version 1.53, 1999/12/23 08:02:12 |
version 1.57, 1999/12/23 14:02:56 |
|
|
\documentclass{jarticle} |
\documentclass{jarticle} |
|
|
%% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.52 1999/12/23 07:03:12 tam Exp $ |
%% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.56 1999/12/23 12:57:20 tam Exp $ |
|
|
\usepackage{jssac} |
\usepackage{jssac} |
\title{¥¿¥¤¤Î¥È¥ë} |
\title{¥¿¥¤¤Î¥È¥ë} |
Line 86 OpenXM ¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë TCP/IP ¼ÂÁõ¤Ë¤è¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥ |
|
Line 86 OpenXM ¤Çµ¬Äꤵ¤ì¤Æ¤¤¤ë TCP/IP ¼ÂÁõ¤Ë¤è¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥ |
|
\begin{verbatim} |
\begin{verbatim} |
#define OX_COMMAND 513 |
#define OX_COMMAND 513 |
#define OX_DATA 514 |
#define OX_DATA 514 |
|
#define OX_SYNC_BALL 515 |
#define OX_DATA_WITH_LENGTH 521 |
#define OX_DATA_WITH_LENGTH 521 |
#define OX_DATA_OPENMATH_XML 523 |
#define OX_DATA_OPENMATH_XML 523 |
#define OX_DATA_OPENMATH_BINARY 524 |
#define OX_DATA_OPENMATH_BINARY 524 |
#define OX_DATA_MP 525 |
#define OX_DATA_MP 525 |
¤ê¤Ê¤¤¤â¤Î¤ÏÄɲä·¤Þ¤·¤ç¤¦¡£ÂÕ¤±¤Æ¤Ï¥À¥á¤è¡£ |
|
\end{verbatim} |
\end{verbatim} |
|
|
¥Ü¥Ç¥£¤Î¹½Â¤¤Ï¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤Ë¤è¤Ã¤Æ°Û¤Ê¤ë¡£ |
¥Ü¥Ç¥£¤Î¹½Â¤¤Ï¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤Ë¤è¤Ã¤Æ°Û¤Ê¤ë¡£ |
Line 118 OX\_COMMAND ¤È¤Ê¤Ã¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤Î |
|
Line 118 OX\_COMMAND ¤È¤Ê¤Ã¤Æ¤¤¤ë¥á¥Ã¥»¡¼¥¸¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤Î |
|
¥»¡¼¥¸¤ò¼õ¤±¼è¤Ã¤¿¥µ¡¼¥Ð¤Ï¤½¤ì¤ËÂбþ¤¹¤ëÆ°ºî¤ò¹Ô¤Ê¤¦¤³¤È¤¬´üÂÔ¤µ¤ì¤Æ¤¤¤ë¡£ |
¥»¡¼¥¸¤ò¼õ¤±¼è¤Ã¤¿¥µ¡¼¥Ð¤Ï¤½¤ì¤ËÂбþ¤¹¤ëÆ°ºî¤ò¹Ô¤Ê¤¦¤³¤È¤¬´üÂÔ¤µ¤ì¤Æ¤¤¤ë¡£ |
