¥µ¥Ý¡¼¥È¤¹¤ë¤Î¤¬º¤Æñ¤Ê¾ì¹ç¤¬¤¢¤ë¤«¤é¤Ç¤¢¤ë¡£¤Þ¤¿¡¢³Æ¥½¥Õ¥È¥¦¥§¥¢ |
¼õÅϤ·¤Ë»È¤ï¤ì¤ë¤È¤¤¤¦¤ï¤±¤Ç¤Ï¤Ê¤¤¡£ |
¤Ç¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³ÈÄ¥¤·¤¿¤¤¾ì¹ç¤Ë¤â͸ú¤Ç¤¢¤ë¡£¤³¤ÎÀ©¸Â(¤¢¤ë¤¤¤Ï³ÈÄ¥) |
¤½¤³¤Ç¡¢ OpenXM ¤Ç¤ÏÁê¼ê¦¤¬¼õ¤±¼è¤ë¤³¤È¤¬¤Ç¤¤ë¥Ç¡¼¥¿·Á¼°¤ò |
¤Ï mathcap ¤È¸Æ¤Ð¤ì¤ë¥Ç¡¼¥¿¹½Â¤¤Ë¤è¤Ã¤Æ¹Ô¤ï¤ì¤ë¡£¤³¤ÎÀá¤Ç¤Ï mathcap ¤Î¥Ç¡¼ |
¼ýÆÀ¤¹¤ëÊýË¡¤òÍÑ°Õ¤·¤Æ¤¤¤ë¡£ |
¥¿¹½Â¤¤È¡¢¶ñÂÎŪ¤Ê¥á¥Ã¥»¡¼¥¸¤ÎÀ©¸Â¤Î¼ê³¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£ |
|
|
CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë MathCap ¥Ç¡¼¥¿¤Ï |
¤Þ¤º¡¢¼ê³¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£ |
%Íý²ò²Äǽ¤Ê¥á¥Ã¥»¡¼¥¸¤Î |
¥¯¥é¥¤¥¢¥ó¥È¦¤Î mathcap ¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢ |
¼õ¤±¼è¤ë¤³¤È¤¬¤Ç¤¤ë¥Ç¡¼¥¿·Á¼°¤òɽ¤¹¥Ç¡¼¥¿¤Ç¤¢¤ê¡¢ |
¤¹¤Ç¤ËÀâÌÀ¤·¤¿¤è¤¦¤Ë¡¢¥µ¡¼¥Ð¤Ï¼õ¤±¼è¤Ã¤¿ mathcap ¤ò¥¹¥¿¥Ã¥¯¤ËÀѤ߾夲¤ë¡£ |
Í׵ᤵ¤ì¤ì¤Ð¥µ¡¼¥Ð¤Ï¥µ¡¼¥Ð¼«¿È¤Î MathCap ¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
¼¡¤Ë¥¯¥é¥¤¥¢¥ó¥È¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤³¤È¤Ë¤è¤ê¡¢ |
¤Þ¤¿¡¢¥¯¥é¥¤¥¢¥ó¥È¤«¤é MathCap ¥Ç¡¼¥¿¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤³¤È¤â¤Ç¤¡¢ |
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤Æ¤¤¤ë mathcap ¤ò¼è¤ê½Ð¤·¡¢ |
MathCap ¥Ç¡¼¥¿¤ò¥µ¡¼¥Ð¤È¥¯¥é¥¤¥¢¥ó¥È¤Î´Ö¤Ç¸ò´¹¤¹¤ë¤³¤È¤Ë¤è¤Ã¤Æ¡¢ |
mathcap ¤ÇÀßÄꤵ¤ì¤Æ¤¤¤Ê¤¤¥á¥Ã¥»¡¼¥¸¤ò¥¯¥é¥¤¥¢¥ó¥È¦¤Ø |
¤ª¸ß¤¤¤ËÁê¼ê¦¤¬¼õ¤±¼è¤ë¤³¤È¤¬¤Ç¤¤Ê¤¤¥Ç¡¼¥¿·Á¼°¤Ç |
Á÷¤é¤Ê¤¤¤è¤¦¤ËÀßÄꤹ¤ë¡£ |
¥á¥Ã¥»¡¼¥¸¤òÁ÷¤Ã¤Æ¤·¤Þ¤¦¤Î¤òËɤ°¤³¤È¤¬¤Ç¤¤ë¡£ |
¥µ¡¼¥Ð¦¤Î mathcap ¤¬Íߤ·¤¤¾ì¹ç¤Ë¤Ï°Ê²¼¤Î¤è¤¦¤Ë¤¹¤ë¡£ |
¤Ê¤ª¡¢ MathCap ¥Ç¡¼¥¿¤ÎÃæ¤Ç¤Ï CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë |
¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ë mathcap ¤òÍ׵᤹¤ë¤È¡¢ |
32 bit À°¿ô¡¢Ê¸»úÎ󡢥ꥹ¥È¹½Â¤¤¬»È¤ï¤ì¤Æ¤ª¤ê¡¢ |
¥µ¡¼¥Ð¤Ï¥µ¡¼¥Ð¼«¿È¤Î mathcap ¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
MathCap ¥Ç¡¼¥¿¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ëÆâÍƤòÍý²ò¤Ç¤¤ë¤¿¤á¤Ë¤Ï |
