Annotation of OpenXM/doc/genkou19991125.tex, Revision 1.81
1.1 tam 1: \documentclass{jarticle}
2:
1.81 ! ohara 3: %% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.80 1999/12/25 04:08:50 tam Exp $
1.51 ohara 4:
1.52 tam 5: \usepackage{jssac}
1.68 ohara 6: \title{
7: 1. 意味もない修飾過剰な語句は排除しましょう。\\
1.76 tam 8: 2. せっかく fill しているのをいじらないでくれ。\\
9: 3. 田村が遊んでばかりでおればかり仕事をしているのはどう考えても不公平だ。
1.73 ohara 10: なんで仕事をしないのか、いい加減仕事をしろ、田村。
1.74 tam 11: %↑すみません、家で御飯食べてました。
1.81 ! ohara 12: \\
! 13: 3.5 そういうご飯とかつまらない話じゃなくて、commit の情報をみれば田村が
! 14: 如何に仕事をしていないのかよくわかるよ。\\
! 15: 4. いい加減、Section 8 を書け。
1.68 ohara 16: }
1.52 tam 17:
1.67 tam 18: \author{奥 谷 行 央\affil{神戸大学大学院自然科学研究科}
19: \mail{okutani@math.sci.kobe-u.ac.jp}
20: \and 小 原 功 任\affil{金沢大学理学部}
1.53 tam 21: \mail{ohara@kappa.s.kanazawa-u.ac.jp}
1.67 tam 22: \and 高 山 信 毅\affil{神戸大学理学部}
1.53 tam 23: \mail{takayama@math.sci.kobe-u.ac.jp}
1.67 tam 24: \and 田 村 恭 士\affil{神戸大学大学院自然科学研究科}
1.52 tam 25: \mail{tamura@math.sci.kobe-u.ac.jp}
1.67 tam 26: \and 野 呂 正 行\affil{富士通研究所}
27: \mail{noro@para.flab.fujitsu.co.jp}
28: \and 前 川 将 秀\affil{神戸大学理学部}
29: \mail{maekawa@math.sci.kobe-u.ac.jp}
1.1 tam 30: }
1.81 ! ohara 31: %\art{}
1.1 tam 32:
33: \begin{document}
34: \maketitle
35:
1.30 ohara 36: \section{OpenXMとは}
37:
1.43 tam 38: OpenXM は数学プロセス間でメッセージを交換するための規約である。
39: 数学プロセス間でメッセージをやりとりすることにより、
40: ある数学プロセスから他の数学プロセスを呼び出して計算を行なったり、
41: 他のマシンで計算を行なわせたりすることが目的である。
42: なお、 OpenXM とは Open message eXchange protocol for Mathematics の略である。
43: OpenXM の開発の発端は野呂と高山により、
44: asir と kan/sm1 を相互に呼び出す機能を実装したことである。
1.31 tam 45:
1.65 tam 46: 初期の実装では、相手側のローカル言語の文法に従った文字列を送っていた。
47: この方法では相手側のソフトが asir なのか kan/sm1 なのかを判別するなどして、
48: 相手側のローカル言語の文法に合わせた文字列を作成しなければならない。
49: このローカル言語の文法に従った文字列を送る方法は、
50: 効率的であるとはいい難いが、使いやすいとも言える。
51:
52: 現在の OpenXM 規約では共通表現形式によるメッセージを用いている。
53: 上記の文字列を送る方法の利点を生かすため、
54: OpenXM 規約では共通表現形式の中の文字列として、
55: ローカル言語の文法に従った文字列を用いたメッセージの交換も可能となっている。
1.50 ohara 56:
1.63 tam 57: OpenXM 規約では通信の方法に幾らかの自由度があるが、
58: 現在のところは TCP/IP を用いた通信しか実装されていない。
1.65 tam 59: そこで、この論文では具体的な実装は TCP/IP を用いていると仮定する。
1.30 ohara 60:
1.36 tam 61: \section{OpenXM のメッセージの構造}
1.30 ohara 62:
1.61 tam 63: 通信の方法によってメッセージの構造は変わる。
1.65 tam 64: 前節で仮定したとおり、この論文では TCP/IP の場合についてのみ説明を行なう。
1.61 tam 65:
66: OpenXM 規約で規定されているメッセージはバイトストリームとなっており、
67: 次のような構造になっている。
1.30 ohara 68:
1.50 ohara 69: \begin{tabular}{|c|c|}
70: \hline
71: ヘッダ & \hspace{10mm} ボディ \hspace{10mm} \\
72: \hline
1.36 tam 73: \end{tabular}
74:
75: ヘッダの長さは 8 バイトであると定められている。
76: ボディの長さはメッセージごとに異なっているが、
1.40 tam 77: 長さは $0$ でもよい。
1.38 tam 78:
1.36 tam 79: ヘッダは次の二つの情報を持っている。
1.30 ohara 80: \begin{enumerate}
1.43 tam 81: \item 前半の 4 バイト。メッセージの種類を表わす識別子であり、