¥µ¡¼¥Ð¤Ï¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤é¤Ê¤¤¸Â¤ê¡¢¼«¤é²¿¤«Æ°ºî¤ò¤ª¤³¤Ê¤ï¤Ê¤¤¡£ |
¥µ¡¼¥Ð¤Ï¥á¥Ã¥»¡¼¥¸¤ò¼õ¤±¼è¤é¤Ê¤¤¸Â¤ê¡¢¼«¤é²¿¤«Æ°ºî¤ò¤ª¤³¤Ê¤ï¤Ê¤¤¡£ |
|
|
{\large\bf °ÕÌ£ÉÔÌÀ¤Ê½ñ¤Êý¤À¤±¤É¡¢} ¤³¤ì¤ÏËè²ó¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ë |
{\large\bf °ÕÌ£ÉÔÌÀ¤Ê½ñ¤Êý¤À¤±¤É¡¢} |
|
|
|
¤³¤ì¤ÏËè²ó¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ë |
¤¿¤Ó¤Ë¡¢¤¤¤Ä¤â¥µ¡¼¥Ð¤«¤é¤Î¥á¥Ã¥»¡¼¥¸¤ò¥¯¥é¥¤¥¢¥ó¥È¤¬ÂÔ¤ÄɬÍפ¬¤Ê¤¤¤³¤È¤ò |
¤¿¤Ó¤Ë¡¢¤¤¤Ä¤â¥µ¡¼¥Ð¤«¤é¤Î¥á¥Ã¥»¡¼¥¸¤ò¥¯¥é¥¤¥¢¥ó¥È¤¬ÂÔ¤ÄɬÍפ¬¤Ê¤¤¤³¤È¤ò |
°ÕÌ£¤¹¤ë¡£¤³¤Î¤¿¤á¡¢¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¤Î¾õÂÖ¤òµ¤¤Ë¤»¤º¤Ë¥á¥Ã¥»¡¼¥¸¤òÁ÷ |
°ÕÌ£¤¹¤ë¡£¤³¤Î¤¿¤á¡¢¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¤Î¾õÂÖ¤òµ¤¤Ë¤»¤º¤Ë¥á¥Ã¥»¡¼¥¸¤òÁ÷ |
¤ê¡¢°ìö¥á¥Ã¥»¡¼¥¸¤òÁ÷ÉÕ¤·½ª¤¨¤¿¸å¡¢¥µ¡¼¥Ð¤ØÁ÷¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Î·ë²Ì¤ò¥µ¡¼ |
¤ê¡¢°ìö¥á¥Ã¥»¡¼¥¸¤òÁ÷ÉÕ¤·½ª¤¨¤¿¸å¡¢¥µ¡¼¥Ð¤ØÁ÷¤Ã¤¿¥á¥Ã¥»¡¼¥¸¤Î·ë²Ì¤ò¥µ¡¼ |
Line 193 CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿¤Ï¿ÇÜĹÀ°¿ô°Ê³°¤Ë¤â |
|
Line 195 CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿¤Ï¿ÇÜĹÀ°¿ô°Ê³°¤Ë¤â |
|
¿ÇÜĹÀ°¿ô¤Ï 20 ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¿ÇÜĹÀ°¿ô¤Ï 20 ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
¤è¤¯»È¤ï¤ì¤ë¤È»×¤ï¤ì¤ë CMO ·Á¼°¤Î¥¿¥°¤ò¤¢¤²¤Æ¤ª¤¯¡£ |
¤è¤¯»È¤ï¤ì¤ë¤È»×¤ï¤ì¤ë CMO ·Á¼°¤Î¥¿¥°¤ò¤¢¤²¤Æ¤ª¤¯¡£ |
\begin{verbatim} |
\begin{verbatim} |
#define CMO_INT32 2 /* 32 ¥Ó¥Ã¥ÈÀ°¿ô */ |
#define CMO_INT32 2 /* 32 ¥Ó¥Ã¥ÈÀ°¿ô */ |
#define CMO_STRING 4 /* ʸ»úÎó */ |
#define CMO_STRING 4 /* ʸ»úÎó */ |
#define CMO_LIST 17 /* ¥ê¥¹¥È¹½Â¤ */ |
#define CMO_MATHCAP 5 /* mathcap(¸å½Ò) */ |
#define CMO_ZZ 20 /* ¿ÇÜĹÀ°¿ô */ |
#define CMO_LIST 17 /* ¥ê¥¹¥È¹½Â¤ */ |
|
#define CMO_ZZ 20 /* ¿ÇÜĹÀ°¿ô */ |
\end{verbatim} |