¤µ¤é¤Ë¥µ¡¼¥Ð¤Ë¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·Á÷¿®¤ò¹Ô¤Ê¤¦Ì¿Îá¤òÁ÷¤ì¤Ð¡¢ |
ɬÁ³Åª¤Ë¤³¤ì¤é¤âÍý²ò¤Ç¤¤ëɬÍפ¬¤¢¤ë¡£ |
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤Ë¤¢¤ë mathcap ¤ò¥¯¥é¥¤¥¢¥ó¥È¤ØÁ÷½Ð¤¹¤ë¡£ |
|
¤³¤Î¤è¤¦¤Ë¤·¤Æ¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¦¤Î mathcap ¤ò¼õ¤±¼è¤ì¤ë¤ï¤±¤Ç¤¢¤ë¡£ |
|
|
OpenXM ÂбþÈǤΠasir ¥µ¡¼¥Ð¤Ç¤¢¤ë ox\_asir ¤¬ÊÖ¤¹ MathCap ¤ò°Ê²¼¤Ë¼¨¤¹¡£ |
¼¡¤Ë mathcap ¤Î¥Ç¡¼¥¿¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£ |
|
mathcap ¤Ï CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤ª¤ê¡¢ |
|
1 ¤Ä¤Î CMO ·Á¼°¤Î¥ª¥Ö¥¸¥§¥¯¥È¤ò»ý¤Ä¡£ |
|
|
%¤Ê¤ª¡¢ $a_1$, $a_2$, $\cdots$, $a_n$ ¤òÍ×ÁÇ¤Ë |
¤½¤Î¥ª¥Ö¥¸¥§¥¯¥È¤Ï°Ê²¼¤ÇÀâÌÀ¤¹¤ë 3 ¤Ä¤ÎÍ×ÁǤ«¤é¤Ê¤ë¥ê¥¹¥È¤Ç¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
%»ý¤Ä¥ê¥¹¥È¹½Â¤¤ò {\tt [$a_1$, $a_2$, $\cdots$, $a_n$]} ¡¢ |
|
%ʸ»úÎó ``string'' ¤ò {\tt "string"} ¡¢ 32 bit À°¿ô¤ò |
|
%¤½¤ì¤ËÂбþ¤¹¤ë 10 ¿Ê¿ô¤ÎÀ°¿ô¤Ç¼¨¤¹¡£ |
|
|
|
%¢¼ê¤Çºî¤Ã¤¿¤Î¤Ç´Ö°ã¤¨¤Æ¤¤¤ë²ÄǽÀ¤¢¤ê¡£ |
\[ \begin{tabular}{|c|c|c|} \hline |
%%¸Å¤¤¥Ð¡¼¥¸¥ç¥ó¡£º¹¤·Âؤ¨¤ÎɬÍפ¢¤ê¡£ |
$A$ & $B$ & $C$ \\ \hline |
\begin{verbatim} |
\end{tabular} \] |
[ [199901160,"ox_asir"], |
|
[276,275,258,262,263,266,267,268,274 |
|
,269,272,265,264,273,300,270,271], |
|
[ [514,[1,2,3,4,5,2130706433,2130706434 |
|
,17,19,20,21,22,24,25,26,31,27,33,60]], |
|
[2144202544,[0,1]] |
|
] |
|
] |
|
\end{verbatim} |
|
|
|
¤³¤Î MathCap ¥Ç¡¼¥¿¤Î¥ê¥¹¥È¹½Â¤¤ÏÂ礤¯Ê¬¤±¤Æ 3 ¤Ä¤ÎÉôʬ¤Ëʬ¤«¤ì¤ë¡£ |
ºÇ½é¤ÎÍ×ÁÇ $A$ ¤ÎÉôʬ¤Ï°Ê²¼¤Î¿Þ¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤ª¤ê¡¢ |
ºÇ½é¤Î {\tt [199901160,"ox\_asir"]} ¤ÎÉôʬ¤Ë¤Ï¥µ¡¼¥Ð¤Î¾ðÊó¤¬Æþ¤Ã¤Æ¤¤¤ë¡£ |
$a_1$ ¤Ï 32 ¥Ó¥Ã¥ÈÀ°¿ô¤Ç¥Ð¡¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤ò¡¢ |
%¤³¤ÎºÇ½é¤ÎÍ×ÁǤ¬¤Þ¤¿¥ê¥¹¥È¹½Â¤¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
$a_2$ ¤Ïʸ»úÎó¤Ç¥·¥¹¥Æ¥à¤Î̾Á°¤òɽ¤¹¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
ºÇ½é¤ÎÍ×ÁǤϥС¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤ò¡¢¼¡¤ÎÍ×ÁǤϥµ¡¼¥Ð¤Î̾Á°¤òɽ¤·¤Æ¤¤¤ë¡£ |
