[BACK]Return to genkou19991125.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc

Diff for /OpenXM/doc/Attic/genkou19991125.tex between version 1.72 and 1.78

version 1.72, 1999/12/24 12:03:33 version 1.78, 1999/12/24 21:01:21
Line 1 
Line 1 
 \documentclass{jarticle}  \documentclass{jarticle}
   
 %% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.71 1999/12/24 11:16:45 tam Exp $  %% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.77 1999/12/24 19:59:39 tam Exp $
   
 \usepackage{jssac}  \usepackage{jssac}
 \title{  \title{
 1. °ÕÌ£¤â¤Ê¤¤½¤¾þ²á¾ê¤Ê¸ì¶ç¤ÏÇÓ½ü¤·¤Þ¤·¤ç¤¦¡£\\  1. °ÕÌ£¤â¤Ê¤¤½¤¾þ²á¾ê¤Ê¸ì¶ç¤ÏÇÓ½ü¤·¤Þ¤·¤ç¤¦¡£\\
 3. ¤»¤Ã¤«¤¯ fill ¤·¤Æ¤¤¤ë¤Î¤ò¤¤¤¸¤é¤Ê¤¤¤Ç¤¯¤ì¡£  2. ¤»¤Ã¤«¤¯ fill ¤·¤Æ¤¤¤ë¤Î¤ò¤¤¤¸¤é¤Ê¤¤¤Ç¤¯¤ì¡£\\
   3. Åļ¤¬Í·¤ó¤Ç¤Ð¤«¤ê¤Ç¤ª¤ì¤Ð¤«¤ê»Å»ö¤ò¤·¤Æ¤¤¤ë¤Î¤Ï¤É¤¦¹Í¤¨¤Æ¤âÉÔ¸øÊ¿¤À¡£
   ¤Ê¤ó¤Ç»Å»ö¤ò¤·¤Ê¤¤¤Î¤«¡¢¤¤¤¤²Ã¸º»Å»ö¤ò¤·¤í¡¢Åļ¡£
   %¢¬¤¹¤ß¤Þ¤»¤ó¡¢²È¤Ç¸æÈÓ¿©¤Ù¤Æ¤Þ¤·¤¿¡£
 }  }
   
 \author{±ü ë ¡¡ ¹Ô ±û\affil{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê}  \author{±ü ë ¡¡ ¹Ô ±û\affil{¿À¸ÍÂç³ØÂç³Ø±¡¼«Á³²Ê³Ø¸¦µæ²Ê}
Line 21 
Line 24 
   \and  Á° Àî ¡¡ ¾­ ½¨\affil{¿À¸ÍÂç³ØÍý³ØÉô}    \and  Á° Àî ¡¡ ¾­ ½¨\affil{¿À¸ÍÂç³ØÍý³ØÉô}
                 \mail{maekawa@math.sci.kobe-u.ac.jp}                  \mail{maekawa@math.sci.kobe-u.ac.jp}
 }  }
 %\art{}  \art{}
   
 \begin{document}  \begin{document}
 \maketitle  \maketitle
Line 112  OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡
Line 115  OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡
 ÆÀ¤é¤ì¤ë¡£¤³¤Î¥á¥Ã¥»¡¼¥¸¤Î¤ä¤ê¤È¤ê¤Ï¥¯¥é¥¤¥¢¥ó¥È¤Î¼çƳ¤Ç¹Ô¤ï¤ì¤ë¡£¤Ä¤Þ¤ê¡¢  ÆÀ¤é¤ì¤ë¡£¤³¤Î¥á¥Ã¥»¡¼¥¸¤Î¤ä¤ê¤È¤ê¤Ï¥¯¥é¥¤¥¢¥ó¥È¤Î¼çƳ¤Ç¹Ô¤ï¤ì¤ë¡£¤Ä¤Þ¤ê¡¢
 ¥¯¥é¥¤¥¢¥ó¥È¤Ï¼«Í³¤Ë¥á¥Ã¥»¡¼¥¸¤ò¥µ¡¼¥Ð¤ËÁ÷ÉÕ¤·¤Æ¤â¤è¤¤¤¬¡¢¥µ¡¼¥Ð¤«¤é¤Ï¼«  ¥¯¥é¥¤¥¢¥ó¥È¤Ï¼«Í³¤Ë¥á¥Ã¥»¡¼¥¸¤ò¥µ¡¼¥Ð¤ËÁ÷ÉÕ¤·¤Æ¤â¤è¤¤¤¬¡¢¥µ¡¼¥Ð¤«¤é¤Ï¼«
 È¯Åª¤Ë¥á¥Ã¥»¡¼¥¸¤¬Á÷ÉÕ¤µ¤ì¤ë¤³¤È¤Ï¤Ê¤¤¡£¤³¤Î¸¶Íý¤Ï¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó  È¯Åª¤Ë¥á¥Ã¥»¡¼¥¸¤¬Á÷ÉÕ¤µ¤ì¤ë¤³¤È¤Ï¤Ê¤¤¡£¤³¤Î¸¶Íý¤Ï¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó
 ¤Ç¤¢¤ë¤³¤È¤Ç¼Â¸½¤µ¤ì¤ë¡£¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ¤Ï ?? Àá¤Ç½Ò¤Ù¤ë¡£  ¤Ç¤¢¤ë¤³¤È¤Ç¼Â¸½¤µ¤ì¤ë¡£¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ¤Ï \ref{sec:oxsm} Àá
   ¤Ç½Ò¤Ù¤ë¡£
   
 ¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ¤±¼è¤Ã¤¿¥ª¥Ö¥¸¥§¥¯¥È(¤Ä¤Þ¤ê OX\_COMMAND ¤Ç¤Ê¤¤  ¥µ¡¼¥Ð¤¬¥¯¥é¥¤¥¢¥ó¥È¤«¤é¼õ¤±¼è¤Ã¤¿¥ª¥Ö¥¸¥§¥¯¥È(¤Ä¤Þ¤ê OX\_COMMAND ¤Ç¤Ê¤¤
 ¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£)¤Ï¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá  ¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£)¤Ï¤¹¤Ù¤Æ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá
Line 128  OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡
Line 132  OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡
 {\Huge °Ê²¼¡¢½ñ¤­Ä¾¤·}  {\Huge °Ê²¼¡¢½ñ¤­Ä¾¤·}
   
 ¤Þ¤È¤á¤ë¤È¡¢¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢  ¤Þ¤È¤á¤ë¤È¡¢¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ø¥á¥Ã¥»¡¼¥¸¤òÁ÷¤ê¡¢
 ·×»»¤Î·ë²Ì¤òÆÀ¤ë¤È¤¤¤¦¼ê½ç¤òÄɤäƤ¤¤¯¤È¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¡£  ·×»»¤Î·ë²Ì¤òÆÀ¤ë¤È¤¤¤¦¼ê½ç¤Ï°Ê²¼¤Î¤è¤¦¤Ë¤Ê¤ë¡£
   
 \begin{enumerate}  \begin{enumerate}
 \item  \item
Line 137  OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡
Line 141  OpenXM µ¬Ìó¤Ç¤Î·×»»¤È¤Ï¥á¥Ã¥»¡¼¥¸¤ò¸ò´¹¤¹¤ë¤³¤È¤Ç¤¢¤ë¡
 \item  \item
 ¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤ËÌ¿Îá¤òÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤ÏɬÍפʤÀ¤±¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿  ¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤ËÌ¿Îá¤òÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤ÏɬÍפʤÀ¤±¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿
 ¤ò¼è¤ê½Ð¤·¡¢¼Â¹Ô¤·¤¿·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ  ¤ò¼è¤ê½Ð¤·¡¢¼Â¹Ô¤·¤¿·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ
 ¤Ã¤Æ½ñ¤¤¤Æ¤ë¤±¤É¡¢Ì¿Î᤬SM\_popCMO ¤È¤« SM\_shutdown ¤Î¾ì¹ç¤Ï?  %¤Ã¤Æ½ñ¤¤¤Æ¤ë¤±¤É¡¢Ì¿Î᤬SM\_popCMO ¤È¤« SM\_shutdown ¤Î¾ì¹ç¤Ï?
 \item  \item
 ºÇ¸å¤Ë¡Ö¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·Á÷¿®¤ò¹Ô¤Ê¤¦Ì¿Îá¡×¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢  ºÇ¸å¤Ë SM\_popCMO ¤â¤·¤¯¤Ï SM\_popString ¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢
 ¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤«¤é·×»»·ë²Ì¤ÎÆþ¤Ã¤Æ¤¤¤ë¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·¡¢¥¯¥é¥¤¥¢¥ó¥È¤Ø  ¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤«¤é·×»»·ë²Ì¤ÎÆþ¤Ã¤Æ¤¤¤ë¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·¡¢
 Á÷½Ð¤¹¤ë¡£  ¥¯¥é¥¤¥¢¥ó¥È¤ØÁ÷½Ð¤¹¤ë¡£
 \end{enumerate}  \end{enumerate}
   
