=================================================================== RCS file: /home/cvs/OpenXM/doc/Attic/genkou19991125.tex,v retrieving revision 1.10 retrieving revision 1.92 diff -u -p -r1.10 -r1.92 --- OpenXM/doc/Attic/genkou19991125.tex 1999/12/18 19:03:24 1.10 +++ OpenXM/doc/Attic/genkou19991125.tex 1999/12/25 17:05:28 1.92 @@ -1,244 +1,527 @@ \documentclass{jarticle} -\title{\bf Open XM($B%?%$%H%kL$Dj(B)} -\author{ - Maekawa \\ - Noro \\ - : \\ - : \\ +%% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.91 1999/12/25 15:57:31 tam Exp $ + +\usepackage{jssac} +\title{OpenXM の現状について +1. 意味もない修飾過剰な語句は排除しましょう. \\ +2. せっかく fill しているのをいじらないでくれ. \\ +3. 田村が遊んでばかりでおればかり仕事をしているのはどう考えても不公平だ. +なんで仕事をしないのか, いい加減仕事をしろ, 田村. \\ +3.5 そういうご飯とかつまらない話じゃなくて, commit の情報をみれば田村が +如何に仕事をしていないのかよくわかるよ. \\ } -\date{ 1999$BG/(B, 11$B7n(B25$BF|(B} -%\pagestyle{empty} +\author{奥 谷   行 央\affil{神戸大学大学院自然科学研究科} + \mail{okutani@math.sci.kobe-u.ac.jp} + \and 小 原   功 任\affil{金沢大学理学部} + \mail{ohara@kappa.s.kanazawa-u.ac.jp} + \and 高 山   信 毅\affil{神戸大学理学部} + \mail{takayama@math.sci.kobe-u.ac.jp} + \and 田 村   恭 士\affil{神戸大学大学院自然科学研究科} + \mail{tamura@math.sci.kobe-u.ac.jp} + \and 野 呂   正 行\affil{富士通研究所} + \mail{noro@para.flab.fujitsu.co.jp} + \and 前 川   将 秀\affil{神戸大学理学部} + \mail{maekawa@math.sci.kobe-u.ac.jp} +} +\art{} \begin{document} \maketitle -\section{OpenXM $B$N7W;;%b%G%k(B} -OpenXM $B$O?t3X%=%U%H4V$G%a%C%;!<%8$r8r49$9$k$?$a$N5,Ls$G$"$k!#(B -OpenXM $B$H$O(B Open message eXchange protocol for Mathematics $B$NN,$G$"$k!#(B -$B?t3X%=%U%H4V$G%a%C%;!<%8$r$d$j$H$j$5$;$k$3$H$K$h$j!"(B -$B$"$k?t3X%=%U%H$+$iB>$N?t3X%=%U%H$r8F$S=P$7$F7W;;$r9T$J$C$?$j!"(B -$BB>$N%^%7%s$G7W;;$r9T$J$o$;$?$j$G$-$k$h$&$K$9$k!#(B -$BH/C<$OLnO$@59T$H9b;3?.5#$K$h$j!"(B asir $B$H(B kan/sm1 $B$r(B -$BAj8_$K8F$S=P$95!G=$r$N?t3X%=%U%H$r;H$($k$h$&$K$9$k$3$H$G$"$k!#(B +\section{OpenXMとは} -$BH/C<$H$J$C$?(B asir $B$H(B kan/sm1 $B$G$N$N7A<0$r$b(B -$B07$($k$h$&$K$7$F$"$k!#(B +初期の実装では, 相手側のローカル言語の文法に従った文字列を送っていた. +この方法では相手側のソフトが asir なのか kan/sm1 なのかを判別するなどし +て, 相手側のローカル言語の文法に合わせた文字列を作成しなければならない. +このローカル言語の文法に従った文字列を送る方法は, 効率的であるとはいい難 +いが, 使いやすいとも言える. +現在の OpenXM 規約では共通表現形式によるメッセージを用いている. 上記の +文字列を送る方法の利点を生かすため, OpenXM 規約では共通表現形式の中の文 +字列として, ローカル言語の文法に従った文字列を用いたメッセージの交換も可 +能となっている. -\section{OpenXM $B$N%a%C%;!