|
|
|
¼¡¤Î {\tt [276,275,$\cdots$,271]} ¤ÎÉôʬ¤Ï |
\[ \begin{tabular}{|c|c|} \hline |
¥µ¡¼¥Ð¤ËÂФ¹¤ëÆ°ºî¤ËÂбþ¤·¤¿Íý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤Î¼ïÎà¤òɽ¤·¤Æ¤¤¤ë¡£ |
$a_1$ & $a_2$ \\ \hline |
¥µ¡¼¥Ð¤ÎÆ°ºî¤ËÂФ¹¤ë¥Ç¡¼¥¿¤Ï¤¹¤Ù¤Æ 32 bit ¤ÎÀ°¿ô¤Çɽ¤·¤Æ¤ª¤ê¡¢ |
\end{tabular} \] |
¤³¤Î¥ê¥¹¥È¤ÏÍý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤ËÂбþ¤¹¤ë 32 bit À°¿ô¤Î¥ê¥¹¥È¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
|
|
ºÇ¸å¤Î {\tt [ [514,[1,2,3,$\cdots$,60]],[2144202544,[0,1]] ]} ¤ÎÉôʬ¤Ï |
2 ÈÖÌܤÎÍ×ÁÇ $B$ ¤ÎÉôʬ¤Ï¼¡¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£ |
Íý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤Î·Á¼°¤òɽ¤·¤Æ¤¤¤ë¡£ |
¤³¤Î $b_1$, $b_2$, $\cdots$, $b_n$ ¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Ç¤¢¤ë¡£ |
¤³¤ÎÉôʬ¤Ï¤µ¤é¤Ë {\tt [514,[1,2,3,$\cdots$,60]]} ¤È |
¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Çɽ¤·¤Æ¤ª¤ê¡¢ |
{\tt [2144202544,[0,1]]} ¤Ë¤ÎÉôʬ¤Ëʬ¤±¤ë¤³¤È¤¬¤Ç¤¡¢ |
³Æ $b_i$ ¤ÏÍøÍѲÄǽ¤ÊÌ¿Îá¤ËÂбþ¤¹¤ë 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¤½¤ì¤¾¤ì¤¬°ì¤Ä¤Î¥Ç¡¼¥¿·Á¼°¤Ë¤Ä¤¤¤Æ¤Î¾ðÊó¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤É¤Î¥Ç¡¼¥¿·Á¼°¤Ë¤Ä¤¤¤Æ¤Î¾ðÊ󤫤Ϻǽé¤ÎÍ×ÁǤˤ¢¤ëÀ°¿ôÃͤò¤ß¤ì¤Ð |
|
ʬ¤«¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤³¤ÎÀ°¿ôÃÍ¤Ï CMO ·Á¼°¤Ç¤Ï 514 ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
ºÇ½é¤Î¥Ç¡¼¥¿·Á¼°¤ò¶èÊ̤¹¤ëÀ°¿ôÃͰʸå¤ÎÍ×ÁÇ¤Ï |
|
³Æ¥Ç¡¼¥¿·Á¼°¤Ë¤è¤Ã¤Æ¤É¤Î¤è¤¦¤Ë»È¤ï¤ì¤ë¤«Äê¤Þ¤Ã¤Æ¤¤¤ë¡£ |
|
CMO ·Á¼°¤Ç¤ÏÍý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤Î¥¿¥°¤¬¥ê¥¹¥È¤ÎÃæ¤Ë¼ý¤Þ¤Ã¤Æ¤¤¤ë¡£ |
|
Á°Àá¤Ç CMO ·Á¼°¤Ç¤Ï¿ÇÜĹÀ°¿ô¤òɽ¤¹¥¿¥°¤¬ 20 ¤Ç¤¢¤ë¤³¤È¤ò½Ò¤Ù¤¿¤¬¡¢ |
|
¤³¤Î¥ê¥¹¥È¤Ë 20 ¤¬´Þ¤Þ¤ì¤Æ¤¤¤ë¤Î¤Ç¡¢ |
|
ox\_asir ¤Ï CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤ò¼õ¤±¼è¤ì¤ë¤³¤È¤¬¤ï¤«¤ë¡£ |
|
|
|
%%¤³¤Î¥ê¥¹¥È¤ÎÍ×ÁǤϤޤ¿¥ê¥¹¥È¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
\[ \begin{tabular}{|c|c|c|c|} \hline |