1.36 tam 82: タグと呼ばれる。
1.43 tam 83: \item 後半の 4 バイト。メッセージにつけられた通し番号である。
1.30 ohara 84: \end{enumerate}
1.36 tam 85: それぞれの 4 バイトは 32 ビット整数とみなされて扱われる。
1.61 tam 86: この場合に用いられる整数の表現方法については後述するが、
1.36 tam 87: 基本的に表現方法はいくつかの選択肢から選ぶことが可能となっており、
88: またその選択は通信路の確立時に一度だけなされることに注意しなければならない。
1.50 ohara 89: 現在のOpenXM 規約では、タグ(整数値)として
90: 以下のものが定義されている。
1.45 tam 91:
92: \begin{verbatim}
1.53 tam 93: #define OX_COMMAND 513
94: #define OX_DATA 514
1.54 tam 95: #define OX_SYNC_BALL 515
1.53 tam 96: #define OX_DATA_WITH_LENGTH 521
97: #define OX_DATA_OPENMATH_XML 523
98: #define OX_DATA_OPENMATH_BINARY 524
99: #define OX_DATA_MP 525
1.45 tam 100: \end{verbatim}
1.30 ohara 101:
1.50 ohara 102: ボディの構造はメッセージの種類によって異なる。
1.69 tam 103: タグが OX\_COMMAND となっているメッセージはスタックマシンへの命令であり、
104: それ以外のメッセージは何らかのオブジェクトを表している。
105: この論文では OX\_DATA と OX\_COMMAND で識別される
106: メッセージについてのみ、説明する。
1.50 ohara 107:
108: 既存のメッセージでは対応できない場合は、新しい識別子を定義することで新し
109: い種類のメッセージを作成することができる。この方法は各数学ソフトウェアの
110: 固有の表現を含むメッセージを作成したい場合などに有効である。新しい識別子
111: の定義方法については、\cite{OpenXM-1999} を参照すること。
1.42 tam 112:
113: \section{OpenXM の計算モデル}
114:
1.50 ohara 115: OpenXM 規約での計算とはメッセージを交換することである。また、 OpenXM 規
116: 約ではクライアント・サーバモデルを採用しているので、メッセージの交換はサー
117: バとクライアントの間で行なわれる。クライアントからサーバへメッセージを送
118: り、クライアントがサーバからメッセージを受け取ることによって計算の結果が
1.70 ohara 119: 得られる。このメッセージのやりとりはクライアントの主導で行われる。つまり、
120: クライアントは自由にメッセージをサーバに送付してもよいが、サーバからは自
121: 発的にメッセージが送付されることはない。この原理はサーバはスタックマシン
1.73 ohara 122: であることで実現される。スタックマシンの構造については \ref{sec:oxsm} 節
123: で述べる。
1.70 ohara 124:
125: サーバがクライアントから受け取ったオブジェクト(つまり OX\_COMMAND でない
126: メッセージのボディ)はすべてスタックに積まれる。スタックマシンへの命令
127: (OX\_COMMAND で識別されるメッセージのボディ)を受け取ったサーバは命令に対
128: 応する動作を行なう。このとき、命令によってはスタックからオブジェクトを取
129: り出すことがあり、また(各数学システムでの)計算結果をスタックに積むことが
130: ある。もし、与えられたデータが正しくないなどの理由でエラーが生じた場合に
131: はサーバはエラーオブジェクトをスタックに積む。計算結果をクライアントが得
132: る場合にはスタックマシンの命令 SM\_popCMO または SM\_popString をサーバ
133: に送らなければならない。これらの命令を受け取ってはじめて、サーバからクラ
134: イアントへメッセージが送られる。
1.50 ohara 135:
1.81 ! ohara 136: {\Huge 以下、書き直し}
1.50 ohara 137:
1.70 ohara 138: まとめると、クライアントがサーバへメッセージを送り、
1.74 tam 139: 計算の結果を得るという手順は以下のようになる。
1.3 tam 140:
141: \begin{enumerate}
1.70 ohara 142: \item
143: まず、クライアントがサーバへオブジェクトを送る。サーバは送られてきたオブ
144: ジェクトをスタックに積む。
145: \item
1.81 ! ohara 146: クライアントがサーバに命令を送ると、あらかじめ定めれらた動作を行う。一部
! 147: の命令はスタックの状態を変更する。例えば SM\_executeFunction,
! 148: SM\_executeStringByLocalParser など命令は、スタック上のオブジェクトから
! 149: 計算を行う。SM\_popCMO もしくは SM\_popString は、スタックの最上位のオブ
! 150: ジェクトを取りだし、クライアントに送り返す。
1.4 tam 151: \end{enumerate}
1.2 tam 152:
1.73 ohara 153: \section{OpenXM スタックマシン}\label{sec:oxsm}
1.68 ohara 154:
155: OpenXM 規約ではサーバはスタックマシンであると定義している。以下、OpenXM