 \section{OpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó}  
   
   \section{OpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó}\label{sec:oxsm}
   
 OpenXM µ¬Ìó¤Ç¤Ï¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤ÈÄêµÁ¤·¤Æ¤¤¤ë¡£°Ê²¼¡¢OpenXM  OpenXM µ¬Ìó¤Ç¤Ï¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤ÈÄêµÁ¤·¤Æ¤¤¤ë¡£°Ê²¼¡¢OpenXM
 ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤È¸Æ¤Ö¡£¤³¤ÎÀá¤Ç¤ÏOpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ  ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤È¸Æ¤Ö¡£¤³¤ÎÀá¤Ç¤ÏOpenXM ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Î¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ
 ¤·¤è¤¦¡£  ¤·¤è¤¦¡£
Line 194  OpenXM µ¬Ìó¤Ç¤Ï¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤ÈÄêµÁ¤·¤Æ¤
Line 199  OpenXM µ¬Ìó¤Ç¤Ï¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ç¤¢¤ë¤ÈÄêµÁ¤·¤Æ¤
 #define SM_control_reset_connection              1030  #define SM_control_reset_connection              1030
 \end{verbatim}  \end{verbatim}
   
 °Ê²¼¡¢¤É¤¦¤¤¤¦¤È¤­¤Ë·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤफ¥¨¥é¡¼¤Î¾ì¹ç¤É¤¦¤¹¤ë¤«¤ÎÀâÌÀ¤¬  %°Ê²¼¡¢¤É¤¦¤¤¤¦¤È¤­¤Ë·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤफ¥¨¥é¡¼¤Î¾ì¹ç¤É¤¦¤¹¤ë¤«¤ÎÀâÌÀ¤¬
 É¬ÍפǤ¢¤í¤¦¡£  %ɬÍפǤ¢¤í¤¦¡£
   
   ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤ËÂФ¹¤ëÌ¿Îá¤ÎÃæ¤Ë¤Ï¼Â¹Ô¤Ë¤è¤Ã¤Æ·ë²Ì¤¬Ê֤äƤ¯¤ë¤â¤Î¤¬¤¢¤ë¡£
   ·ë²Ì¤¬Ê֤äƤ¯¤ëÌ¿Îá¤ò¼Â¹Ô¤·¤¿¾ì¹ç¡¢¥µ¡¼¥Ð¤Ï¤½¤Î·ë²Ì¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ
   ¤¿¤È¤¨¤Ð¡¢ SM\_executeStringByLocalParser ¤Ï
   ¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤Æ¤¤¤ë¥ª¥Ö¥¸¥§¥¯¥È¤ò
   ¥µ¡¼¥Ð¦¤Î¥í¡¼¥«¥ë¸À¸ì¤Îʸˡ¤Ë½¾¤Ã¤¿Ê¸»úÎó¤È¤ß¤Ê¤·¤Æ·×»»¤ò¹Ô¤Ê¤¦¤¬¡¢
   ¹Ô¤Ê¤Ã¤¿·×»»¤Î·ë²Ì¤Ï¥í¡¼¥«¥ë¸À¸ì¤Çµ­½Ò¤·¤¿Ê¸»úÎó¤Ç¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£
   ¤Ê¤ª¡¢Ì¿Îá¤Î¼Â¹ÔÃæ¤Ë¥¨¥é¡¼¤¬µ¯¤³¤ê¡¢·ë²Ì¤¬ÆÀ¤é¤ì¤Ê¤«¤Ã¤¿¾ì¹ç¤Ë¤Ï¡¢
   ¥¨¥é¡¼¥ª¥Ö¥¸¥§¥¯¥È¤¬¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤ë¡£
   
 \section{CMO ¤Î¥Ç¡¼¥¿¹½Â¤}  
   
   \section{CMO ¤Î¥Ç¡¼¥¿¹½Â¤}\label{sec:cmo}
   
 OpenXM µ¬Ìó¤Ç¤Ï¡¢¿ô³ØŪ¥ª¥Ö¥¸¥§¥¯¥È¤òɽ¸½¤¹¤ëÊýË¡¤È¤·¤Æ CMO ·Á¼°(Common  OpenXM µ¬Ìó¤Ç¤Ï¡¢¿ô³ØŪ¥ª¥Ö¥¸¥§¥¯¥È¤òɽ¸½¤¹¤ëÊýË¡¤È¤·¤Æ CMO ·Á¼°(Common
 Mathematical Object format)¤òÄêµÁ¤·¤Æ¤¤¤ë¡£¤³¤Î CMO ·Á¼°¤Ë¤·¤¿¤¬¤Ã¤¿¥Ç¡¼  Mathematical Object format)¤òÄêµÁ¤·¤Æ¤¤¤ë¡£¤³¤Î CMO ·Á¼°¤Ë¤·¤¿¤¬¤Ã¤¿¥Ç¡¼
 ¥¿¤Ï¡¢¼±Ê̻Ҥ¬ OX\_DATA ¤Ç¤¢¤ë¤è¤¦¤Ê¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£¤Ë¤Ê¤ë¤³¤È¤òÁÛÄꤷ  ¥¿¤Ï¡¢¼±Ê̻Ҥ¬ OX\_DATA ¤Ç¤¢¤ë¤è¤¦¤Ê¥á¥Ã¥»¡¼¥¸¤Î¥Ü¥Ç¥£¤Ë¤Ê¤ë¤³¤È¤òÁÛÄꤷ
Line 211  CMO ·Á¼°¤Ë¤ª¤±¤ë¥Ç¡¼¥¿¹½Â¤¤Ï¼¡¤Î¤è¤¦¤Ê¹½Â¤¤ò¤â¤Ä¡£
Line 225  CMO ·Á¼°¤Ë¤ª¤±¤ë¥Ç¡¼¥¿¹½Â¤¤Ï¼¡¤Î¤è¤¦¤Ê¹½Â¤¤ò¤â¤Ä¡£
 ¥Ø¥Ã¥À        & \hspace{10mm} ¥Ü¥Ç¥£ \hspace{10mm} \\ \hline  ¥Ø¥Ã¥À        & \hspace{10mm} ¥Ü¥Ç¥£ \hspace{10mm} \\ \hline
 \end{tabular}  \end{tabular}
   
 ¥Ø¥Ã¥À¤Ï4¥Ð¥¤¥È¤Ç¤¢¤ë¡£  ¥Ø¥Ã¥À¤Ï4¥Ð¥¤¥È¤Ç¤¢¤ë¡£¥Ü¥Ç¥£¤ÎŤµ¤Ï¤½¤ì¤¾¤ì¤Î¥Ç¡¼¥¿¤Ë¤è¤Ã¤Æ°Û¤Ê¤ë¤¬¡¢
 ¥Ü¥Ç¥£¤ÎŤµ¤Ï¤½¤ì¤¾¤ì¤Î¥Ç¡¼¥¿¤Ë¤è¤Ã¤Æ°Û¤Ê¤ë¤¬¡¢0¤Ç¤â¤è¤¤¡£  0¤Ç¤â¤è¤¤¡£
   