%¤³¤ÎºÇ¸å¤ÎÉôʬ¤â¤Þ¤¿¥ê¥¹¥È¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
$b_1$ & $b_2$ & $\cdots$ & $b_n$ \\ \hline |
%¤¢¤ë¥Ç¡¼¥¿·Á¼°¤ÇÍý²ò²Äǽ¤Ê¤â¤Î¤òɽ¸½¤·¤¿¥ê¥¹¥È¤òÍ×ÁǤȤ·¤Æ¤¤¤ë¡£ |
\end{tabular} \] |
%{\tt [514,[1, 2, $\cdots$]]} ¤ÎºÇ½é¤Î 514 ¤Ï¤³¤Î¥ê¥¹¥È¤¬ CMO ·Á¼° |
|
%¤Ç¤ÎÍý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤òɽ¤·¤Æ¤¤¤ë¤³¤È¤ò¼¨¤·¤Æ¤ª¤ê¡¢ |
|
%¤½¤Î¸å¤Î¥ê¥¹¥È¤Ç¤Ï CMO ÁؤÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿¤Î¤¦¤Á¡¢ |
|
%Íý²ò²Äǽ¤Ê¥Ç¡¼¥¿¤Î¥¿¥°¤¬Ê¤ó¤Ç¤¤¤ë¡£ |
|
|
|
|
3 ÈÖÌܤÎÍ×ÁÇ $C$ ¤Ï°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£ |
|
\[ \overbrace{ |
|
\begin{tabular}{|c|c|c|c|} \hline |
|
$c_1$ & $c_2$ & $\cdots$ & $c_n$ \\ \hline |
|
\end{tabular} |
|
}^{C} \] |
|
%$n$ ¤Ï OX\_COMMAND °Ê³°¤Î¼õ¤±¼è¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¥¿¥°¤Î¼ïÎà¤Î¿ô¤ËÅù¤·¤¤¡£ |
|
%Í×ÁÇ¿ô¤Ï 1 ¤Ç¤â¤â¤Á¤í¤ó¹½¤ï¤Ê¤¤¡£ |
|
³Æ $c_i$ ¤â¤Þ¤¿°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
|
¤É¤Î $c_i$ ¤âºÇ½é¤ÎÍ×ÁǤ¬ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
\[ \overbrace{ |
|
\begin{tabular}{|c|c|c|c|c|} \hline |
|
$c_{i1}$ (32 ¥Ó¥Ã¥È¤ÎÀ°¿ô) & $c_{i2}$ & $c_{i3}$ & |
|
$\cdots$ & $c_{im}$ \\ \hline |
|
\end{tabular} |
|
}^{c_i} \] |
|
¤³¤Î¥ê¥¹¥È¤ÎºÇ½é¤ÎÀ°¿ôÃͤϼõ¤±¼è¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¥¿¥°¤¬Æþ¤Ã¤Æ¤¤¤ë¡£ |
|
$c_{i2}$ °Ê¹ß¤Ë¤Ä¤¤¤Æ¤ÏºÇ½é¤Î $c_{i1}$ ¤ÎÃͤˤè¤Ã¤Æ¤½¤ì¤¾¤ì°Û¤Ê¤ë¡£ |
|
¤³¤³¤Ç¤Ï¡¢ºÇ½é¤ÎÍ×ÁǤ¬ OX\_DATA ¤Î¾ì¹ç¤Ë¤Ä¤¤¤Æ¤Î¤ßÀâÌÀ¤¹¤ë¡£ |
|
¤³¤Î $c_{i1}$ ¤¬ OX\_DATA ¤Î¾ì¹ç¡¢ |
|
¥ê¥¹¥È $c_i$ ¤Ï CMO ·Á¼°¤Ë¤Ä¤¤¤Æ¤Î¾ðÊó¤òɽ¤·¤Æ¤ª¤ê¡¢ |
|
$m=2$ ¤È·è¤á¤é¤ì¤Æ¤¤¤ë¡£ |
|
$c_{i1}$ ¤Ë¤Ï¤â¤Á¤í¤ó¤Î¤³¤È OX\_DATA ¤¬Æþ¤Ã¤Æ¤ª¤ê¡¢ |
|
$c_{i2}$ ¤Ï°Ê²¼¤Î¿Þ¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
³ÆÍ×ÁÇ¤Ï 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Ç¤¢¤ê¡¢ |
|
¼õ¤±¼è¤ë¤³¤È¤¬²Äǽ¤Ê CMO ·Á¼°¤Î¥¿¥°¤¬Æþ¤ë¡£ |
|
\[ \overbrace{ |
|
\begin{tabular}{|c|c|c|c|c|} \hline |
|
$c_{i21}$ & $c_{i22}$ & $\cdots$ & $c_{i2l}$ \\ \hline |