156: スタックマシンと呼ぶ。この節ではOpenXM スタックマシンの構造について説明
157: しよう。
158:
1.70 ohara 159: まず、OpenXM 規約は通信時にやりとりされる共通のデータ形式については規定
160: するが、OpenXM スタックマシンがスタックに積む、オブジェクトの構造までは
161: 規定しない。つまり、オブジェクトの構造は各数学システムごとに異なっている
162: ということである。このことは通信路からデータを受け取った際に、各数学シス
163: テムが固有のデータ構造に変換してからスタックに積むことを意味する。この変
164: 換は1対1対応である必要はない。
1.68 ohara 165:
166: 次に OpenXM スタックマシンの命令コードについて説明する。OpenXM スタック
167: マシンにおけるすべての命令は4バイトの長さを持つ。OpenXM 規約の他の規定と
168: 同様に、4バイトのデータは32ビット整数と見なされるので、この論文でもその
169: 表記にしたがう。OpenXM スタックマシンに対する命令はスタックに積まれるこ
170: とはない。現在のところ、OpenXM 規約では以下の命令が定義されている。
171:
172: \begin{verbatim}
1.69 tam 173: #define SM_popSerializedLocalObject 258
174: #define SM_popCMO 262
175: #define SM_popString 263
176:
177: #define SM_mathcap 264
178: #define SM_pops 265
179: #define SM_setName 266
180: #define SM_evalName 267
181: #define SM_executeStringByLocalParser 268
182: #define SM_executeFunction 269
183: #define SM_beginBlock 270
184: #define SM_endBlock 271
185: #define SM_shutdown 272
186: #define SM_setMathCap 273
187: #define SM_executeStringByLocalParserInBatchMode 274
188: #define SM_getsp 275
189: #define SM_dupErrors 276
190:
191: #define SM_DUMMY_sendcmo 280
192: #define SM_sync_ball 281
193:
194: #define SM_control_kill 1024
195: #define SM_control_to_debug_mode 1025
196: #define SM_control_exit_debug_mode 1026
197: #define SM_control_ping 1027
198: #define SM_control_start_watch_thread 1028
199: #define SM_control_stop_watch_thread 1029
200: #define SM_control_reset_connection 1030
1.68 ohara 201: \end{verbatim}
202:
1.74 tam 203: %以下、どういうときに結果をスタックに積むかエラーの場合どうするかの説明が
204: %必要であろう。
1.1 tam 205:
1.78 tam 206: スタックマシンに対する命令の中には実行によって結果が返ってくるものがある。
207: 結果が返ってくる命令を実行した場合、サーバはその結果をスタックに積む。
1.81 ! ohara 208: たとえば、 命令 SM\_executeStringByLocalParser は
1.75 tam 209: スタックに積まれているオブジェクトを
210: サーバ側のローカル言語の文法に従った文字列とみなして計算を行なうが、
1.78 tam 211: 行なった計算の結果はローカル言語で記述した文字列でスタックに積まれる。
1.81 ! ohara 212: {\Large これ、本当? 文字列で積まれるの? どこで決まってるの?}
! 213:
1.75 tam 214: なお、命令の実行中にエラーが起こり、結果が得られなかった場合には、
215: エラーオブジェクトがスタックに積まれる。
216:
1.72 tam 217:
1.73 ohara 218: \section{CMO のデータ構造}\label{sec:cmo}
1.4 tam 219:
1.68 ohara 220: OpenXM 規約では、数学的オブジェクトを表現する方法として CMO 形式(Common
221: Mathematical Object format)を定義している。この CMO 形式にしたがったデー
222: タは、識別子が OX\_DATA であるようなメッセージのボディになることを想定し
223: ている。
224:
1.72 tam 225: CMO 形式におけるデータ構造は次のような構造をもつ。
226:
227: \begin{tabular}{|c|c|} \hline
228: ヘッダ & \hspace{10mm} ボディ \hspace{10mm} \\ \hline
229: \end{tabular}
1.71 tam 230:
1.73 ohara 231: ヘッダは4バイトである。ボディの長さはそれぞれのデータによって異なるが、
232: 0でもよい。
1.68 ohara 233:
1.73 ohara 234: メッセージと同様にヘッダは4バイト単位に管理される。すなわち、CMO ではヘッ
235: ダは一つだけの情報を含む。この4バイトのヘッダのことをタグともいう。さて、