<%8$N9=B$(B} +OpenXM 規約では通信の方法に幾らかの自由度があるが, 現在のところは TCP/IP +を用いた通信しか実装されていない. \footnote{asir には MPI を用いた実装 +もある.} そこで, この論文では具体的な実装は TCP/IP を用いていると仮定す +る. -OpenXM $B$G5,Dj$7$F$$$k%a%C%;!<%8$OO@M}E*$K(B -OX $BAX!"(B SM $BAX!"(B CMO $BAX$KJ,$1$k$3$H$,$G$-$k!#(B -$B$3$NCf$G!"%a%C%;!<%8$H$7$FAw$k$3$H$,2DG=$J$N$O(B -OX $BAX$GDj5A$5$l$?$b$N$@$1$G$"$j!"(B -SM $BAX!"(B CMO $BAX$GDj5A$5$l$F$$$k%G!<%?$O(B -OX $BAX$GDj5A$5$l$F$$$k%G!<%?$N0lIt$KKd$a9~$^$l$F(B -$BAw$i$l$k!#(B -SM $BAX!"(B CMO $BAX$GDj5A$5$l$F$$$k%G!<%?0J30$K$b(B -$BA0=R$N(B MP $B$d(B OpenMath $B$N(B XML, binary $BI=8=$b(B -OX $BAX$KKd$a9~$^$l$FAw$i$l$k$o$1$G$"$k$,!"(B -$B$I$N$h$&$J%G!<%?$,Kd$a9~$^$l$F$$$k$+$O!"(B -OX $BAX$N@hF,$K$"$k(B tag $B$r8+$l$PH=JL$G$-$k$h$&$K$J$C$F$$$k!#(B +\section{OpenXM のメッセージの構造} +通信の方法によってメッセージの構造は変わる. この論文では TCP/IP の場合 +についてのみ説明を行なう. -\section{OpenXM $B$N7W;;$N?J9TJ}K!(B} +OpenXM 規約で規定されているメッセージはバイトストリームとなっており, 次 +のような構造になっている. -OpenXM $B5,Ls$G$N%a%C%;!<%8$N8r49$O%5!<%P$H%/%i%$%"%s%H$N4V$G(B -$B9T$J$o$l$k!#%/%i%$%"%s%H$+$i%5!<%P$X7W;;$5$;$?$$%G!<%?$r(B -$B%a%C%;!<%8$H$7$FAw$j!"Dj$5$l$F$*$j!"l9g$K$O!"$=$l$KBP1~$9$kF0:n$r9T$J$&!#(B -$B$3$N$H$-!"I,MW$,$"$l$P%5!<%P$O%9%?%C%/$+$i%G!<%?$rl9g!"(B -$B%5!<%P$OF0:n$N7k2L$r%9%?%C%/$K@Q$s$G$$$k!#(B -$B%5!<%P$K9T$J$o$;$?F0:n$N7k2L$r%/%i%$%"%s%H$,CN$j$?$$>l9g!"(B -$B%9%?%C%/$+$i%G!<%?$rl9g!"(B -CMO $BAX$GDj5A$5$l$F$$$kB?G\D9@0?t$rM}2r$7$F$*$/$H!"(B -CMO $BAX$NB>$N%G!<%?9=B$$@$1$G$J$/!"(B OX $BAX!"(B SM $BAX$N%G!<%?$r(B -$BM}2r$9$k=u$1$K$J$k$H;W$($k$N$G!"(B CMO $BAX$NB?G\D9@0?t$N(B -$B%G!<%?9=B$$K$D$$$F@bL@$9$k!#(B +OpenXM 規約ではサーバはスタックマシンであると定義している. 以下, OpenXM +スタックマシンと呼ぶ. この節ではOpenXM スタックマシンの構造について説明 +しよう. -CMO $BAX$GDj5A$5$l$F$$$k%G!<%?$OB?G\D9@0?t0J30$K$b(B -$BJ8;zNs$d%j%9%H$J$I$,$"$k!#$I$N$h$&$J%G!<%?$G$"$k$+$O(B -$B%G!<%?$N@hF,$K$"$k(B tag $B$r8+$l$PH=JL$G$-$k$h$&$K$J$C$F$$$k!#(B -$B$3$l$O(B OX $BAX$G$N%G!<%?$NH=JL$N;EJ}$H$*$J$8$G$"$k!#(B -$B$J$*!"(B tag $B$O3F%G!<%?Kh$K(B 32 bit $B$N@0?t$GI=$5$l$F$*$j!"(B -$BB?G\D9@0?t$O(B 20 $B$H$J$C$F$$$k!#(B -$B$3$3$G(B 32 bit $B$N@0?t$NI=8=J}K!$K$D$$$F@bL@$9$kI,MW$,$"$k!#(B -%$B:r:#$N%3%s%T%e!<%?;v>p$+$i!"(B -%32 bit $B@0?t$b(B 8 bit $BC10L$G07$&$[$&$,ET9g$,$h$$!#(B -OpenXM $B$G$O(B 8 bit $BC10L$G(B $( \mbox{\tt 00 00 00 14})_{2^8}$ $B$HI=$9J}K!$H(B -$( \mbox{\tt 14 00 00 00})_{2^8}$ $B$HI=$9J}K!$,$"$k!#(B -$B$3$NI=8=J}K!$N0c$$$O%/%i%$%"%s%H$H%5!