|
\end{tabular} |
|
}^{c_{i2}} \] |
|
|
|
%¤Ê¤ª¡¢ mathcap ¥Ç¡¼¥¿¤ÎÃæ¤Ç¤Ï CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë |
|
%32 bit À°¿ô¡¢Ê¸»úÎ󡢥ꥹ¥È¹½Â¤¤¬»È¤ï¤ì¤Æ¤ª¤ê¡¢ |
|
%mathcap ¥Ç¡¼¥¿¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ëÆâÍƤòÍý²ò¤Ç¤¤ë¤¿¤á¤Ë¤Ï |
|
%ɬÁ³Åª¤Ë¤³¤ì¤é¤âÍý²ò¤Ç¤¤ëɬÍפ¬¤¢¤ë |
|
%(¤Ã¤Æ¤³¤È¤Ï CMO ·Á¼°¤Î¤È¤³¤í¤Ç¤³¤ì¤é¤ò |
|
%ÀâÌÀ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¤Ã¤Æ¤³¤È¤Ç¤¹)¡£ |
|
|
|
¶ñÂÎŪ¤Ê mathcap ¤ÎÎã¤ò¤¢¤²¤è¤¦¡£ |
|
%¤Ê¤ª¡¢ $a_1$, $a_2$, $\cdots$, $a_n$ ¤òÍ×ÁÇ¤Ë |
|
%»ý¤Ä¥ê¥¹¥È¹½Â¤¤ò {\tt [$a_1$, $a_2$, $\cdots$, $a_n$]} ¡¢ |
|
%ʸ»úÎó ``string'' ¤ò {\tt "string"} ¡¢ 32 bit À°¿ô¤ò |
|
%¤½¤ì¤ËÂбþ¤¹¤ë 10 ¿Ê¿ô¤ÎÀ°¿ô¤Ç¼¨¤¹¡£ |
|
̾Á°¤¬ ``ox\_test'' ¡¢¥Ð¡¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤¬ 199911250 ¤Î¥µ¡¼¥Ð¤Ç¤¢¤ì¤Ð¡¢ |
|
$A$ ¤ÎÉôʬ¤Ï |
|
\begin{tabular}{|c|c|} \hline |
|
199911250 & "ox\_test" \\ \hline |
|
\end{tabular} |
|
¤È¤Ê¤ë¡£ |
|
¤µ¤é¤Ë¡¢¤³¤Î¥µ¡¼¥Ð¤Î¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤¬ |
|
Ì¿Îᥳ¡¼¥É 2, 3, 5, 7, 11 ÈÖ¤òÍøÍѲÄǽ |
|
(¼ÂºÝ¤Ë¤Ï¤³¤Î¤è¤¦¤ÊÌ¿Îᥳ¡¼¥É¤Ï¸ºß¤·¤Ê¤¤)¤Ç¤¢¤ì¤Ð¡¢ $B$ ¤ÎÉôʬ¤Ï |
|
\begin{tabular}{|c|c|c|c|c|} \hline |
|
2 & 3 & 5 & 7 & 11 \\ \hline |
|
\end{tabular} |
|
¤È¤Ê¤ê¡¢ |
|
CMO ·Á¼°¤Î 32 ¥Ó¥Ã¥ÈÀ°¿ô¡¢Ê¸»úÎó¡¢ mathcap ¡¢¥ê¥¹¥È¹½Â¤¤Î¤ß¤¬ |
|
¼õ¤±¼è¤ì¤ë¤È¤¤Ë¤Ï¡¢ $C$ ¤ÎÉôʬ¤Ï |
|
\begin{tabular}{|c|} \hline |
|
\\[-5mm] |
|
\begin{tabular}{|c|c|} \hline |
|
& \\[-5mm] |
|
OX\_DATA & |
|
\begin{tabular}{|c|c|c|c|} \hline |
|
CMO\_INT32 & CMO\_STRING & CMO\_MATHCAP & CMO\_LIST \\ \hline |
|
\end{tabular} \\[0.8mm] \hline |
|
\end{tabular} \\[1.4mm] \hline |
|
\end{tabular} \\ |
|
¤È¤Ê¤ë¡£ |
|
CMO\_ZZ ¤¬¤Ê¤¤¤Î¤Ç¡¢¤³¤Î¥µ¡¼¥Ð¤Ï¿ÇÜĹÀ°¿ô¤¬ |
|
Á÷¤é¤ì¤Æ¤³¤Ê¤¤¤³¤È¤ò´üÂÔ¤·¤Æ¤¤¤ë¡£ |
|
|
¤Ê¤ª¡¢¥Ç¡¼¥¿¤¬¼õ¤±¼è¤ì¤ë¤³¤È¤È¡¢ |
¤Ê¤ª¡¢¥Ç¡¼¥¿¤¬¼õ¤±¼è¤ì¤ë¤³¤È¤È¡¢ |
¥Ç¡¼¥¿¤ÎÏÀÍý¹½Â¤¤¬Íý²ò¤Ç¤¤ë¤³¤È¤È¤Ï¤Þ¤Ã¤¿¤¯ÊÌʪ¤Ç¤¢¤ë¤Î¤Ç |
¥Ç¡¼¥¿¤ÎÏÀÍý¹½Â¤¤¬Íý²ò¤Ç¤¤ë¤³¤È¤È¤Ï¤Þ¤Ã¤¿¤¯ÊÌʪ¤Ç¤¢¤ë¤Î¤Ç |