 %¤³¤³¤Ç¤Ï CMO ·Á¼°¤ÎÃæ¤Ç¤â¤è¤¯»È¤ï¤ì¤ë¤â¤Î¤Î¤ß¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£  ¥á¥Ã¥»¡¼¥¸¤ÈƱÍͤ˥إåÀ¤Ï4¥Ð¥¤¥Èñ°Ì¤Ë´ÉÍý¤µ¤ì¤ë¡£¤¹¤Ê¤ï¤Á¡¢CMO ¤Ç¤Ï¥Ø¥Ã
   ¥À¤Ï°ì¤Ä¤À¤±¤Î¾ðÊó¤ò´Þ¤à¡£¤³¤Î4¥Ð¥¤¥È¤Î¥Ø¥Ã¥À¤Î¤³¤È¤ò¥¿¥°¤È¤â¤¤¤¦¡£¤µ¤Æ¡¢
   CMO ¤Ç¤Ï¡¢¥¿¥°¤Ë¤è¤Ã¤Æ¥Ü¥Ç¥£¤ÎÏÀÍýŪ¹½Â¤¤¬·èÄꤹ¤ë¡£¤¹¤Ê¤ï¤Á¡¢¥¿¥°¤Ï¤½¤ì
   ¤¾¤ì¤Î¥Ç¡¼¥¿¹½Â¤¤È1ÂÐ1¤ËÂбþ¤¹¤ë¼±Ê̻ҤǤ¢¤ë¡£¤½¤ì¤¾¤ì¤ÎÏÀÍýŪ¹½Â¤¤Ï
   \cite{OpenXM-1999} ¤Ë¾Ü½Ò¤µ¤ì¤Æ¤¤¤ë¡£¸½ºß¤Î OpenXM µ¬Ìó¤Ç¤Ï°Ê²¼¤Î CMO ¤¬
   ÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£
   
 ¥Ø¥Ã¥À¤ÎÉôʬ¤Ë¤¢¤ë(¥á¥Ã¥»¡¼¥¸¤Î¼±Ê̻ҤȤÏÊ̤ˤ¢¤ë)¥¿¥°¤ò¸«¤ì¤Ð¡¢  
 ¤É¤Î¤è¤¦¤Ê¥Ç¡¼¥¿¤Ç¤¢¤ë¤Î¤«È½Ê̤Ǥ­¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£  
 ¤³¤ì¤Ï¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ÎȽÊ̤λÅÊý¤È¤ª¤Ê¤¸¤Ç¤¢¤ë¡£  
 ¤Ê¤ª¡¢¥¿¥°¤Ï³Æ¥Ç¡¼¥¿Ëè¤Ë 32 bit ¤ÎÀ°¿ô¤Çɽ¤µ¤ì¤Æ¤¤¤ë¡£  
 ¤è¤¯»È¤ï¤ì¤ë¤È»×¤ï¤ì¤ë CMO ·Á¼°¤Î¥¿¥°¤ò¤¢¤²¤Æ¤ª¤¯¡£  
 \begin{verbatim}  \begin{verbatim}
 #define CMO_INT32    2 /* (CMO ·Á¼°¤Î)32 ¥Ó¥Ã¥ÈÀ°¿ô */  #define CMO_ERROR2  0x7f000002
 #define CMO_STRING   4 /* ʸ»úÎó                    */  #define CMO_NULL    1
 #define CMO_MATHCAP  5 /* mathcap(¸å½Ò)             */  #define CMO_INT32   2
 #define CMO_LIST    17 /* ¥ê¥¹¥È¹½Â¤                */  #define CMO_DATUM   3
 #define CMO_ZZ      20 /* ¿ÇÜĹÀ°¿ô                */  #define CMO_STRING  4
   #define CMO_MATHCAP 5
   
   #define CMO_START_SIGNATURE      0x7fabcd03
   #define CMO_ARRAY                16
   #define CMO_LIST                 17
   #define CMO_ATOM                 18
   #define CMO_MONOMIAL32           19
   #define CMO_ZZ                   20
   #define CMO_QQ                   21
   #define CMO_ZERO                 22
   #define CMO_DMS_GENERIC          24
   #define CMO_DMS_OF_N_VARIABLES   25
   #define CMO_RING_BY_NAME         26
   #define CMO_RECURSIVE_POLYNOMIAL 27
   #define CMO_LIST_R               28
   
   #define CMO_INT32COEFF                 30
   #define CMO_DISTRIBUTED_POLYNOMIAL     31
   #define CMO_POLYNOMIAL_IN_ONE_VARIABLE 33
   #define CMO_RATIONAL                   34
   
   #define CMO_64BIT_MACHINE_DOUBLE           40
   #define CMO_ARRAY_OF_64BIT_MACHINE_DOUBLE  41
   #define CMO_128BIT_MACHINE_DOUBLE          42
   #define CMO_ARRAY_OF_128BIT_MACHINE_DOUBLE 43
   
   #define CMO_BIGFLOAT          50
   #define CMO_IEEE_DOUBLE_FLOAT 51
   
   #define CMO_INDETERMINATE 60
   #define CMO_TREE          61
   #define CMO_LAMBDA        62
 \end{verbatim}  \end{verbatim}
 ¥¿¥°°Ê¹ß¤Ï¥Ç¡¼¥¿ËÜÂΤǤ¢¤ê¡¢¥Ç¡¼¥¿ËÜÂΤι½Â¤¤Ï¥Ç¡¼¥¿¤Î¼ïÎà¤Ë¤è¤Ã¤Æ°Û¤Ê¤ë¡£  
 CMO ·Á¼°¤ÎÀ°¿ôÃÍ $123456789$ ¤òɽ¤¹ CMO\_INT32 ¤Ï  
   
 \begin{tabular}{|c|c|} \hline  ¤³¤ÎÃæ¤Ç CMO\_ERROR2, CMO\_NULL, CMO\_INT32, CMO\_DATUM, CMO\_STRING,
 CMO\_INT32 & $123456789$        \\ \hline  CMO\_MATHCAP, CMO\_LIST ¤Ç¼±Ê̤µ¤ì¤ë¥ª¥Ö¥¸¥§¥¯¥È¤ÏºÇ¤â´ðËÜŪ¤Ê¥ª¥Ö¥¸¥§
 \end{tabular}  ¥¯¥È¤Ç¤¢¤Ã¤Æ¡¢¤¹¤Ù¤Æ¤Î OpenXM Âбþ¥·¥¹¥Æ¥à¤Ë¼ÂÁõ¤µ¤ì¤Æ¤¤¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£
   
 ¤ÈÄêµÁ¤µ¤ì¤Æ¤¤¤ë¤¬¡¢¤³¤ì¤ò°Ê¸å (CMO\_INT32, 123456789) ¤È¤·¤Æɽ¤¹¡£  ¤³¤ì¤é¤Ë¤Ä¤¤¤Æ¤Î²òÀâ¤ò¹Ô¤¦Á°¤Ëµ­Ë¡¤Ë¤Ä¤¤¤Æ¡¢¾¯¤·ÀâÌÀ¤·¤Æ¤ª¤¯¡£
 ¤³¤Îɽµ­Êý¤ò CMO expression ¤È¤¤¤¦¡£  ¤³¤ÎÏÀʸ¤Ç¤Ï¡¢Âçʸ»ú¤Ç CMO\_INT32 ¤È½ñ¤¤¤¿¾ì¹ç¤Ë¤Ï¡¢¾åµ­¤ÇÄêµÁ¤·¤¿¼±ÊÌ»Ò
 Æ±Íͤˡ¢Ä¹¤µ 6 ¤Îʸ»úÎó {\tt ``OpenXM''} ¤ò CMO\_STRING ¤Çɽ¤¹¤È¡¢  ¤òɽ¤ï¤¹¡£¤Þ¤¿ CMO\_INT32 ¤Ç¼±Ê̤µ¤ì¤ë¥ª¥Ö¥¸¥§¥¯¥È¤Î¥¯¥é¥¹(¤¢¤ë¤¤¤Ï¥Ç¡¼
 (CMO\_STRING, 6, ``OpenXM'') ¤È¤Ê¤ë¡£  ¥¿¹½Â¤)¤ò cmo\_int32 ¤È¾®Ê¸»ú¤Çɽ¤ï¤¹¤³¤È¤Ë¤¹¤ë¡£
   