<%P$N:G=i$N@\B3;~$K(B -$BAPJ}$N9g0U$G7hDj$9$k$3$H$K$J$C$F$$$k!#$J$*!"9g0U$,$J$$>l9g$K$O(B -$BA0l9g$N7e?t$r(B $n$ $B$H(B -$B$7$?$H$-!"l9g$N7e?t$H$H$C$F$b$h$$!#(B -$B$?$@$7!"I=8=$7$?$$?t$,Ii$N>l9g$O$3$N(B 32 bit $B$N@0?tCM$O(B 2 $B$NJd?tI=8=$GIi$K$J$k!#(B +次に OpenXM スタックマシンの命令コードについて説明する. OpenXM スタック +マシンにおけるすべての命令は4バイトの長さを持つ. OpenXM 規約の他の規定と +同様に, 4バイトのデータは32ビット整数と見なされるので, この論文でもその +表記にしたがう. OpenXM スタックマシンに対する命令はスタックに積まれるこ +とはない. 現在のところ, OpenXM 規約では以下の命令が定義されている. -%$BI=8=$7$?$$B?G\D9@0?t$,Ii$G$"$C$F$b$3$l0J9_$N@bL@$O@5$N>l9g$H(B -%$BJQ$o$i$J$$$N$G!"0J8eB?G\D9@0?t$O@5$H$_$J$9!#(B +\begin{verbatim} +#define SM_popSerializedLocalObject 258 +#define SM_popCMO 262 +#define SM_popString 263 -$BI=8=$7$?$$B?G\D9@0?t$N@dBPCM$,(B $2^{32}$ $B?J?t$G(B $(b_0 b_1 ...)_{2^{32}}$ -$B$HI=$;$k$H$-!"pJs$,F~$C$F$$$k!#(B -$B$3$N:G=i$NMWAG$,$^$?%j%9%H9=B$$H$J$C$F$*$j!"(B -$B:G=i$NMWAG$O%P!<%8%g%s%J%s%P!<$r!"A0$rI=$7$F$$$k!#(B +この中で CMO\_ERROR2, CMO\_NULL, CMO\_INT32, CMO\_DATUM, CMO\_STRING, +CMO\_MATHCAP, CMO\_LIST で識別されるオブジェクトは最も基本的なオブジェ +クトであって, すべての OpenXM 対応システムに実装されていなければならない. -$BpJs$rI=$7$F$$$k$H$$$C$?$3$H$,M}2r$G$-$k$3$H$H!"(B -$B%G!<%?$,o$K@\B3$rBT$D$3$H$K$h$C$F!"(B -$B?/F~Z$r9T$J$&$h$&$K$J$C$F$$$k!#$3$N%Q%9%o!<%I$O0lC6;HMQ$5$l$k$H(B -$BL58z$K$J$k$N$G!"$b$72>$K$J$s$i$+$Ne$G$O$3$N%Q%9%o!<%I$,$o$+$C$F$7$^$&$?$a!"(B -$BF10l$N%3%s%T%e!<%?>e$K0-0U$N$"$k%f!<%6$O$$$J$$$H2>Dj$7$F$$$k(B -$B$3$H$KCm0U$7$J$1$l$P$J$i$J$$!#(B +第二にクライアントを制限するには次のようにする. クライアントがサーバに命令 \\ +SM\_mathcap を送ると, サーバは mathcap オブジェクトをスタックに積む. +さらに命令 SM\_popCMO を送ると, サーバはスタックの最上位のオブジェクト +(すなわち mathcap オブジェクト)をボディとするメッセージをクライアントに +送付する. クライアントはそのオブジェクトを解析して, 制限をかける. -$B$J$*!"@\B3$,3NN)$7$?8e$N%a%C%;!<%8$NAw$N%W%m%8%'%/%H(B} +第一要素 $a$ はまた cmo\_list であり, リスト長は 4 以上, $a_1$ は +cmo\_int32 でバージョンを表す, $a_2$, $a_3$, $a_4$ は cmo\_string であり, +それぞれシステムの名前, バージョン, HOSTTYPE を表すことになっている. +\begin{quote} +(CMO\_LIST, {\sl int32}, +{\sl cmo\_int32} $a_1$, {\sl cmo\_string} $a_2$, {\sl cmo\_string} +$a_3$, {\sl cmo\_string} $a_4$, $\ldots$) +\end{quote} -\section{$B8=:_Ds6!$5$l$F$$$k%=%U%H%&%'%"(B} +第二要素 $b$ の部分は次のようなリスト構造をしている. +この $b_1$, $b_2$, $\ldots$, $b_n$ はすべて cmo\_int32 である. +\ref{sec:oxsm} 節で説明したが, +スタックマシンへの命令はすべて {\sl int32} で表されていたことに注意しよ +う. 