\end{verbatim} |
|
|
¤³¤³¤Ç TCP/IP ¼ÂÁõ¤Ë¤ª¤±¤ë 32 bit ¤ÎÀ°¿ô¤Î |
¤³¤³¤Ç TCP/IP ¼ÂÁõ¤Ë¤ª¤±¤ë 32 bit ¤ÎÀ°¿ô¤Î |
Line 249 $4294967298 = 1 \times 2^{32} + 2$ ¤ò CMO ·Á¼°¤Î |
|
Line 252 $4294967298 = 1 \times 2^{32} + 2$ ¤ò CMO ·Á¼°¤Î |
|
|
|
\section{mathcap ¤Ë¤Ä¤¤¤Æ} |
\section{mathcap ¤Ë¤Ä¤¤¤Æ} |
|
|
OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³Æ¥½¥Õ¥È¥¦¥§¥¢¤¬À© |
OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò |
¸Â¤¹¤ëÊýË¡¤òÍÑ°Õ¤·¤Æ¤¤¤ë¡£¤³¤ì¤Ï³Æ¥½¥Õ¥È¥¦¥§¥¢¤Î¼ÂÁõ¤Ë¤è¤Ã¤Æ¤Ï¤¹¤Ù¤Æ¤Î¥á¥Ã |
³Æ¥½¥Õ¥È¥¦¥§¥¢¤¬À©¸Â¤¹¤ëÊýË¡¤òÍÑ°Õ¤·¤Æ¤¤¤ë¡£ |
¥»¡¼¥¸¤ò¥µ¥Ý¡¼¥È¤¹¤ë¤Î¤¬º¤Æñ¤Ê¾ì¹ç¤¬¤¢¤ë¤«¤é¤Ç¤¢¤ë¡£¤Þ¤¿¡¢³Æ¥½¥Õ¥È¥¦¥§¥¢ |
¤³¤ì¤Ï³Æ¥½¥Õ¥È¥¦¥§¥¢¤Î¼ÂÁõ¤Ë¤è¤Ã¤Æ¤Ï¤¹¤Ù¤Æ¤Î¥á¥Ã¥»¡¼¥¸¤ò |
¤Ç¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³ÈÄ¥¤·¤¿¤¤¾ì¹ç¤Ë¤â͸ú¤Ç¤¢¤ë¡£ |
¥µ¥Ý¡¼¥È¤¹¤ë¤Î¤¬º¤Æñ¤Ê¾ì¹ç¤¬¤¢¤ë¤«¤é¤Ç¤¢¤ë¡£ |
¤³¤ÎÀ©¸Â(¤¢¤ë¤¤¤Ï³ÈÄ¥)¤Ï mathcap ¤È¸Æ¤Ð¤ì¤ë¥Ç¡¼¥¿¹½Â¤¤Ë¤è¤Ã¤Æ¹Ô¤ï¤ì¤ë¡£ |
¤Þ¤¿¡¢³Æ¥½¥Õ¥È¥¦¥§¥¢¤Ç¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³ÈÄ¥¤·¤¿¤¤¾ì¹ç¤Ë¤â͸ú¤Ç¤¢¤ë¡£ |
¤³¤ÎÀá¤Ç¤Ï mathcap ¤Î¥Ç¡¼¥¿¹½Â¤¤È¡¢¶ñÂÎŪ¤Ê¥á¥Ã¥»¡¼¥¸¤ÎÀ©¸Â¤Î¼ê³¤¤Ë¤Ä |
¤³¤ÎÀ©¸Â(¤¢¤ë¤¤¤Ï³ÈÄ¥)¤Ï CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë mathcap ¤È |
¤¤¤ÆÀâÌÀ¤¹¤ë¡£ |
¸Æ¤Ð¤ì¤ë¥Ç¡¼¥¿¹½Â¤¤Ë¤è¤Ã¤Æ¹Ô¤ï¤ì¤ë¡£ |
|
¤³¤ÎÀá¤Ç¤Ï mathcap ¤Î¥Ç¡¼¥¿¹½Â¤¤È¡¢ |
|
¶ñÂÎŪ¤Ê¥á¥Ã¥»¡¼¥¸¤ÎÀ©¸Â¤Î¼ê³¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£ |
|
|
¤Þ¤º¡¢¼ê³¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£ |
¤Þ¤º¡¢¼ê³¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£ |
|
¥¯¥é¥¤¥¢¥ó¥È¦¤Î mathcap ¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢ |
|
¤¹¤Ç¤ËÀâÌÀ¤·¤¿¤è¤¦¤Ë¡¢¥µ¡¼¥Ð¤Ï¼õ¤±¼è¤Ã¤¿ mathcap ¤ò¥¹¥¿¥Ã¥¯¤ËÀѤ߾夲¤ë¡£ |
|
¼¡¤Ë¥¯¥é¥¤¥¢¥ó¥È¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤³¤È¤Ë¤è¤ê¡¢ |