 ¤³¤³¤Ç 32 bit ¤ÎÀ°¿ô¤Îɽ¸½ÊýË¡¤Ë¤Ä¤¤¤Æ¿¨¤ì¤Æ¤ª¤¯¡£  ¤µ¤Æ cmo ¤òɽ¸½¤¹¤ë¤¿¤á¤Î°ì¤Ä¤Îµ­Ë¡¤òƳÆþ¤¹¤ë¡£¤³¤Îµ­Ë¡¤Ï CMO expression
 OpenXM µ¬Ìó¤Ç¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç 32 bit ¤ÎÀ°¿ô 20 ¤ò  ¤È¸Æ¤Ð¤ì¤Æ¤¤¤ë¡£¤½¤ÎÀµ³Î¤Ê·Á¼°ÅªÄêµÁ¤Ï \cite{OpenXM-1999} ¤ò»²¾È¤¹¤ë¤³¤È¡£
 {\tt 00 00 00 14} ¤Èɽ¤¹ÊýË¡¤È {\tt 14 00 00 00} ¤Èɽ¤¹ÊýË¡¤¬¤¢¤ë¡£  
 ¤³¤Îɽ¸½ÊýË¡¤Î°ã¤¤¤Ï¥¯¥é¥¤¥¢¥ó¥È¤È¥µ¡¼¥Ð¤ÎºÇ½é¤ÎÀܳ»þ¤Ë  
 ÁÐÊý¤Î¹ç°Õ¤Ç·èÄꤹ¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£  
 ¤Ê¤ª¡¢¹ç°Õ¤¬¤Ê¤¤¾ì¹ç¤Ë¤ÏÁ°¼Ô¤Îɽ¸½ÊýË¡  
 (°Ê¸å¡¢¤³¤Îɽ¸½ÊýË¡¤ò¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¤È¸Æ¤Ö)¤ò  
 »È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£  
 ¤Þ¤¿¡¢Éé¤Î¿ô¤òɽ¸½¤¹¤ëɬÍפ¬¤¢¤ë¤È¤­¤Ë¤Ï¡¢  
 2 ¤ÎÊä¿ôɽ¸½¤ò»È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£  
   
 Àè¤Û¤É¤Î¡¢ (CMO\_INT32, 123456789) ¤ò¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¤Ç  ¤Þ¤º CMO expssion ¤Ï Lisp É÷ɽ¸½¤Î°ì¼ï¤Ç¡¢ cmo ¤ò³ç¸Ì¤Ç°Ï¤ó¤À¥ê¥¹¥È¤È¤·
 ¥Ð¥¤¥ÈÎó¤Ëľ¤¹¤È¡¢  ¤Æɽ¸½¤¹¤ë¡£¤½¤ì¤¾¤ì¤ÎÍ×ÁǤϥ«¥ó¥Þ¤Ç¶èÀڤ롣
 \begin{center}  Î㤨¤Ð¡¢
         {\tt 00 00 00 02 07 5b cd 15}  \begin{quote}
 \end{center}  (17, {\sl int32}, (CMO\_NULL), (2, {\sl int32} $n$))
 ¤È¤Ê¤ê¡¢  \end{quote}
 (CMO\_STRING, 6, ``OpenXM'') ¤Ï  ¤Ï CMO expression ¤Ç¤¢¤ë¡£¤³¤³¤Ç¡¢¾®Ê¸»ú¤Î¼ÐÂΤÇɽ¤µ¤ì¤¿``{\sl int32}''
 \begin{center}  ¤Ï 4¥Ð¥¤¥È¤ÎǤ°Õ¤Î¥Ç¡¼¥¿¤òɽ¤¹µ­¹æ¤Ç¤¢¤ê¡¢``{\sl int32} $n$'' ¤ÏƱ¤¸¤¯ 4
         {\tt 00 00 00 04 00 00 00 06 4f 70 65 6e 58 4d}  ¥Ð¥¤¥È¤Î¥Ç¡¼¥¿¤Ç¤¢¤ë¤¬°Ê²¼¤ÎÀâÌÀ¤Ç $n$ ¤Èɽ¤¹¤³¤È¤ò¼¨¤¹¡£¤Þ¤¿¿ô»ú 17, 2
 \end{center}  ¤Ê¤É¤Ï 4¥Ð¥¤¥È¤Î¥Ç¡¼¥¿¤ÇÀ°¿ôÃͤȤ·¤Æ¤ß¤¿¤È¤­¤ÎÃͤò°ÕÌ£¤¹¤ë¡£CMO\_NULL ¤Ï
 ¤È¤Ê¤ë¡£  ¼±ÊÌ»Ò(¤¹¤Ê¤ï¤Á¿ô»ú 1 ¤ÈÅù²Á)¤Ç¤¢¤ë¡£¤³¤Îµ­Ë¡¤«¤é¾åµ­¤Î¥Ç¡¼¥¿¤Ï 20 ¥Ð¥¤
   ¥È¤ÎÂ礭¤µ¤Î¥Ç¡¼¥¿¤Ç¤¢¤ë¤³¤È¤¬Ê¬¤«¤ë¡£
   ¤Ê¤ª¡¢¤³¤Î¥Ç¡¼¥¿¤Ï CMO ¤Ç¤Ï¤Ê¤¤¤³¤È¤ËÃí°Õ¤·¤Æ¤Û¤·¤¤¡£
   %¤Ê¤ª¡¢ CMO expression ¤Çɽ¸½¤Ç¤­¤Æ¤¤¤Æ¤â¡¢
   %¤½¤ì¤¬ CMO ¤Ç¤¢¤ë¤³¤È¤È¤Ï̵´Ø·¸¤Ç¤¢¤ë¡£
   
   ¤µ¤Æ¡¢¤³¤Îµ­Ë¡¤Î¤â¤È¤Ç cmo\_int32 ¤ò¼¡¤Î¥Ç¡¼¥¿¹½Â¤¤ò»ý¤Ä¤ÈÄêµÁ¤¹¤ë¡£
   \begin{quote}
   cmo\_int32 := (CMO\_INT32,  {\sl int32} $a$)
   \end{quote}
   
 CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤Ï¡¢ Gnu MP¥é¥¤¥Ö¥é¥êÅù¤ò»²¹Í¤Ë¤·¤Æ¤ª¤ê¡¢  %{\Huge ƱÍÍ¤Ë cmo\_string, cmo\_list ¤Ê¤É¤òÄêµÁ}
 Éä¹æÉÕ¤­ÀäÂÐÃÍɽ¸½¤òÍѤ¤¤Æ¤¤¤ë¡£  
 ¥¿¥°°Ê¹ß¤Î·Á¼°¤Ï¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¡£  
   
 \begin{tabular}{|c|c|c|c|c|} \hline  ¤³¤ì¤Ï CMO ¤Î 32 ¥Ó¥Ã¥ÈÀ°¿ô $a$ ¤òɽ¤¹¡£
 $f$ & $b_0$ & $b_1$ & $\cdots$ & $b_{n-1}$ \\ \hline  Â¾¤Î¥ª¥Ö¥¸¥§¥¯¥È¤âÄêµÁ¤¹¤ë¤¿¤á¤Ë¡¢
 \end{tabular}  °Ê¸å ``{\sl string} $s$'' ¤òʸ»úÎó $s$ ¡¢
   ``{\sl cmo} $ob$'' ¤ò CMO ¤Î $ob$ ¤È¤¹¤ë¡£
   ¤³¤ì¤òÍѤ¤¤Æ¡¢ cmo\_string, cmo\_list ¤òÄêµÁ¤¹¤ë¡£
   
 ¤³¤³¤Ç¡¢ 1 ¤Ä¤ÎÏÈ¤Ï 4 ¥Ð¥¤¥È¤òɽ¤·¡¢  \begin{quote}
 $f$ ¤ÏÉä¹æÉÕ¤­ 32 ¥Ó¥Ã¥ÈÀ°¿ô¤ò¡¢  cmo\_string := (CMO\_STRING, {\sl int32} $len$, {\sl string} $str$) \\
 $b_0$, $b_1$, $\cdots$, $b_{n-1}$ ¤ÏÉä¹æ¤Ê¤· 32 ¥Ó¥Ã¥ÈÀ°¿ô¤òɽ¤·¤Æ¤¤¤ë¡£  cmo\_list := (CMO\_LIST, {\sl int32} $n$, {\sl cmo} $ob_1$,
 ¤µ¤é¤Ë¡¢ $|f| = n$ ¤¬À®¤êΩ¤¿¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£                  {\sl cmo} $ob_2$, $\cdots$,{\sl cmo} $ob_n$)
 ¤³¤Î¥ª¥Ö¥¸¥§¥¯¥È¤Ï  \end{quote}
 \[ \mbox{sgn}(f) \times \{ b_0 (2^{32})^0 + b_1 (2^{32})^1 + \cdots  
         + b_{n-1} (2^{32})^{n-1} \}     \]  
 ¤È¤¤¤¦À°¿ô¤Ç¤¢¤ë¤ÈÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£  
 ¤¿¤À¤·¡¢  
 \[ \mbox{sgn}(f) = \left\{ \begin{array}{ll}  
         1       & f>0 \\  
         0       & f=0 \\  
         -1      & f<0 \\ \end{array} \right.    \]  
 ¤Ç¤¢¤ë¡£  
   