Ãí°Õ¤¹¤ëɬÍפ¬¤¢¤ë¡£ |
Ãí°Õ¤¹¤ëɬÍפ¬¤¢¤ë¡£ |
Line 302 ox\_asir ¤Ï CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤ò¼õ¤±¼è¤ì¤ë¤³¤È¤¬¤ï¤« |
|
Line 441 ox\_asir ¤Ï CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤ò¼õ¤±¼è¤ì¤ë¤³¤È¤¬¤ï¤« |
|
|
|
\section{¥»¥¥å¥ê¥Æ¥£Âкö} |
\section{¥»¥¥å¥ê¥Æ¥£Âкö} |
|
|
OpenXM ¤Ç¤Ï´ö¤é¤«¤Î¥»¥¥å¥ê¥Æ¥£Âкö¤ò¹Í¤¨¤Æ¤¤¤ë¡£ |
OpenXM µ¬Ìó¤Ï TCP/IP ¤òÍѤ¤¤ÆÄÌ¿®¤ò¹Ô¤¦¤³¤È¤ò¹Íθ¤·¤Æ¤¤¤ë¡£ |
OpenXM ¤ËÂбþ¤·¤¿¥½¥Õ¥È¥¦¥§¥¢¤ò¥¯¥é¥Ã¥¯¤·¤Æ¤â |
¥Í¥Ã¥È¥ï¡¼¥¯¤Ë¤è¤Ã¤ÆÀܳ¤µ¤ì¤ë¸½Âå¤Î¿¤¯¤Î¥½¥Õ¥È¥¦¥§¥¢¤ÈƱÍÍ¡¢ |
Â礷¤¿ÍøÅÀ¤Ï¤Ê¤¤¤È»×¤¨¤ë¤¬¡¢¤½¤ì¤ÏÀß·×¾å¤ÎÏäǤ¢¤Ã¤Æ¡¢ |
OpenXM µ¬Ìó¤â¤Þ¤¿ÄÌ¿®»þ¤Î¥»¥¥å¥ê¥Æ¥£¤Ë¤Ä¤¤¤ÆÃí°Õ¤·¤Æ¤¤¤ë¡£ |
ͽ´ü¤»¤Ì¼êÃʤǹ¶·â¤ò¼õ¤±¤¿¾ì¹ç¤Ë¤É¤Î¤è¤¦¤Ê»öÂÖ¤ò |
°Ê²¼¡¢¤³¤Î¤³¤È¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£ |
¾·¤¯¤«¤ÏÁÛÁü¤·Æñ¤¤¡£ |
|
|
|
¤½¤³¤Ç¡¢ OpenXM ¤Ç¤Ï¿¯Æþ¼Ô¤Ë¹¶·â¤Îµ¡²ñ¤ò |
{\large\bf °ÕÌ£ÉÔÌÀ¤Ê¤³¤È¤ò½ñ¤¤¤Æ¤¤¤ë¤¬¡¢} |
¤Ç¤¤ë¤À¤±Í¿¤¨¤Ê¤¤¤è¤¦¤Ë¤·¤Æ¤¤¤ë¡£ |
|
¶ñÂÎŪ¤Ë¤Ï¡¢Àܳ¤¬É¬Íפˤʤä¿»þ¤Î¤ßÀܳ¤òÂԤĤ褦¤Ë¤·¡¢ |
|
¾ï¤ËÀܳ¤Ë´ØÍ¿¤¹¤ë¤È¤¤¤Ã¤¿¤³¤È¤ÏÈò¤±¤Æ¤¤¤ë¡£ |
|
|
|
¤·¤«¤·¡¢¤³¤ì¤À¤±¤Ç¤Ï¿¯Æþ¼Ô¤¬Àܳ¤ò¹Ô¤Ê¤¦°ì½Ö¤Î¤¹¤¤ò |
¿¯Æþ¼Ô¤Ë¹¶·â¤Îµ¡²ñ¤ò¤Ç¤¤ë¤À¤±Í¿¤¨¤Ê¤¤¤è¤¦¤¹¤ë¤¿ |
ÁÀ¤Ã¤Æ¤¯¤ë²ÄǽÀ¤â¤¢¤ë¡£ |
¤á¤Ë¡¢Àܳ¤¬É¬Íפˤʤä¿»þ¤Î¤ßÀܳ¤òÂԤĤ褦¤Ë¤·¡¢ |
¤½¤³¤ÇÀܳ¤ò¹Ô¤Ê¤¦»þ¤Ë¡¢ |
¾ï¤ËÀܳ¤Ë´ØÍ¿¤¹¤ë¤È¤¤¤Ã¤¿¤³¤È¤ÏÈò¤±¤Æ¤¤¤ë(¤ä¤Ã¤Ñ¤ê°ÕÌ£ÉÔÌÀ¤Ç¤¢¤ë)¡£ |
Àܳ¤òÂԤĥݡ¼¥ÈÈÖ¹æ¤ò¥é¥ó¥À¥à¤Ë·è¤á¤Æ¤¤¤ë¡£ |
|
¤³¤¦¤¹¤ë¤³¤È¤Ç¡¢ÆÃÄê¤Î¥Ý¡¼¥ÈÈÖ¹æ¤òÁÀ¤Ã¤ÆÀܳ¤ò¹Ô¤Ê¤¦ |
|
½Ö´Ö¤òÂԤļê¸ý¤ò´ö¤é¤«Ëɤ°¤³¤È¤¬¤Ç¤¤ë¡£ |
|
|
|
|
¤Þ¤¿¡¢¿¯Æþ¼Ô¤¬Àܳ¤ò¹Ô¤Ê¤¦°ì½Ö¤Î¤¹¤¤òÁÀ¤Ã¤Æ¤¯¤ë²ÄǽÀ¤â¤¢¤ë¤Î¤Ç¡¢ |
|
Àܳ¤ò¹Ô¤Ê¤¦»þ¤ËÀܳ¤òÂԤĥݡ¼¥ÈÈÖ¹æ¤ò¥é¥ó¥À¥à¤Ë·è¤á¤Æ¤¤¤ë(郎·è¤á¤Æ¤¤ |
|
¤ë¤Î¤«¤Ï¤ä¤Ã¤Ñ¤êÉÔÌÀ¤Ç¤¢¤ë¤¬)¡£ |
¤µ¤é¤Ë¤â¤¦°ìÃÊ°ÂÁ´À¤ò¹â¤á¤ë¤¿¤á¤Ë¡¢ |
¤µ¤é¤Ë¤â¤¦°ìÃÊ°ÂÁ´À¤ò¹â¤á¤ë¤¿¤á¤Ë¡¢ |
Àܳ»þ¤Ë 1 ²ó¤À¤±»ÈÍѲÄǽ¤Ê¥Ñ¥¹¥ï¡¼¥É¤òºîÀ®¤·¡¢ |
Àܳ»þ¤Ë 1 ²ó¤À¤±»ÈÍѲÄǽ¤Ê¥Ñ¥¹¥ï¡¼¥É¤òºîÀ®¤·¡¢ |
¤½¤Î¥Ñ¥¹¥ï¡¼¥É¤ò»È¤Ã¤Æǧ¾Ú¤ò¹Ô¤Ê¤¦¡£ |
¤½¤Î¥Ñ¥¹¥ï¡¼¥É¤ò»È¤Ã¤Æǧ¾Ú¤ò¹Ô¤Ê¤¦(郎¥Ñ¥¹¥ï¡¼¥É¤ò·è¤á¤Æ郎ǧ¾Ú¤ò¹Ô¤Ã |
|
¤Æ¤¤¤ë¤Î¤«¤¬ÉÔÌÀ¤À¤±¤É)¡£ |