|
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤Æ¤¤¤ë mathcap ¤ò¼è¤ê½Ð¤·¡¢ |
|
mathcap ¤ÇÀßÄꤵ¤ì¤Æ¤¤¤Ê¤¤¥á¥Ã¥»¡¼¥¸¤ò¥¯¥é¥¤¥¢¥ó¥È¦¤Ø |
|
Á÷¤é¤Ê¤¤¤è¤¦¤ËÀßÄꤹ¤ë¡£ |
|
¥µ¡¼¥Ð¦¤Î mathcap ¤¬Íߤ·¤¤¾ì¹ç¤Ë¤Ï°Ê²¼¤Î¤è¤¦¤Ë¤¹¤ë¡£ |
|
¥¯¥é¥¤¥¢¥ó¥È¤¬¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îᥳ¡¼¥É¤Ë¤è¤êÍ׵᤹¤ë¤È¡¢ |
|
¥µ¡¼¥Ð¤Ï¥µ¡¼¥Ð¼«¿È¤Î mathcap ¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
|
¤µ¤é¤Ë¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤ËÌ¿Îá¤òÁ÷¤ì¤Ð¡¢ |
|
¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤Ë¤¢¤ë mathcap ¤ò¥¯¥é¥¤¥¢¥ó¥È¤ØÁ÷½Ð¤¹¤ë¡£ |
|
¤³¤Î¤è¤¦¤Ë¤·¤Æ¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¦¤Î mathcap ¤ò¼õ¤±¼è¤ë¤ï¤±¤Ç¤¢¤ë¡£ |
|
|
\begin{quote} |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
\end{quote} |
|
|
|
¼¡¤Ë mathcap ¤Î¥Ç¡¼¥¿¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£ |
¼¡¤Ë mathcap ¤Î¥Ç¡¼¥¿¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£ |
|
|
\begin{quote} |
mathcap ¤Ï°Ê²¼¤Î¤è¤¦¤Ê 3 ¤Ä¤ÎÍ×ÁǤ«¤é¤Ê¤ë¥ê¥¹¥È¤ò»ý¤Ã¤Æ¤¤¤ë¡£ |
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ÀâÌÀ¡£ |
|
\end{quote} |
|
|
|
|
\begin{tabular}{|c|c|c|} \hline |
|
$A$ & $B$ & $C$ \\ \hline |
|
\end{tabular} |
|
|
|
ºÇ½é¤ÎÍ×ÁÇ $A$ ¤ÎÉôʬ¤Ï°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤ª¤ê¡¢ |
|
$a_1$ ¤Ï 32 ¥Ó¥Ã¥ÈÀ°¿ô¤Ç¥Ð¡¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤ò¡¢ |
|
$a_2$ ¤Ïʸ»úÎó¤Ç¥·¥¹¥Æ¥à¤Î̾Á°¤òɽ¤¹¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
|
|
\begin{tabular}{|c|c|} \hline |
|
$a_1$ & $a_2$ \\ \hline |
|
\end{tabular} |
|
|
|
2 ÈÖÌܤÎÍ×ÁÇ $B$ ¤ÎÉôʬ¤Ï¼¡¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£ |
|
|
|
\begin{tabular}{|c|c|c|c|} \hline |
|