 ¤³¤³¤Ç¶ñÂÎÎã¤ò¤À¤½¤¦¡£  ¤³¤ì¤Ï¤½¤ì¤¾¤ìŤµ $len$ ¤Îʸ»úÎó $str$ ¤È¡¢
 $4294967298 = 1 \times 2^{32} + 2$ ¤ò CMO ·Á¼°¤Î  $ob_1$, $ob_2$, $\cdots$, $ob_n$ ¤«¤é¤Ê¤ëŤµ $n$ ¤Î¥ê¥¹¥È¤òɽ¤¹¡£
 ¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¡¢Â¿ÇÜĹÀ°¿ô¤Çɽ¸½¤¹¤ë¤È¡¢  
 \begin{center}  
         {\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01}  
 \end{center}  
 ¤È¤Ê¤ë¡£¤Þ¤¿¡¢Æ±¤¸É½¸½ÊýË¡¤Ç $-1$ ¤òɽ¸½¤¹¤ë¤È¡¢  
 \begin{center}  
         {\tt 00 00 00 14 ff ff ff ff 00 00 00 01}  
 \end{center}  
 ¤È¤Ê¤ë¡£  
   
   
   % ¤³¤³¤Ç 32 bit ¤ÎÀ°¿ô¤Îɽ¸½ÊýË¡¤Ë¤Ä¤¤¤Æ¿¨¤ì¤Æ¤ª¤¯¡£
   % OpenXM µ¬Ìó¤Ç¤Ï¥Ð¥¤¥È¥¹¥È¥ê¡¼¥à¤Ç 32 bit ¤ÎÀ°¿ô 20 ¤ò
   % {\tt 00 00 00 14} ¤Èɽ¤¹ÊýË¡¤È {\tt 14 00 00 00} ¤Èɽ¤¹ÊýË¡¤¬¤¢¤ë¡£
   % ¤³¤Îɽ¸½ÊýË¡¤Î°ã¤¤¤Ï¥¯¥é¥¤¥¢¥ó¥È¤È¥µ¡¼¥Ð¤ÎºÇ½é¤ÎÀܳ»þ¤Ë
   % ÁÐÊý¤Î¹ç°Õ¤Ç·èÄꤹ¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
   % ¤Ê¤ª¡¢¹ç°Õ¤¬¤Ê¤¤¾ì¹ç¤Ë¤ÏÁ°¼Ô¤Îɽ¸½ÊýË¡
   % (°Ê¸å¡¢¤³¤Îɽ¸½ÊýË¡¤ò¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¤È¸Æ¤Ö)¤ò
   % »È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
   % ¤Þ¤¿¡¢Éé¤Î¿ô¤òɽ¸½¤¹¤ëɬÍפ¬¤¢¤ë¤È¤­¤Ë¤Ï¡¢
   % 2 ¤ÎÊä¿ôɽ¸½¤ò»È¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
   
   % Àè¤Û¤É¤Î¡¢ (CMO\_INT32, 123456789) ¤ò¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¤Ç
   % ¥Ð¥¤¥ÈÎó¤Ëľ¤¹¤È¡¢
   % \begin{center}
   %       {\tt 00 00 00 02 07 5b cd 15}
   % \end{center}
   % ¤È¤Ê¤ê¡¢
   % (CMO\_STRING, 6, ``OpenXM'') ¤Ï
   % \begin{center}
   %       {\tt 00 00 00 04 00 00 00 06 4f 70 65 6e 58 4d}
   % \end{center}
   % ¤È¤Ê¤ë¡£
   
   % CMO ·Á¼°¤Î¿ÇÜĹÀ°¿ô¤Ï¡¢ Gnu MP¥é¥¤¥Ö¥é¥êÅù¤ò»²¹Í¤Ë¤·¤Æ¤ª¤ê¡¢
   % Éä¹æÉÕ¤­ÀäÂÐÃÍɽ¸½¤òÍѤ¤¤Æ¤¤¤ë¡£
   % ¥¿¥°°Ê¹ß¤Î·Á¼°¤Ï¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¡£
   
   % \begin{tabular}{|c|c|c|c|c|} \hline
   % $f$ & $b_0$ & $b_1$ & $\cdots$ & $b_{n-1}$ \\ \hline
   % \end{tabular}
   
   % ¤³¤³¤Ç¡¢ 1 ¤Ä¤ÎÏÈ¤Ï 4 ¥Ð¥¤¥È¤òɽ¤·¡¢
   % $f$ ¤ÏÉä¹æÉÕ¤­ 32 ¥Ó¥Ã¥ÈÀ°¿ô¤ò¡¢
   % $b_0$, $b_1$, $\cdots$, $b_{n-1}$ ¤ÏÉä¹æ¤Ê¤· 32 ¥Ó¥Ã¥ÈÀ°¿ô¤òɽ¤·¤Æ¤¤¤ë¡£
   % ¤µ¤é¤Ë¡¢ $|f| = n$ ¤¬À®¤êΩ¤¿¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£
   % ¤³¤Î¥ª¥Ö¥¸¥§¥¯¥È¤Ï
   % \[ \mbox{sgn}(f) \times \{ b_0 (2^{32})^0 + b_1 (2^{32})^1 + \cdots
   %       + b_{n-1} (2^{32})^{n-1} \}     \]
   % ¤È¤¤¤¦À°¿ô¤Ç¤¢¤ë¤ÈÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£
   % ¤¿¤À¤·¡¢
   % \[ \mbox{sgn}(f) = \left\{ \begin{array}{ll}
   %         1       & f>0 \\
   %         0       & f=0 \\
   %         -1      & f<0 \\ \end{array} \right.  \]
   % ¤Ç¤¢¤ë¡£
   
   % ¤³¤³¤Ç¶ñÂÎÎã¤ò¤À¤½¤¦¡£
   % $4294967298 = 1 \times 2^{32} + 2$ ¤ò CMO ·Á¼°¤Î
   % ¥Í¥Ã¥È¥ï¡¼¥¯¥Ð¥¤¥È¥ª¡¼¥À¡¼¡¢Â¿ÇÜĹÀ°¿ô¤Çɽ¸½¤¹¤ë¤È¡¢
   % \begin{center}
   %       {\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01}
   % \end{center}
   % ¤È¤Ê¤ë¡£¤Þ¤¿¡¢Æ±¤¸É½¸½ÊýË¡¤Ç $-1$ ¤òɽ¸½¤¹¤ë¤È¡¢
   % \begin{center}
   %       {\tt 00 00 00 14 ff ff ff ff 00 00 00 01}
   % \end{center}
   % ¤È¤Ê¤ë¡£
   
   
 \section{mathcap ¤Ë¤Ä¤¤¤Æ}  \section{mathcap ¤Ë¤Ä¤¤¤Æ}
   
 OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³Æ¥½¥Õ¥È¥¦¥§¥¢¤¬À©  OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³Æ¥½¥Õ¥È¥¦¥§¥¢¤¬À©
Line 309  OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³
Line 394  OpenXM µ¬Ìó¤Ç¤Ï¡¢ÄÌ¿®»þ¤ËÍѤ¤¤é¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¼ïÎà¤ò³
 ¤Ï mathcap ¤È¸Æ¤Ð¤ì¤ë¥Ç¡¼¥¿¹½Â¤¤Ë¤è¤Ã¤Æ¹Ô¤ï¤ì¤ë¡£¤³¤ÎÀá¤Ç¤Ï mathcap ¤Î¥Ç¡¼  ¤Ï mathcap ¤È¸Æ¤Ð¤ì¤ë¥Ç¡¼¥¿¹½Â¤¤Ë¤è¤Ã¤Æ¹Ô¤ï¤ì¤ë¡£¤³¤ÎÀá¤Ç¤Ï mathcap ¤Î¥Ç¡¼
 ¥¿¹½Â¤¤È¡¢¶ñÂÎŪ¤Ê¥á¥Ã¥»¡¼¥¸¤ÎÀ©¸Â¤Î¼ê³¤­¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£  ¥¿¹½Â¤¤È¡¢¶ñÂÎŪ¤Ê¥á¥Ã¥»¡¼¥¸¤ÎÀ©¸Â¤Î¼ê³¤­¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£
   