各 $b_i$ は利用可能な命令をボディとした cmo\_int32 となっている. +\begin{quote} +(CMO\_LIST, {\sl int32} $n$, + {\sl cmo\_int32} $b_1$, {\sl cmo\_int32} $b_2$, + $\ldots$, {\sl cmo\_int32} $b_n$) +\end{quote} + +第三要素 $c$ は以下のようなリスト構造をしている. +\begin{quote} +(CMO\_LIST, {\sl int32} $m$, \\ + \hspace{10mm} (CMO\_LIST, {\sl int32} $l_1$, {\sl cmo\_int32} $c_{11}$, + {\sl cmo} $c_{12}$, $\ldots$, {\sl cmo} $c_{1l_1}$), \\ + \hspace{10mm} (CMO\_LIST, {\sl int32} $l_2$, {\sl cmo\_int32} $c_{21}$, + {\sl cmo} $c_{22}$, $\ldots$, {\sl cmo} $c_{1l_2}$), \\ + \hspace{10mm} $\ldots$ \\ + \hspace{10mm} (CMO\_LIST, {\sl int32} $l_m$, {\sl cmo\_int32} $c_{m1}$, + {\sl cmo} $c_{m2}$, $\ldots$, {\sl cmo} $c_{1l_m}$)) +\end{quote} +{\Large 以下、全然説明が分かりません。} +どの $c_{i1}$ にも cmo\_int32 が入っており, +OX\_COMMAND 以外の, 受け取れるメッセージの識別子が入っている. +$c_{i2}$ 以降については最初の $c_{i1}$ の値によってそれぞれ異なる. +ここでは, OX\_DATA の場合についてのみ説明する. +この $c_{i1}$ が OX\_DATA の場合, +$c_{i1}$, $c_{i2}$, $\ldots$, $c_{il_i}$ を要素とする cmo\_list は +CMO 形式についての情報を表しており, $l_i=2$ と決められている. +$c_{i1}$ にはもちろんのこと OX\_DATA が入っており, +$c_{i2}$ は以下の図のような cmo\_list になっている. +各要素は cmo\_int32 であり, +受け取ることが可能な CMO 形式のタグが入る. +\begin{quote} + (CMO\_LIST, {\sl int32} $k$, + {\sl cmo\_int32} $c_{i21}$, {\sl cmo\_int32} $c_{i22}$, + $\ldots$, {\sl cmo\_int32} $c_{i2k}$) +\end{quote} + +具体的な mathcap の例をあげよう. 名前が ``ox\_test'', バージョンナンバー +が 199911250 のサーバで, PC-UNIX 上で動いており, +さらに, このサーバのスタックマシンが命令 SM\_popCMO, SM\_popString, +SM\_mathcap, SM\_executeStringByLocalParser を利用可能, +かつ, cmo\_int32, cmo\_string, cmo\_mathcap, cmo\_list のみに制限したい +ときの mathcap は +\begin{quote} +(CMO\_LIST, 3, \\ +\ \ (CMO\_LIST, 4, (CMO\_INT32, $199911250$), (CMO\_STRING, 7, "ox\_test"), \\ +\ \ \ \ (CMO\_STRING, 9, "199911250"), (CMO\_STRING, 4, "i386")) \\ +\ \ (CMO\_LIST, $5$, (CMO\_INT32, SM\_popCMO), \\ +\ \ \ \ (CMO\_INT32, SM\_popString), (CMO\_INT32, SM\_mathcap), \\ +\ \ \ \ (CMO\_INT32, SM\_executeStringByLocalParser)) \\ +\ \ (CMO\_LIST, $1$, \\ +\ \ \ \ (CMO\_LIST, $2$, (CMO\_INT32, OX\_DATA), \\ +\ \ \ \ \ \ (CMO\_LIST, $4$, (CMO\_INT32, CMO\_INT32), \\ +\ \ \ \ \ \ \ \ (CMO\_INT32, CMO\_STRING), (CMO\_INT32, CMO\_MATHCAP), \\ +\ \ \ \ \ \ \ \ (CMO\_INT32, CMO\_LIST))))) +\end{quote} +になる. + + +\section{セキュリティ対策} + +OpenXM 規約は TCP/IP を用いて通信を行うことを考慮している. ネットワーク +によって接続される現代の多くのソフトウェアと同様, OpenXM 規約もまた通信 +時のセキュリティについて注意している. 