¤³¤Î¥Ñ¥¹¥ï¡¼¥É¤Ï°ìö»ÈÍѤµ¤ì¤ì¤Ð̵¸ú¤Ë¤¹¤ë¤Î¤Ç¡¢ |
¤³¤Î¥Ñ¥¹¥ï¡¼¥É¤Ï°ìö»ÈÍѤµ¤ì¤ì¤Ð̵¸ú¤Ë¤¹¤ë¤Î¤Ç¡¢ |
¤â¤·²¾¤Ë¤Ê¤ó¤é¤«¤Î¼êÃʤǥѥ¹¥ï¡¼¥É¤¬±Ì¤ì¤¿¤È¤·¤Æ¤â°ÂÁ´¤Ç¤¢¤ë¡£ |
¤â¤·²¾¤Ë¤Ê¤ó¤é¤«¤Î¼êÃʤǥѥ¹¥ï¡¼¥É¤¬±Ì¤ì¤¿¤È¤·¤Æ¤â°ÂÁ´¤À¤È¹Í¤¨¤Æ¤¤¤ë¡£ |
|
|
¤Ê¤ª¡¢¾åµ¤Î¥Ý¡¼¥ÈÈÖ¹æ¤È¥Ñ¥¹¥ï¡¼¥É¤Ï°ÂÁ´¤Ê¼êÃʤÇÁ÷¤é¤ì¤Æ |
%¤Ê¤ª¡¢¾åµ¤Î¥Ý¡¼¥ÈÈÖ¹æ¤È¥Ñ¥¹¥ï¡¼¥É¤Ï°ÂÁ´¤Ê¼êÃʤÇÁ÷¤é¤ì¤Æ |
¤¤¤ë¤È²¾Äꤷ¤Æ¤¤¤ë¡£ |
%¤¤¤ë¤È²¾Äꤷ¤Æ¤¤¤ë¡£ |
¤Þ¤¿¡¢Æ±°ì¤Î¥³¥ó¥Ô¥å¡¼¥¿¾å¤Ë°°Õ¤Î¤¢¤ë¥æ¡¼¥¶¤Ï¤¤¤Ê¤¤¤È²¾Äꤷ¤Æ¤¤¤ë |
%¤Þ¤¿¡¢Æ±°ì¤Î¥³¥ó¥Ô¥å¡¼¥¿¾å¤Ë°°Õ¤Î¤¢¤ë¥æ¡¼¥¶¤Ï¤¤¤Ê¤¤¤È²¾Äꤷ¤Æ¤¤¤ë |
¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
%¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ |
¤Ê¤¼¤Ê¤é¡¢¸½ºß¤Î¼ÂÁõ¤Ç¤Ï¥µ¡¼¥Ð¡¢¤ª¤è¤Ó¥¯¥é¥¤¥¢¥ó¥È¤ÎÆ°ºî¤·¤Æ¤¤¤ë |
%¤Ê¤¼¤Ê¤é¡¢¸½ºß¤Î¼ÂÁõ¤Ç¤Ï¥µ¡¼¥Ð¡¢¤ª¤è¤Ó¥¯¥é¥¤¥¢¥ó¥È¤ÎÆ°ºî¤·¤Æ¤¤¤ë |
¥³¥ó¥Ô¥å¡¼¥¿¾å¤Ç¤Ï¤³¤Î¥Ý¡¼¥ÈÈÖ¹æ¤È¥Ñ¥¹¥ï¡¼¥É¤¬¤ï¤«¤Ã¤Æ¤·¤Þ¤¦¤¿¤á¤Ç¤¢¤ë¡£ |
%¥³¥ó¥Ô¥å¡¼¥¿¾å¤Ç¤Ï¤³¤Î¥Ý¡¼¥ÈÈÖ¹æ¤È¥Ñ¥¹¥ï¡¼¥É¤¬¤ï¤«¤Ã¤Æ¤·¤Þ¤¦¤¿¤á¤Ç¤¢¤ë¡£ |
|
|
¤Ê¤ª¡¢Àܳ¤¬³ÎΩ¤·¤¿¸å¤Î¥á¥Ã¥»¡¼¥¸¤ÎÁ÷¼õ¿®¤Ë´Ø¤·¤Æ¤Ï¡¢ |
¤Ê¤ª¡¢Àܳ¤¬³ÎΩ¤·¤¿¸å¤Î¥á¥Ã¥»¡¼¥¸¤ÎÁ÷¼õ¿®¤Ë´Ø¤·¤Æ¤Ï¡¢ |
Æä˰Ź沽¤Ê¤É¤Î½èÃÖ¤¬¹Ô¤Ê¤ï¤ì¤Æ¤¤¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¡£ |
Æä˰Ź沽¤Ê¤É¤Î½èÃÖ¤ò¹Ô¤Ã¤Æ¤¤¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¡£ |
¤â¤·É¬Íפ¬¤¢¤ì¤Ð¡¢ÄÌ¿®Ï©¤Î°Å¹æ²½¤ò¹Ô¤Ê¤¦µ¡Ç½¤¬¤¢¤ë |
¤â¤·É¬Íפ¬¤¢¤ì¤Ð¡¢ÄÌ¿®Ï©¤Î°Å¹æ²½¤ò¹Ô¤Ê¤¦µ¡Ç½¤¬¤¢¤ë |
¥½¥Õ¥È¥¦¥§¥¢¤ò»È¤¦¤³¤È¤ò¹Í¤¨¤Æ¤¤¤ë¡£ |
¥½¥Õ¥È¥¦¥§¥¢ ssh ¤ò»È¤¦¤³¤È¤ò¹Í¤¨¤Æ¤¤¤ë¡£ |
|
|
|
|
\section{¾¤Î¥×¥í¥¸¥§¥¯¥È} |
\section{¾¤Î¥×¥í¥¸¥§¥¯¥È} |
|
|
¾¤Î¥×¥í¥¸¥§¥¯¥È¤Ë¤Ä¤¤¤Æ¤â¿¨¤ì¤Æ¤ª¤³¤¦¡£ |
¾¤Î¥×¥í¥¸¥§¥¯¥È¤Ë¤Ä¤¤¤Æ¤â¿¨¤ì¤Æ¤ª¤³¤¦¡£ |
|
|
|
\begin{itemize} |
|
\item OpenMath |
|
|
OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
¥³¥ó¥Ô¥å¡¼¥¿¾å¤Çɽ¸½¤¹¤ëÊýË¡¤ò·èÄꤷ¤Æ¤¤¤ë¡£ |
¥³¥ó¥Ô¥å¡¼¥¿¾å¤Çɽ¸½¤¹¤ëÊýË¡¤ò·èÄꤷ¤Æ¤¤¤ë¡£ |
³Æ¥½¥Õ¥È¥¦¥§¥¢´Ö¤Ç¥ª¥Ö¥¸¥§¥¯¥È¤ò¸ò´¹¤¹¤ëºÝ¤Î |
³Æ¥½¥Õ¥È¥¦¥§¥¢´Ö¤Ç¥ª¥Ö¥¸¥§¥¯¥È¤ò¸ò´¹¤¹¤ëºÝ¤Î |
Line 354 OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
|
Line 492 OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò |
|
http://www.openmath.org/omsoc/index.html A.M.Cohen |
http://www.openmath.org/omsoc/index.html A.M.Cohen |
|
|
|
|
°Ê²¼¤Ï½ñ¤¤¤Æ¤ëÅÓÃæ¡£ |
\item NetSolve |
|
|
NetSolve |
|
|
|
http://www.cs.utk.edu/netsolve/ |
http://www.cs.utk.edu/netsolve/ |
|
|
|
|
MP |
\item MP |
|
|
http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html |
http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html |
|
|
|
|
MCP |
\item MCP |
|
|
http://horse.mcs.kent.edu/~pwang/ |
http://horse.mcs.kent.edu/~pwang/ |
|
\end{itemize} |
|
|
|
|
\section{¸½ºßÄ󶡤µ¤ì¤Æ¤¤¤ë¥½¥Õ¥È¥¦¥§¥¢} |
\section{¸½ºßÄ󶡤µ¤ì¤Æ¤¤¤ë¥½¥Õ¥È¥¦¥§¥¢} |
Line 379 asir, sm1, Mathematica ¤¬¤¢¤ë¡£ |
|
Line 516 asir, sm1, Mathematica ¤¬¤¢¤ë¡£ |
|
OpenXM µ¬³Ê¤ËÂбþ¤·¤¿¥µ¡¼¥Ð¤ò¸Æ¤Ó½Ð¤¹¤³¤È¤¬¤Ç¤¤ë¡£ |
OpenXM µ¬³Ê¤ËÂбþ¤·¤¿¥µ¡¼¥Ð¤ò¸Æ¤Ó½Ð¤¹¤³¤È¤¬¤Ç¤¤ë¡£ |
¸½ºß OpenXM µ¬Ìó¤ËÂбþ¤·¤Æ¤¤¤ë¥µ¡¼¥Ð¥½¥Õ¥È¥¦¥§¥¢¤Ë¤Ï¡¢ |
¸½ºß OpenXM µ¬Ìó¤ËÂбþ¤·¤Æ¤¤¤ë¥µ¡¼¥Ð¥½¥Õ¥È¥¦¥§¥¢¤Ë¤Ï¡¢ |
asir, sm1, gnuplot, Mathematica ¤Ê¤É¤¬¤¢¤ê¡¢ |
asir, sm1, gnuplot, Mathematica ¤Ê¤É¤¬¤¢¤ê¡¢ |
¤½¤ì¤¾¤ì ox\_asir, ox\_sm1, ox\_math ¤È¤¤¤¦Ì¾Á°¤ÇÄ󶡤µ¤ì¤Æ¤¤¤ë¡£ |
¤½¤ì¤¾¤ì ox\_asir, ox\_sm1, ox\_sm1\_gnuplot, ox\_math |
¤Þ¤¿¡¢ OpenMath µ¬³Ê¤Î XML ɽ¸½¤Çɽ¸½¤µ¤ì¤¿¥Ç¡¼¥¿¤È CMO ·Á¼°¤Î |
¤È¤¤¤¦Ì¾Á°¤ÇÄ󶡤µ¤ì¤Æ¤¤¤ë¡£ |
¥Ç¡¼¥¿¤òÊÑ´¹¤¹¤ë¥½¥Õ¥È¥¦¥§¥¢¤¬ JAVA ¤Ë¤è¤Ã¤Æ¼ÂÁõ¤µ¤ì¤Æ¤ª¤ê¡¢ |
¤Þ¤¿¡¢ OpenMath µ¬³Ê¤Î XML ɽ¸½¤Çɽ¸½¤µ¤ì¤¿¥ª¥Ö¥¸¥§¥¯¥È¤È CMO ·Á¼°¤Î |
|
¥ª¥Ö¥¸¥§¥¯¥È¤òÊÑ´¹¤¹¤ë¥½¥Õ¥È¥¦¥§¥¢¤¬ JAVA ¤Ë¤è¤Ã¤Æ¼ÂÁõ¤µ¤ì¤Æ¤ª¤ê¡¢ |
OMproxy ¤È¤¤¤¦Ì¾Á°¤ÇÄ󶡤µ¤ì¤Æ¤¤¤ë¡£ |
OMproxy ¤È¤¤¤¦Ì¾Á°¤ÇÄ󶡤µ¤ì¤Æ¤¤¤ë¡£ |
|
|
|
\begin{thebibliography}{99} |
|
\bibitem{Ohara-Takayama-Noro-1999} |
|
¾®¸¶¸ùǤ, ¹â»³¿®µ£, ÌîϤÀµ¹Ô: |
|
{Open asir ÆþÌç}, 1999, ¿ô¼°½èÍý, Vol 7, No 2, 2--17. (ISBN4-87243-086-7, SEG ½ÐÈÇ, Tokyo). |
|
\bibitem{OpenXM-1999} |
|
ÌîϤÀµ¹Ô, ¹â»³¿®µ£: |
|
{Open XM ¤ÎÀ߷פȼÂÁõ --- Open message eXchange protocol for Mathematics}, |
|
1999/11/22 |
|
\end{thebibliography} |
|
|
\end{document} |
\end{document} |