 ¤Þ¤º¡¢¼ê³¤­¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£  ¤Ç¤Ï¡¢¼ê³¤­¤Ë¤Ä¤¤¤ÆÀâÌÀ¤·¤è¤¦¡£
 ¥¯¥é¥¤¥¢¥ó¥È¦¤Î mathcap ¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢  
 ¤¹¤Ç¤ËÀâÌÀ¤·¤¿¤è¤¦¤Ë¡¢¥µ¡¼¥Ð¤Ï¼õ¤±¼è¤Ã¤¿ mathcap ¤ò¥¹¥¿¥Ã¥¯¤ËÀѤ߾夲¤ë¡£  
 ¼¡¤Ë¥¯¥é¥¤¥¢¥ó¥È¤Ï¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤³¤È¤Ë¤è¤ê¡¢  
 ¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤ËÀѤޤì¤Æ¤¤¤ë mathcap ¤ò¼è¤ê½Ð¤·¡¢  
 mathcap ¤ÇÀßÄꤵ¤ì¤Æ¤¤¤Ê¤¤¥á¥Ã¥»¡¼¥¸¤ò¥¯¥é¥¤¥¢¥ó¥È¦¤Ø  
 Á÷¤é¤Ê¤¤¤è¤¦¤ËÀßÄꤹ¤ë¡£  
 ¥µ¡¼¥Ð¦¤Î mathcap ¤¬Íߤ·¤¤¾ì¹ç¤Ë¤Ï°Ê²¼¤Î¤è¤¦¤Ë¤¹¤ë¡£  
 ¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤Ë mathcap ¤òÍ׵᤹¤ë¤È¡¢  
 ¥µ¡¼¥Ð¤Ï¥µ¡¼¥Ð¼«¿È¤Î mathcap ¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ  
 ¤µ¤é¤Ë¥µ¡¼¥Ð¤Ë¥¹¥¿¥Ã¥¯¤«¤é¥Ç¡¼¥¿¤ò¼è¤ê½Ð¤·Á÷¿®¤ò¹Ô¤Ê¤¦Ì¿Îá¤òÁ÷¤ì¤Ð¡¢  
 ¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤Ë¤¢¤ë mathcap ¤ò¥¯¥é¥¤¥¢¥ó¥È¤ØÁ÷½Ð¤¹¤ë¡£  
 ¤³¤Î¤è¤¦¤Ë¤·¤Æ¥¯¥é¥¤¥¢¥ó¥È¤Ï¥µ¡¼¥Ð¦¤Î mathcap ¤ò¼õ¤±¼è¤ì¤ë¤ï¤±¤Ç¤¢¤ë¡£  
   
   Âè°ì¤Ë¥µ¡¼¥Ð¤Îµ¡Ç½¤òÀ©¸Â¤¹¤ë¤Ë¤Ï¼¡¤Î¤è¤¦¤Ë¤¹¤ë¡£¥¯¥é¥¤¥¢¥ó¥È¤¬ mathcap
   ¥ª¥Ö¥¸¥§¥¯¥È¤ò¥µ¡¼¥Ð¤ØÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤Ï¼õ¤±¼è¤Ã¤¿mathcap ¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ
   ¼¡¤Ë¥¯¥é¥¤¥¢¥ó¥È¤¬Ì¿Îá SM\_setMathCap ¤òÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤ÎºÇ¾å°Ì
   ¤ËÀѤޤì¤Æ¤¤¤ë mathcap ¥ª¥Ö¥¸¥§¥¯¥È¤ò¼è¤ê½Ð¤·¡¢mathcap ¤ÇÀßÄꤵ¤ì¤Æ¤¤¤Ê
   ¤¤¥á¥Ã¥»¡¼¥¸¤ò¥¯¥é¥¤¥¢¥ó¥È¤ØÁ÷¤é¤Ê¤¤¤è¤¦¤ËÀ©¸Â¤ò¹Ô¤¦¡£
   
   ÂèÆó¤Ë¥¯¥é¥¤¥¢¥ó¥È¤òÀ©¸Â¤¹¤ë¤Ë¤Ï¼¡¤Î¤è¤¦¤Ë¤¹¤ë¡£¥¯¥é¥¤¥¢¥ó¥È¤¬¥µ¡¼¥Ð¤ËÌ¿
   Îá SM\_mathcap ¤òÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤Ï mathcap ¥ª¥Ö¥¸¥§¥¯¥È¤ò¥¹¥¿¥Ã¥¯¤ËÀѤࡣ
   ¤µ¤é¤ËÌ¿Îá SM\_popCMO ¤òÁ÷¤ë¤È¡¢¥µ¡¼¥Ð¤Ï¥¹¥¿¥Ã¥¯¤ÎºÇ¾å°Ì¤Î¥ª¥Ö¥¸¥§¥¯¥È
   (¤¹¤Ê¤ï¤Á mathcap ¥ª¥Ö¥¸¥§¥¯¥È)¤ò¥Ü¥Ç¥£¤È¤¹¤ë¥á¥Ã¥»¡¼¥¸¤ò¥¯¥é¥¤¥¢¥ó¥È¤Ë
   Á÷ÉÕ¤¹¤ë¡£¥¯¥é¥¤¥¢¥ó¥È¤Ï¤½¤Î¥ª¥Ö¥¸¥§¥¯¥È¤ò²òÀϤ·¤Æ¡¢À©¸Â¤ò¤«¤±¤ë¡£
   
 ¼¡¤Ë mathcap ¤Î¥Ç¡¼¥¿¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£  ¼¡¤Ë mathcap ¤Î¥Ç¡¼¥¿¹½Â¤¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£
 mathcap ¤Ï CMO ·Á¼°¤ÇÄêµÁ¤µ¤ì¤Æ¤ª¤ê¡¢  mathcap ¤Ï CMO ¤Î°ì¼ï¤Ç¤¢¤ë¤Î¤Ç¡¢¤¹¤Ç¤ËÀâÌÀ¤·¤¿¤è¤¦¤Ë \\
 1 ¤Ä¤Î CMO ·Á¼°¤Î¥ª¥Ö¥¸¥§¥¯¥È¤ò»ý¤Ä¡£  \begin{tabular}{|c|c|} \hline
   ¥Ø¥Ã¥À        & \hspace{10mm} ¥Ü¥Ç¥£ \hspace{10mm} \\ \hline
   \end{tabular} \\
   ¤Î¹½Â¤¤ò»ý¤Á¥Ø¥Ã¥À¤ÎÃÍ¤Ï 5 ¤Ç¤¢¤ë(\ref{sec:cmo} Àá¤ò»²¾È¤Î¤³¤È)¡£
   ¥Ü¥Ç¥£¤Ï cmo\_list ¥ª¥Ö¥¸¥§¥¯¥È¤Ç¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£
   
 ¤½¤Î¥ª¥Ö¥¸¥§¥¯¥È¤Ï°Ê²¼¤ÇÀâÌÀ¤¹¤ë 3 ¤Ä¤ÎÍ×ÁǤ«¤é¤Ê¤ë¥ê¥¹¥È¤Ç¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£  %\begin{quote}
   %       cmo\_mathcap := (CMO\_MATHCAP,{\sl cmo} obj)
   %\end{quote}
   
 \[      \begin{tabular}{|c|c|c|} \hline  ¤µ¤Æ¡¢mathcap ¥ª¥Ö¥¸¥§¥¯¥È¤Î¥Ü¥Ç¥£¤Î cmo\_list ¥ª¥Ö¥¸¥§¥¯¥È¤Ï°Ê²¼¤Î¾ò·ï¤ò
         $A$ & $B$ & $C$ \\ \hline  Ëþ¤¿¤¹¤³¤È¤òÍ׵ᤵ¤ì¤ë¡£
         \end{tabular}   \]  
   
 ºÇ½é¤ÎÍ×ÁÇ $A$ ¤ÎÉôʬ¤Ï°Ê²¼¤Î¿Þ¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤ª¤ê¡¢  ¤Þ¤º¡¢¤½¤Î cmo\_list ¥ª¥Ö¥¸¥§¥¯¥È¤Ï¾¯¤Ê¤¯¤È¤â¥ê¥¹¥ÈŤ¬ 3 °Ê¾å¤Ç¤Ê¤±¤ì¤Ð
 $a_1$ ¤Ï 32 ¥Ó¥Ã¥ÈÀ°¿ô¤Ç¥Ð¡¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤ò¡¢  ¤Ê¤é¤Ê¤¤¡£
 $a_2$ ¤Ïʸ»úÎó¤Ç¥·¥¹¥Æ¥à¤Î̾Á°¤òɽ¤¹¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£  
   
 \[      \begin{tabular}{|c|c|} \hline  \begin{quote}
         $a_1$ & $a_2$   \\ \hline          (CMO\_LIST, {\sl int32} $3$,
         \end{tabular}   \]                  {\sl cmo} $A$, {\sl cmo} $B$, {\sl cmo} $C$)
   \end{quote}
   %\[     \begin{tabular}{|c|c|c|} \hline
   %       $A$ & $B$ & $C$ \\ \hline
   %       \end{tabular}   \]
   