以下, このことについて説明しよう. + +第一に OpenXM では侵入者に攻撃の機会をできるだけ与えないようにするため, +サーバは接続が必要になった時のみ起動している. しかし, これだけでは接続 +を行なう一瞬のすきを狙われる可能性もある. そこで接続を行なう時に, 接続 +を行なうポート番号を毎回変えている. こうすることで, 特定のポート番号を +狙って接続を行なう手口を防ぐことができる. + +さらにもう一段安全性を高めるために, 接続時に一時パスワードをクライアント +が作成し, そのパスワードを使って認証を行なう. このパスワードは一旦使用 +されれば無効になるので, もし仮になんらかの手段でパスワードが洩れたとして +も安全である. + +なお, メッセージ自体には特に暗号化などの処置を行っていないので, そのまま +ではパケット盗聴などを受ける可能性がある. 現在の実装では, 必要ならば +ssh を利用して対応している. + + +\section{他のプロジェクト} + +他のプロジェクトについても触れておこう. + +\begin{itemize} +\item ESPRIT OpenMath Project + +http://www.openmath.org/omsoc/ + +数学的対象の SGML 的表記の標準化を目指した大規模なプロジェクト. 異なる種 +類の数式処理システムの間で情報を交換するときに, OpenMath で定義された表 +現を利用することができる. 実際の情報交換の手続きにはいろいろなものが考 +えられるが, 例えば MCP (Mathematical Computation Protocol) なる手続きが +考案されている. MCP によって送信されるデータは, 本文に OpenMath 形式で +数式を記述したテキストで, いささかメイルに似ていなくもない. 実際にこの +方法で GAP と Axiom の間で通信が行われている. + +\item NetSolve + +http://www.cs.utk.edu/netsolve/ + +NetSolve はクライアント・サーバ型の分散システムであり, 単なる計算システ +ム以上のものを目指している. クライアントは必要に応じて, サーバを呼び出 +して計算をさせる. NetSolve の特徴は, サーバの呼び出しに Agent というソ +フトウェアを介在させることである. Agent は呼び出し先などを決定するデー +タベース的役割を果たす. また Agent によって負荷分散が可能になる. 現在 +の NetSolve は RPC を基礎にして実装されている. + +\item MP + +http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html + +科学技術計算を行なうソフトウェア間で数学的なデータを効率的に交換 +させることを目的としたプロトコルを作成している. 木構造を用いて +簡単, かつ柔軟なものを目指しており, データの表現方法や交換方法に +負わずにソフトウェアを作ることができるようにしようとしている. +現在すでに, C 言語で利用可能なライブラリが提供されている. + +\item MCP + +http://horse.mcs.kent.edu/\~{}pwang/ + +数学的な計算を行なうための HTTP スタイルのプロトコル. +クライアント・サーバモデルを採用しており, +ピアツーピアのストリームコネクションを行なう. +RPC よりも, telnet でサーバにログインして計算を行なう感覚に近い. +数学的なオブジェクトを MP や MathML で定められた方法で +表現することが考えられている. +すでに OpenMath を用いた実装が存在する. + + +\end{itemize} + + +\section{現在提供されているソフトウェア} + +現在 OpenXM 規約に対応しているクライアントにはasir, sm1, Mathematica がある. +これらのクライアントから OpenXM 規約に対応したサーバを呼び出すこと +ができる. 現在 OpenXM 規約に対応しているサーバソフトウェアには, asir, +sm1, gnuplot, Mathematica, PHC pack などがあり, +それぞれ ox\_asir, ox\_sm1, ox\_sm1\_gnuplot, ox\_math, ox\_sm1\_phc +という名前で提供されている. また, OpenMath +規約の XML 表現で表現されたオブジェクトと CMO 形式のオブジェクトを変換す +るソフトウェアが JAVA によって実装されており, OMproxy という名前で提供さ +れている. + +\begin{thebibliography}{99} +\bibitem{Ohara-Takayama-Noro-1999} +小原功任, 高山信毅, 野呂正行: + {Open asir 入門}, 1999, 数式処理, + Vol 7, No 2, 2--17. (ISBN4-87243-086-7, SEG 出版, Tokyo). + +\bibitem{OpenXM-1999} +野呂正行, 高山信毅: + {Open XM の設計と実装 + --- Open message eXchange protocol for Mathematics}, + 1999/11/22 +\end{thebibliography} \end{document}