=================================================================== RCS file: /home/cvs/OpenXM/doc/Attic/genkou19991125.tex,v retrieving revision 1.3 retrieving revision 1.49 diff -u -p -r1.3 -r1.49 --- OpenXM/doc/Attic/genkou19991125.tex 1999/12/18 11:52:51 1.3 +++ OpenXM/doc/Attic/genkou19991125.tex 1999/12/22 20:09:02 1.49 @@ -1,109 +1,396 @@ \documentclass{jarticle} -\title{\bf Open XM($B%?%$%H%kL$Dj(B)} +\title{タイトル未定} \author{ - Maekawa \\ - Noro \\ - : \\ - : \\ +前川 将秀\thanks{神戸大学理学部数学科}, +野呂 正行\thanks{富士通研究所}, +小原 功任\thanks{金沢大学理学部計算科学教室}, \\ +奥谷 行央 +%\thanks{神戸大学大学院自然科学研究科博士課程前期課程数学専攻}, +\thanks{神戸大学大学院自然科学研究科数学専攻}, +高山 信毅\thanks{神戸大学理学部数学教室}, +田村 恭士 +%\thanks{神戸大学大学院自然科学研究科博士課程後期課程情報メディア科学専攻計算システム講座} +\thanks{神戸大学大学院自然科学研究科情報メディア科学専攻} } -\date{ 1999$BG/(B, 11$B7n(B25$BF|(B} - +\date{1999年11月25日} %\pagestyle{empty} \begin{document} \maketitle -\section{OpenXM $B$N7W;;%b%G%k(B} +\section{OpenXMとは} -OpenXM $B$O?t3X%=%U%H4V$G%a%C%;!<%8$r8r49$9$k$?$a$N5,Ls$G$"$k!#(B -OpenXM $B$H$O(B Open message eXchange protocol for Mathematics $B$NN,$G$"$k!#(B -$B?t3X%=%U%H4V$G%a%C%;!<%8$r$d$j$H$j$5$;$k$3$H$K$h$j!"(B -$B$"$k?t3X%=%U%H$+$iB>$N?t3X%=%U%H$r8F$S=P$7$F7W;;$r9T$J$C$?$j!"(B -$BB>$N%^%7%s$G7W;;$r9T$J$o$;$?$j$G$-$k$h$&$K$9$k!#(B -$BH/C<$OLnO$@59T$H9b;3?.5#$K$h$j!"(B asir $B$H(B kan/sm1 $B$r(B -$BAj8_$K8F$S=P$95!G=$r$N?t3X%=%U%H$r;H$($k$h$&$K$9$k$3$H$G$"$k!#(B +OpenXM は数学プロセス間でメッセージを交換するための規約である。 +数学プロセス間でメッセージをやりとりすることにより、 +ある数学プロセスから他の数学プロセスを呼び出して計算を行なったり、 +他のマシンで計算を行なわせたりすることが目的である。 +なお、 OpenXM とは Open message eXchange protocol for Mathematics の略である。 +OpenXM の開発の発端は野呂と高山により、 +asir と kan/sm1 を相互に呼び出す機能を実装したことである。 -$BH/C<$H$J$C$?(B asir $B$H(B kan/sm1 $B$G$N$N7A<0$r$b(B -$B07$($k$h$&$K$7$F$"$k!#(B +%OpenXM 規約独自のデータ形式である CMO 形式(Common Mathematical Object format) +%以外にも、 MP や OpenMath の XML, binary 表現形式といった他の形式をも +%扱えるようにしてある。 +OpenXM 規約では通信路の確保の方法に幾らかの自由度があるが、 +現在は TCP/IP ソケットを用いた実装しかない。 +%通信の実現方法は通信路のとりかたにより変わる。 +そこで、以後ここでは具体的な実装は TCP/IP ソケットを +用いていると仮定する。 -\section{OpenXM $B$N%a%C%;!