   Âè°ìÍ×ÁÇ $A$ ¤Ï¤Þ¤¿ cmo\_list ¤Ç¤¢¤ê¡¢¥ê¥¹¥ÈĹ¤Ï 4 °Ê¾å¡¢
   $a_1$ ¤Ï 32 ¥Ó¥Ã¥ÈÀ°¿ô¤Ç¥Ð¡¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤ò¡¢
   $a_2$, $a_3$, $a_4$ ¤Ïʸ»úÎó¤Ç
   ¤½¤ì¤¾¤ì¥·¥¹¥Æ¥à¤Î̾Á°¡¢¡¢ CPU ¤Î¼ïÎà¤òɽ¤¹¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
   \begin{quote}
           (CMO\_LIST, {\sl int32} $4$,
                   {\sl cmo\_int32} $a_1$, {\sl cmo\_string} $a_2$,
                   {\sl cmo\_string} $a_3$, {\sl cmo\_string} $a_4$)
   \end{quote}
   
 2 ÈÖÌܤÎÍ×ÁÇ $B$ ¤ÎÉôʬ¤Ï¼¡¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£  2 ÈÖÌܤÎÍ×ÁÇ $B$ ¤ÎÉôʬ¤Ï¼¡¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£
 ¤³¤Î $b_1$, $b_2$, $\cdots$, $b_n$ ¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Ç¤¢¤ë¡£  ¤³¤Î $b_1$, $b_2$, $\cdots$, $b_n$ ¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Ç¤¢¤ë¡£
   \ref{sec:oxsm} Àá¤Ç¤ß¤¿¤è¤¦¤Ë¡¢
 ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Çɽ¤·¤Æ¤ª¤ê¡¢  ¥¹¥¿¥Ã¥¯¥Þ¥·¥ó¤Ø¤ÎÌ¿Îá¤Ï¤¹¤Ù¤Æ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤Çɽ¤·¤Æ¤ª¤ê¡¢
 ³Æ $b_i$ ¤ÏÍøÍѲÄǽ¤ÊÌ¿Îá¤ËÂбþ¤¹¤ë 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£  ³Æ $b_i$ ¤ÏÍøÍѲÄǽ¤ÊÌ¿Îá¤ËÂбþ¤¹¤ë 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£
   \begin{quote}
           (CMO\_LIST, {\sl int32} $n$,
                   {\sl cmo\_int32} $b_1$, {\sl cmo\_int32} $b_2$,
                   $\cdots$, {\sl cmo\_int32} $b_n$)
   \end{quote}
   
 \[      \begin{tabular}{|c|c|c|c|} \hline  
         $b_1$ & $b_2$ & $\cdots$ & $b_n$        \\ \hline  
         \end{tabular}   \]  
   
 3 ÈÖÌܤÎÍ×ÁÇ $C$ ¤Ï°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£  3 ÈÖÌܤÎÍ×ÁÇ $C$ ¤Ï°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£
 \[  \overbrace{  \begin{quote}
         \begin{tabular}{|c|c|c|c|} \hline          (CMO\_LIST, {\sl int32} $m$,
         $c_1$ & $c_2$ & $\cdots$ & $c_n$        \\ \hline                  (CMO\_LIST, {\sl int32} $l_1$, {\sl cmo\_int32}
         \end{tabular}                  {\sl cmo} $c_1$, {\sl cmo} $c_2$, $\cdots$, {\sl cmo} $c_m$)
    }^{C}        \]  \end{quote}
 %$n$ ¤Ï OX\_COMMAND °Ê³°¤Î¼õ¤±¼è¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¥¿¥°¤Î¼ïÎà¤Î¿ô¤ËÅù¤·¤¤¡£  %%$n$ ¤Ï OX\_COMMAND °Ê³°¤Î¼õ¤±¼è¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¥¿¥°¤Î¼ïÎà¤Î¿ô¤ËÅù¤·¤¤¡£
 %Í×ÁÇ¿ô¤Ï 1 ¤Ç¤â¤â¤Á¤í¤ó¹½¤ï¤Ê¤¤¡£  %%Í×ÁÇ¿ô¤Ï 1 ¤Ç¤â¤â¤Á¤í¤ó¹½¤ï¤Ê¤¤¡£
 ³Æ $c_i$ ¤â¤Þ¤¿°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢  ³Æ $c_i$ ¤â¤Þ¤¿°Ê²¼¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤È¤Ê¤Ã¤Æ¤ª¤ê¡¢
 ¤É¤Î $c_i$ ¤âºÇ½é¤ÎÍ×ÁǤ¬ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£  ¤É¤Î $c_i$ ¤âºÇ½é¤ÎÍ×ÁǤ¬ 32 ¥Ó¥Ã¥È¤ÎÀ°¿ô¤È¤Ê¤Ã¤Æ¤¤¤ë¡£
 \[  \overbrace{  %\[  \overbrace{
         \begin{tabular}{|c|c|c|c|c|} \hline  %       \begin{tabular}{|c|c|c|c|c|} \hline
         $c_{i1}$ (32 ¥Ó¥Ã¥È¤ÎÀ°¿ô) & $c_{i2}$ & $c_{i3}$ &  %       $c_{i1}$ (32 ¥Ó¥Ã¥È¤ÎÀ°¿ô) & $c_{i2}$ & $c_{i3}$ &
                 $\cdots$ & $c_{im}$     \\ \hline  %               $\cdots$ & $c_{im}$     \\ \hline
         \end{tabular}  %       \end{tabular}
    }^{c_i}      \]  %   }^{c_i}     \]
 ¤³¤Î¥ê¥¹¥È¤ÎºÇ½é¤ÎÀ°¿ôÃͤϼõ¤±¼è¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¥¿¥°¤¬Æþ¤Ã¤Æ¤¤¤ë¡£  ¤³¤Î¥ê¥¹¥È¤ÎºÇ½é¤ÎÀ°¿ôÃͤϼõ¤±¼è¤ì¤ë¥á¥Ã¥»¡¼¥¸¤Î¥¿¥°¤¬Æþ¤Ã¤Æ¤¤¤ë¡£
 $c_{i2}$ °Ê¹ß¤Ë¤Ä¤¤¤Æ¤ÏºÇ½é¤Î $c_{i1}$ ¤ÎÃͤˤè¤Ã¤Æ¤½¤ì¤¾¤ì°Û¤Ê¤ë¡£  $c_{i2}$ °Ê¹ß¤Ë¤Ä¤¤¤Æ¤ÏºÇ½é¤Î $c_{i1}$ ¤ÎÃͤˤè¤Ã¤Æ¤½¤ì¤¾¤ì°Û¤Ê¤ë¡£
 ¤³¤³¤Ç¤Ï¡¢ºÇ½é¤ÎÍ×ÁǤ¬ OX\_DATA ¤Î¾ì¹ç¤Ë¤Ä¤¤¤Æ¤Î¤ßÀâÌÀ¤¹¤ë¡£  ¤³¤³¤Ç¤Ï¡¢ºÇ½é¤ÎÍ×ÁǤ¬ OX\_DATA ¤Î¾ì¹ç¤Ë¤Ä¤¤¤Æ¤Î¤ßÀâÌÀ¤¹¤ë¡£
Line 394  $c_{i2}$ ¤Ï°Ê²¼¤Î¿Þ¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
Line 499  $c_{i2}$ ¤Ï°Ê²¼¤Î¿Þ¤Î¤è¤¦¤Ê¥ê¥¹¥È¹½Â¤¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
 %»ý¤Ä¥ê¥¹¥È¹½Â¤¤ò {\tt [$a_1$, $a_2$, $\cdots$, $a_n$]} ¡¢  %»ý¤Ä¥ê¥¹¥È¹½Â¤¤ò {\tt [$a_1$, $a_2$, $\cdots$, $a_n$]} ¡¢
 %ʸ»úÎó ``string'' ¤ò {\tt "string"} ¡¢ 32 bit À°¿ô¤ò  %ʸ»úÎó ``string'' ¤ò {\tt "string"} ¡¢ 32 bit À°¿ô¤ò
 %¤½¤ì¤ËÂбþ¤¹¤ë 10 ¿Ê¿ô¤ÎÀ°¿ô¤Ç¼¨¤¹¡£  %¤½¤ì¤ËÂбþ¤¹¤ë 10 ¿Ê¿ô¤ÎÀ°¿ô¤Ç¼¨¤¹¡£
 Ì¾Á°¤¬ ``ox\_test'' ¡¢¥Ð¡¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤¬ 199911250 ¤Î¥µ¡¼¥Ð¤Ç¤¢¤ì¤Ð¡¢  Ì¾Á°¤¬ ``ox\_test''¡¢¥Ð¡¼¥¸¥ç¥ó¥Ê¥ó¥Ð¡¼¤¬ 199911250 ¤Î¥µ¡¼¥Ð¤Ç¤¢¤ì¤Ð¡¢
 $A$ ¤ÎÉôʬ¤Ï  $A$ ¤ÎÉôʬ¤Ï
 \begin{tabular}{|c|c|} \hline  \begin{tabular}{|c|c|} \hline
 199911250 & "ox\_test" \\ \hline  199911250 & "ox\_test" \\ \hline
Line 452  OpenXM µ¬Ìó¤Ï TCP/IP ¤òÍѤ¤¤ÆÄÌ¿®¤ò¹Ô¤¦¤³¤È¤ò¹Íθ¤·¤Æ¤
Line 557  OpenXM µ¬Ìó¤Ï TCP/IP ¤òÍѤ¤¤ÆÄÌ¿®¤ò¹Ô¤¦¤³¤È¤ò¹Íθ¤·¤Æ¤
 ¤³¤Î¥Ñ¥¹¥ï¡¼¥É¤Ï°ìö»ÈÍѤµ¤ì¤ì¤Ð̵¸ú¤Ë¤¹¤ë¤Î¤Ç¡¢  ¤³¤Î¥Ñ¥¹¥ï¡¼¥É¤Ï°ìö»ÈÍѤµ¤ì¤ì¤Ð̵¸ú¤Ë¤¹¤ë¤Î¤Ç¡¢
 ¤â¤·²¾¤Ë¤Ê¤ó¤é¤«¤Î¼êÃʤǥѥ¹¥ï¡¼¥É¤¬±Ì¤ì¤¿¤È¤·¤Æ¤â°ÂÁ´¤À¤È¹Í¤¨¤Æ¤¤¤ë¡£  ¤â¤·²¾¤Ë¤Ê¤ó¤é¤«¤Î¼êÃʤǥѥ¹¥ï¡¼¥É¤¬±Ì¤ì¤¿¤È¤·¤Æ¤â°ÂÁ´¤À¤È¹Í¤¨¤Æ¤¤¤ë¡£
   