$b_1$ & $b_2$ & $\cdots$ & $b_n$ \\ \hline |
|
\end{tabular} |
|
|
|
¤³¤Î $b_1$, $b_2$, $\cdots$, $b_n$ ¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Ç¤¢¤ë¡£ |
|
¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Çɽ¤·¤Æ¤ª¤ê¡¢ |
|
³Æ $b_i$ ¤ÏÍøÍѲÄǽ¤ÊÌ¿Îá¤ËÂбþ¤¹¤ë 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
|
|
3 ÈÖÌܤÎÍ×ÁÇ $C$ ¤Ï°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£ |
|
|
|
\begin{tabular}{|c|c|c|c|} \hline |
|
$c_1$ & $c_2$ & $\cdots$ & $c_n$ \\ \hline |
|
\end{tabular} |
|
|
|
³Æ $c_i$ ¤â¤Þ¤¿¥ê¥¹¥È¹½Â¤¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
|
ºÇ½é¤ÎÍ×ÁǤ¬ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ |
|
¤³¤ÎÀ°¿ôÃͤϼõ¤±¼è¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¥¿¥°¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢ |
|
2 ÈÖÌܤÎÍ×ÁǰʹߤˤĤ¤¤Æ¤Ï¥¿¥°¤´¤È¤ËÆÈΩ¤Ë·è¤Þ¤Ã¤Æ¤¤¤ë¡£ |
|
|
|
|
¶ñÂÎŪ¤Ê mathcap ¤ÎÎã¤ò¤¢¤²¤ë¡£ |
¶ñÂÎŪ¤Ê mathcap ¤ÎÎã¤ò¤¢¤²¤ë¡£ |
|
|
\begin{quote} |
\begin{quote} |
Line 286 OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³ |
|
Line 325 OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³ |
|
|
|
|
|
{\large\bf ¤³¤ì¤è¤ê°Ê¹ß¤Ï°ÕÌ£ÉÔÌÀ¤Ç»ä¤Ë¤Ï¤è¤¯Ê¬¤«¤ê¤Þ¤»¤ó¤Ç¤·¤¿¤Î¤Ç¡¢ |
{\large\bf ¤³¤ì¤è¤ê°Ê¹ß¤Ï°ÕÌ£ÉÔÌÀ¤Ç»ä¤Ë¤Ï¤è¤¯Ê¬¤«¤ê¤Þ¤»¤ó¤Ç¤·¤¿¤Î¤Ç¡¢ |
¤¿¤Ö¤óÆɼԤâʬ¤«¤é¤Ê¤¤¤Ç¤·¤ç¤¦¤Í¡¢¤È¤¤¤¦¤Î¤Ï¤¤¤¤¤È¤·¤Æ¡¢} |
¤¿¤Ö¤óÆɼԤâʬ¤«¤é¤Ê¤¤¤Ç¤·¤ç¤¦} |
CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë mathcap ¥Ç¡¼¥¿¤Ï |
|
¼õ¤±¼è¤ë¤³¤È¤¬¤Ç¤¤ë¥Ç¡¼¥¿·Á¼°¤òɽ¤¹¥Ç¡¼¥¿¤Ç¤¢¤ê¡¢ |
|
Í׵ᤵ¤ì¤ì¤Ð¥µ¡¼¥Ð¤Ï¥µ¡¼¥Ð¼«¿È¤Î mathcap ¥Ç¡¼¥¿¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ |
|
¤Þ¤¿¡¢¥¯¥é¥¤¥¢¥ó¥È¤«¤é mathcap ¥Ç¡¼¥¿¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤³¤È¤â¤Ç¤¡¢ |
|
mathcap ¥Ç¡¼¥¿¤ò¥µ¡¼¥Ð¤È¥¯¥é¥¤¥¢¥ó¥È¤Î´Ö¤Ç¸ò´¹¤¹¤ë¤³¤È¤Ë¤è¤Ã¤Æ¡¢ |