<%8$N9=B$(B} -OpenXM $B$G5,Dj$7$F$$$k%a%C%;!<%8$OO@M}E*$K(B -OX $BAX!"(B SM $BAX!"(B CMO $BAX$KJ,$1$k$3$H$,$G$-$k!#(B -$B$3$NCf$G!"%a%C%;!<%8$H$7$FAw$k$3$H$,2DG=$J$N$O(B -OX $BAX$GDj5A$5$l$?$b$N$@$1$G$"$j!"(B -SM $BAX!"(B CMO $BAX$GDj5A$5$l$F$$$k%G!<%?$O(B -OX $BAX$GDj5A$5$l$F$$$k%G!<%?$N0lIt$KKd$a9~$^$l$F(B -$BAw$i$l$k!#(B -SM $BAX!"(B CMO $BAX$GDj5A$5$l$F$$$k%G!<%?0J30$K$b(B -$BA0=R$N(B MP $B$d(B OpenMath $B$N(B XML, binary $BI=8=$b(B -OX $BAX$KKd$a9~$^$l$FAw$i$l$k$o$1$G$"$k$,!"(B -$B$I$N$h$&$J%G!<%?$,Kd$a9~$^$l$F$$$k$+$O!"(B -OX $BAX$N@hF,$N(B tag $B$r8+$l$PH=JL$G$-$k$h$&$K$J$C$F$$$k!#(B +\section{OpenXM のメッセージの構造} +OpenXM で規定されている TCP/IP 実装によるメッセージは +バイトストリームとなっており、 +次のような構造になっている。 -\section{OpenXM $B$N7W;;$N?J9TJ}K!(B} +\begin{tabular}{|c|c|} \hline +ヘッダ & \hspace{10mm} ボディ \hspace{10mm} \\ \hline +\end{tabular} -OpenXM $B5,Ls$G$N%a%C%;!<%8$N8r49$O%5!<%P$H%/%i%$%"%s%H$N4V$G(B -$B9T$J$o$l$k!#%/%i%$%"%s%H$+$i%5!<%P$X7W;;$5$;$?$$%G!<%?$r(B -$B%a%C%;!<%8$H$7$FAw$j!"Dj$5$l$F$*$j!"l9g$K$O!"$=$l$KBP1~$9$kF0:n$r9T$J$&!#(B -$B$3$N$H$-!"I,MW$,$"$l$P%5!<%P$O%9%?%C%/$+$i%G!<%?$rl9g!"(B -$B%5!<%P$OF0:n$N7k2L$r%9%?%C%/$K@Q$s$G$$$k!#(B -$B%5!<%P$K9T$J$o$;$?F0:n$N7k2L$r%/%i%$%"%s%H$,CN$j$?$$>l9g!"(B -$B%9%?%C%/$+$i%G!<%?$r$N%W%m%8%'%/%H(B} +ここで TCP/IP 実装における 32 bit の整数の +表現方法について説明する必要がある。 +OpenXM 規約の TCP/IP 実装ではバイトストリームで 32 bit の整数 20 を +{\tt 00 00 00 14} と表す方法と {\tt 14 00 00 00} と表す方法がある。 +この表現方法の違いはクライアントとサーバの最初の接続時に +双方の合意で決定することになっている。 +なお、合意がない場合には前者の表現方法 +(以後、この表現方法をネットワークバイトオーダーと呼ぶ)を +使うことになっている。 +また、負の数を表現する必要があるときには、 +2 の補数表現を使うことになっている。 -\section{$B8=:_Ds6!$5$l$F$$$k%=%U%H%&%'%"(B} +CMO 形式の多倍長整数は、 GNU MP LIBRARY 等を参考にしており、 +符合付き絶対値表現を用いている。 +タグ以降の形式は次のようになる。 + +\begin{tabular}{|c|c|c|c|c|} \hline +$f$ & $b_0$ & $b_1$ & $\cdots$ & $b_{n-1}$ \\ \hline +\end{tabular} + +ここで、 1 つの枠は 4 バイトを表し、 +$f$ は符合付き 32 ビット整数を、 +$b_0$, $b_1$, $\cdots$, $b_{n-1}$ は符合なし 32 ビット整数を表している。 +さらに、 $|f| = n$ が成り立たなければならない。 +このオブジェクトは +\[ \mbox{sgn}(f) \times \{ b_0 (2^{32})^0 + b_1 (2^{32})^1 + \cdots + + b_{n-1} (2^{32})^{n-1} \} \] +という整数であると定義されている。 +ただし、 +\[ \mbox{sgn}(f) = \left\{ \begin{array}{ll} + 1 & f>0 \\ + 0 & f=0 \\ + -1 & f<0 \\ \end{array} \right. \] +である。 + +ここで具体例をだそう。 +$4294967298 = 1 \times 2^{32} + 2$ を CMO 形式の +ネットワークバイトオーダー、多倍長整数で表現すると、 +\begin{center} + {\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01} +\end{center} +となる。また、同じ表現方法で $-1$ を表現すると、 +\begin{center} + {\tt 00 00 00 14 ff ff ff ff 00 00 00 01} +\end{center} +となる。 + + +\section{MathCap について} + +OpenXM 規約では、通信時に用いられるメッセージの種類を +各ソフトウェアが制限する方法を用意している。 +なぜなら、サーバおよびクライアント双方ともに OpenXM で規定されている +すべてのメッセージの種類を受け取れるわけではないからである。 +そこで、 OpenXM では相手側が受け取ることができる +メッセージの種類を収得する方法を用意している。 + +CMO 形式で定義されている MathCap データは +%理解可能なメッセージの +受け取ることができるデータ形式を表すデータであり、 +要求されればサーバはサーバ自身の MathCap データをスタックに積む。 +また、クライアントから MathCap データをサーバへ送ることもでき、 +MathCap データをサーバとクライアントの間で交換することによって、 +お互いに相手側が受け取ることができないデータ形式で +メッセージを送ってしまうのを防ぐことができる。 +なお、 MathCap データの中では CMO 形式で定義されている +32 bit 整数、文字列、リスト構造が使われており、 +MathCap データに含まれている内容を理解できるためには +必然的にこれらも理解できる必要がある。 + +OpenXM 対応版の asir サーバである ox\_asir が返す MathCap を以下に示す。 + +なお、 $a_1$, $a_2$, $\cdots$, $a_n$ を要素に +持つリスト構造を {\tt [$a_1$, $a_2$, $\cdots$, $a_n$]} 、 +文字列 ``string'' を {\tt "string"} 、 32 bit 整数を +それに対応する 10 進数の整数で示す。 + +%↓手で作ったので間違えている可能性あり。 +%%古いバージョン。差し替えの必要あり。 +\begin{verbatim} +[ [199901160,"ox_asir"], + [276,275,258,262,263,266,267,268,274 + ,269,272,265,264,273,300,270,271], + [ [514,[1,2,3,4,5,2130706433,2130706434 + ,17,19,20,21,22,24,25,26,31,27,33,60]], + [2144202544,[0,1]] + ] +] +\end{verbatim} + +この MathCap データのリスト構造は大きく分けて 3 つの部分に分かれる。 +最初の {\tt [199901160,"ox\_asir"]} の部分にはサーバの情報が入っている。 +%この最初の要素がまたリスト構造となっており、 +最初の要素はバージョンナンバーを、次の要素はサーバの名前を表している。 + +次の {\tt [276,275,$\cdots$,271]} の部分は +スタックマシンに対する命令のうち、利用可能な命令の種類を表している。 +スタックマシンへの命令はすべて 32 ビットの整数で表しており、 +このリストは利用可能な命令に対応する 32 ビットの整数のリストとなっている。 + +最後の {\tt [ [514,[1,2,3,$\cdots$,60]],[2144202544,[0,1]] ]} の部分は +理解可能なデータの形式を表している。 +この部分はさらに {\tt [514,[1,2,3,$\cdots$,60]]} と +{\tt [2144202544,[0,1]]} にの部分に分けることができ、 +それぞれが一つのデータ形式についての情報となっている。 +どのデータ形式についての情報かは最初の要素にある整数値をみれば +分かるようになっている。 +この整数値は CMO 形式では 514 となっている。 +最初のデータ形式を区別する整数値以後の要素は +各データ形式によってどのように使われるか定まっている。 +CMO 形式では理解可能なデータのタグがリストの中に収まっている。 +前節で CMO 形式では多倍長整数を表すタグが 20 であることを述べたが、 +このリストに 20 が含まれているので、 +ox\_asir は CMO 形式の多倍長整数を受け取れることがわかる。 + +なお、データが受け取れることと、 +データの論理構造が理解できることとはまったく別物であるので +注意する必要がある。 + + +\section{セキュリティ対策} + +OpenXM 規約は TCP/IP ソケットを用いて通信路を確保することを +考慮している。 +ネットワークによって接続される現在の多くのソフトウェアたちと同様に、 +OpenXM 規約もまた通信時のセキュリティについて注意している。 + +侵入者に攻撃の機会をできるだけ与えないように、 +接続が必要になった時のみ接続を待つようにし、 +常に接続に関与するといったことは避けている。 +また、侵入者が接続を行なう一瞬のすきを狙ってくる可能性もあるので、 +接続を行なう時に接続を待つポート番号をランダムに決めている。 +さらにもう一段安全性を高めるために、 +接続時に 1 回だけ使用可能なパスワードを作成し、 +そのパスワードを使って認証を行なう。 +このパスワードは一旦使用されれば無効にするので、 +もし仮になんらかの手段でパスワードが洩れたとしても安全だと考えている。 + +%なお、上記のポート番号とパスワードは安全な手段で送られて +%いると仮定している。 +%また、同一のコンピュータ上に悪意のあるユーザはいないと仮定している +%ことに注意しなければならない。 +%なぜなら、現在の実装ではサーバ、およびクライアントの動作している +%コンピュータ上ではこのポート番号とパスワードがわかってしまうためである。 + +なお、接続が確立した後のメッセージの送受信に関しては、 +特に暗号化などの処置を行っているわけではない。 +もし必要があれば、通信路の暗号化を行なう機能がある +ソフトウェア ssh を使うことを考えている。 + + +\section{他のプロジェクト} + +他のプロジェクトについても触れておこう。 + +OpenMath プロジェクトは数学的なオブジェクトを +コンピュータ上で表現する方法を決定している。 +各ソフトウェア間でオブジェクトを交換する際の +オブジェクトの変換手順についても述べられている。 +表現方法は一つだけでなく、 XML 表現や binary 表現などが +用意されている。 +詳細は + +http://www.openmath.org/omsoc/index.html A.M.Cohen + + +以下は書いてる途中。 + +NetSolve + +http://www.cs.utk.edu/netsolve/ + + +MP + +http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html + + +MCP + +http://horse.mcs.kent.edu/~pwang/ + + +\section{現在提供されているソフトウェア} + +現在 OpenXM 規格に対応しているクライアントには +asir, sm1, Mathematica がある。 +これらのクライアントから +OpenXM 規格に対応したサーバを呼び出すことができる。 +現在 OpenXM 規約に対応しているサーバソフトウェアには、 + asir, sm1, gnuplot, Mathematica などがあり、 +それぞれ ox\_asir, ox\_sm1, ox\_math という名前で提供されている。 +また、 OpenMath 規格の XML 表現で表現されたデータと CMO 形式の +データを変換するソフトウェアが JAVA によって実装されており、 +OMproxy という名前で提供されている。 + +\begin{thebibliography}{9} +\item OpenXM の設計と実装 +\item Open asir 入門 +\end{thebibliography} \end{document}