 %¤Ê¤ª¡¢¾åµ­¤Î¥Ý¡¼¥ÈÈÖ¹æ¤È¥Ñ¥¹¥ï¡¼¥É¤Ï°ÂÁ´¤Ê¼êÃʤÇÁ÷¤é¤ì¤Æ  
 %¤¤¤ë¤È²¾Äꤷ¤Æ¤¤¤ë¡£  
 %¤Þ¤¿¡¢Æ±°ì¤Î¥³¥ó¥Ô¥å¡¼¥¿¾å¤Ë°­°Õ¤Î¤¢¤ë¥æ¡¼¥¶¤Ï¤¤¤Ê¤¤¤È²¾Äꤷ¤Æ¤¤¤ë  
 %¤³¤È¤ËÃí°Õ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£  
 %¤Ê¤¼¤Ê¤é¡¢¸½ºß¤Î¼ÂÁõ¤Ç¤Ï¥µ¡¼¥Ð¡¢¤ª¤è¤Ó¥¯¥é¥¤¥¢¥ó¥È¤ÎÆ°ºî¤·¤Æ¤¤¤ë  
 %¥³¥ó¥Ô¥å¡¼¥¿¾å¤Ç¤Ï¤³¤Î¥Ý¡¼¥ÈÈÖ¹æ¤È¥Ñ¥¹¥ï¡¼¥É¤¬¤ï¤«¤Ã¤Æ¤·¤Þ¤¦¤¿¤á¤Ç¤¢¤ë¡£  
   
 ¤Ê¤ª¡¢Àܳ¤¬³ÎΩ¤·¤¿¸å¤Î¥á¥Ã¥»¡¼¥¸¤ÎÁ÷¼õ¿®¤Ë´Ø¤·¤Æ¤Ï¡¢  ¤Ê¤ª¡¢Àܳ¤¬³ÎΩ¤·¤¿¸å¤Î¥á¥Ã¥»¡¼¥¸¤ÎÁ÷¼õ¿®¤Ë´Ø¤·¤Æ¤Ï¡¢
 Æä˰Ź沽¤Ê¤É¤Î½èÃÖ¤ò¹Ô¤Ã¤Æ¤¤¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¡£  Æä˰Ź沽¤Ê¤É¤Î½èÃÖ¤ò¹Ô¤Ã¤Æ¤¤¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¡£
 ¤â¤·É¬Íפ¬¤¢¤ì¤Ð¡¢ÄÌ¿®Ï©¤Î°Å¹æ²½¤ò¹Ô¤Ê¤¦µ¡Ç½¤¬¤¢¤ë  ¤â¤·É¬Íפ¬¤¢¤ì¤Ð¡¢ÄÌ¿®Ï©¤Î°Å¹æ²½¤ò¹Ô¤Ê¤¦µ¡Ç½¤¬¤¢¤ë
Line 473  OpenXM µ¬Ìó¤Ï TCP/IP ¤òÍѤ¤¤ÆÄÌ¿®¤ò¹Ô¤¦¤³¤È¤ò¹Íθ¤·¤Æ¤
Line 571  OpenXM µ¬Ìó¤Ï TCP/IP ¤òÍѤ¤¤ÆÄÌ¿®¤ò¹Ô¤¦¤³¤È¤ò¹Íθ¤·¤Æ¤
 OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò¥³¥ó¥Ô¥å¡¼¥¿¾å¤Çɽ¸½¤¹¤ëÊý  OpenMath ¥×¥í¥¸¥§¥¯¥È¤Ï¿ô³ØŪ¤Ê¥ª¥Ö¥¸¥§¥¯¥È¤ò¥³¥ó¥Ô¥å¡¼¥¿¾å¤Çɽ¸½¤¹¤ëÊý
 Ë¡¤òµ¬Äꤷ¤Æ¤¤¤ë¡£³Æ¥½¥Õ¥È¥¦¥§¥¢´Ö¤Ç¥ª¥Ö¥¸¥§¥¯¥È¤ò¸ò´¹¤¹¤ëºÝ¤Î¥ª¥Ö¥¸¥§¥¯  Ë¡¤òµ¬Äꤷ¤Æ¤¤¤ë¡£³Æ¥½¥Õ¥È¥¦¥§¥¢´Ö¤Ç¥ª¥Ö¥¸¥§¥¯¥È¤ò¸ò´¹¤¹¤ëºÝ¤Î¥ª¥Ö¥¸¥§¥¯
 ¥È¤ÎÊÑ´¹¼ê½ç¤Ë¤Ä¤Æ¤âÄê¤á¤é¤ì¤Æ¤¤¤ë¡£É½¸½ÊýË¡¤Ï´ö¤Ä¤«¤ÎÃʳ¬¤ÇÄê¤á¤é¤ì¤Æ  ¥È¤ÎÊÑ´¹¼ê½ç¤Ë¤Ä¤Æ¤âÄê¤á¤é¤ì¤Æ¤¤¤ë¡£É½¸½ÊýË¡¤Ï´ö¤Ä¤«¤ÎÃʳ¬¤ÇÄê¤á¤é¤ì¤Æ
 ¤¤¤Æ¡¢XML ɽ¸½¤ä binary ɽ¸½¤Ê¤É¤¬ÍÑ°Õ¤µ¤ì¤Æ¤¤¤ë¡£¾ÜºÙ¤Ï  ¤¤¤Æ¡¢XML ɽ¸½¤ä¥Ð¥¤¥Ê¥êɽ¸½¤Ê¤É¤¬ÍÑ°Õ¤µ¤ì¤Æ¤¤¤ë¡£¾ÜºÙ¤Ï
   
 http://www.openmath.org/omsoc/   A.M.Cohen  http://www.openmath.org/omsoc/   A.M.Cohen
   

Legend:
Removed from v.1.72  
changed lines
  Added in v.1.78

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>