|
¤ª¸ß¤¤¤ËÁê¼ê¦¤¬¼õ¤±¼è¤ë¤³¤È¤¬¤Ç¤¤Ê¤¤¥Ç¡¼¥¿·Á¼°¤Ç |
|
¥á¥Ã¥»¡¼¥¸¤òÁ÷¤Ã¤Æ¤·¤Þ¤¦¤Î¤òËɤ°¤³¤È¤¬¤Ç¤¤ë¡£ |
|
¤Ê¤ª¡¢ mathcap ¥Ç¡¼¥¿¤ÎÃæ¤Ç¤Ï CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë |
¤Ê¤ª¡¢ mathcap ¥Ç¡¼¥¿¤ÎÃæ¤Ç¤Ï CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë |
32 bit À°¿ô¡¢Ê¸»úÎ󡢥ꥹ¥È¹½Â¤¤¬»È¤ï¤ì¤Æ¤ª¤ê¡¢ |
32 bit À°¿ô¡¢Ê¸»úÎ󡢥ꥹ¥È¹½Â¤¤¬»È¤ï¤ì¤Æ¤ª¤ê¡¢ |
mathcap ¥Ç¡¼¥¿¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ëÆâÍƤòÍý²ò¤Ç¤¤ë¤¿¤á¤Ë¤Ï |
mathcap ¥Ç¡¼¥¿¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ëÆâÍƤòÍý²ò¤Ç¤¤ë¤¿¤á¤Ë¤Ï |
ɬÁ³Åª¤Ë¤³¤ì¤é¤âÍý²ò¤Ç¤¤ëɬÍפ¬¤¢¤ë(¤Ã¤Æ¤³¤È¤Ï CMO ·Á¼°¤Î¤È¤³¤í¤Ç¤³¤ì¤é |
ɬÁ³Åª¤Ë¤³¤ì¤é¤âÍý²ò¤Ç¤¤ëɬÍפ¬¤¢¤ë |
¤òÀâÌÀ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¤Ã¤Æ¤³¤È¤Ç¤¹¤Í¡¢Åļ·¯)¡£ |
(¤Ã¤Æ¤³¤È¤Ï CMO ·Á¼°¤Î¤È¤³¤í¤Ç¤³¤ì¤é¤ò |
|
ÀâÌÀ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¤Ã¤Æ¤³¤È¤Ç¤¹)¡£ |
|
|
OpenXM ÂбþÈǤΠasir ¥µ¡¼¥Ð¤Ç¤¢¤ë ox\_asir ¤¬ÊÖ¤¹ mathcap ¤ò°Ê²¼¤Ë¼¨¤¹¡£ |
OpenXM ÂбþÈǤΠasir ¥µ¡¼¥Ð¤Ç¤¢¤ë ox\_asir ¤¬ÊÖ¤¹ mathcap ¤ò°Ê²¼¤Ë¼¨¤¹¡£ |
|
|
Line 358 OpenXM µ¬Ìó¤â¤Þ¤¿ÄÌ¿®»þ¤Î¥»¥¥å¥ê¥Æ¥£¤Ë¤Ä¤¤¤ÆÃí°Õ¤·¤Æ¤ |
|
Line 392 OpenXM µ¬Ìó¤â¤Þ¤¿ÄÌ¿®»þ¤Î¥»¥¥å¥ê¥Æ¥£¤Ë¤Ä¤¤¤ÆÃí°Õ¤·¤Æ¤ |
|
°Ê²¼¡¢¤³¤Î¤³¤È¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£ |
°Ê²¼¡¢¤³¤Î¤³¤È¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£ |
|
|
{\large\bf °ÕÌ£ÉÔÌÀ¤Ê¤³¤È¤ò½ñ¤¤¤Æ¤¤¤ë¤¬¡¢} |
{\large\bf °ÕÌ£ÉÔÌÀ¤Ê¤³¤È¤ò½ñ¤¤¤Æ¤¤¤ë¤¬¡¢} |
|
|
¿¯Æþ¼Ô¤Ë¹¶·â¤Îµ¡²ñ¤ò¤Ç¤¤ë¤À¤±Í¿¤¨¤Ê¤¤¤è¤¦¤¹¤ë¤¿ |
¿¯Æþ¼Ô¤Ë¹¶·â¤Îµ¡²ñ¤ò¤Ç¤¤ë¤À¤±Í¿¤¨¤Ê¤¤¤è¤¦¤¹¤ë¤¿ |
¤á¤Ë¡¢Àܳ¤¬É¬Íפˤʤä¿»þ¤Î¤ßÀܳ¤òÂԤĤ褦¤Ë¤·¡¢ |
¤á¤Ë¡¢Àܳ¤¬É¬Íפˤʤä¿»þ¤Î¤ßÀܳ¤òÂԤĤ褦¤Ë¤·¡¢ |
¾ï¤ËÀܳ¤Ë´ØÍ¿¤¹¤ë¤È¤¤¤Ã¤¿¤³¤È¤ÏÈò¤±¤Æ¤¤¤ë(¤ä¤Ã¤Ñ¤ê°ÕÌ£ÉÔÌÀ¤Ç¤¢¤ë)¡£ |
¾ï¤ËÀܳ¤Ë´ØÍ¿¤¹¤ë¤È¤¤¤Ã¤¿¤³¤È¤ÏÈò¤±¤Æ¤¤¤ë(¤ä¤Ã¤Ñ¤ê°ÕÌ£ÉÔÌÀ¤Ç¤¢¤ë)¡£ |