236: CMO では、タグによってボディの論理的構造が決定する。すなわち、タグはそれ
237: ぞれのデータ構造と1対1に対応する識別子である。それぞれの論理的構造は
238: \cite{OpenXM-1999} に詳述されている。現在の OpenXM 規約では以下の CMO が
239: 定義されている。
1.30 ohara 240:
1.47 tam 241: \begin{verbatim}
1.74 tam 242: #define CMO_ERROR2 0x7f000002
243: #define CMO_NULL 1
244: #define CMO_INT32 2
245: #define CMO_DATUM 3
246: #define CMO_STRING 4
1.73 ohara 247: #define CMO_MATHCAP 5
248:
1.74 tam 249: #define CMO_START_SIGNATURE 0x7fabcd03
250: #define CMO_ARRAY 16
251: #define CMO_LIST 17
252: #define CMO_ATOM 18
253: #define CMO_MONOMIAL32 19
254: #define CMO_ZZ 20
255: #define CMO_QQ 21
256: #define CMO_ZERO 22
257: #define CMO_DMS_GENERIC 24
258: #define CMO_DMS_OF_N_VARIABLES 25
259: #define CMO_RING_BY_NAME 26
260: #define CMO_RECURSIVE_POLYNOMIAL 27
261: #define CMO_LIST_R 28
262:
263: #define CMO_INT32COEFF 30
264: #define CMO_DISTRIBUTED_POLYNOMIAL 31
265: #define CMO_POLYNOMIAL_IN_ONE_VARIABLE 33
266: #define CMO_RATIONAL 34
267:
268: #define CMO_64BIT_MACHINE_DOUBLE 40
269: #define CMO_ARRAY_OF_64BIT_MACHINE_DOUBLE 41
270: #define CMO_128BIT_MACHINE_DOUBLE 42
271: #define CMO_ARRAY_OF_128BIT_MACHINE_DOUBLE 43
272:
273: #define CMO_BIGFLOAT 50
274: #define CMO_IEEE_DOUBLE_FLOAT 51
275:
276: #define CMO_INDETERMINATE 60
277: #define CMO_TREE 61
278: #define CMO_LAMBDA 62
1.47 tam 279: \end{verbatim}
1.72 tam 280:
1.75 tam 281: この中で CMO\_ERROR2, CMO\_NULL, CMO\_INT32, CMO\_DATUM, CMO\_STRING,
282: CMO\_MATHCAP, CMO\_LIST で識別されるオブジェクトは最も基本的なオブジェ
1.73 ohara 283: クトであって、すべての OpenXM 対応システムに実装されていなければならない。
1.48 tam 284:
1.73 ohara 285: これらについての解説を行う前に記法について、少し説明しておく。
286: この論文では、大文字で CMO\_INT32 と書いた場合には、上記で定義した識別子
287: を表わす。また CMO\_INT32 で識別されるオブジェクトのクラス(あるいはデー
288: タ構造)を cmo\_int32 と小文字で表わすことにする。
289:
290: さて cmo を表現するための一つの記法を導入する。この記法は CMO expression
291: と呼ばれている。その正確な形式的定義は \cite{OpenXM-1999} を参照すること。
292:
293: まず CMO expssion は Lisp 風表現の一種で、 cmo を括弧で囲んだリストとし
294: て表現する。それぞれの要素はカンマで区切る。
295: 例えば、
296: \begin{quote}
297: (17, {\sl int32}, (CMO\_NULL), (2, {\sl int32} $n$))
298: \end{quote}
299: は CMO expression である。ここで、小文字の斜体で表された``{\sl int32}''
300: は 4バイトの任意のデータを表す記号であり、``{\sl int32} $n$'' は同じく 4
301: バイトのデータであるが以下の説明で $n$ と表すことを示す。また数字 17, 2
302: などは 4バイトのデータで整数値としてみたときの値を意味する。CMO\_NULL は
303: 識別子(すなわち数字 1 と等価)である。この記法から上記のデータは 20 バイ
304: トの大きさのデータであることが分かる。
1.81 ! ohara 305:
1.78 tam 306: なお、このデータは CMO ではないことに注意してほしい。
1.81 ! ohara 307:
! 308: {\Large
! 309: って田村、いい加減なことを書いてるんじゃねぇよ。
! 310:
! 311: (CMO\_LIST, {\sl int32}, (CMO\_NULL), (CMO\_INT32, {\sl int32}))
! 312:
! 313: だから cmo に決まってるだろ。少しは頭使えよな。
! 314: }
1.73 ohara 315:
316: さて、この記法のもとで cmo\_int32 を次のデータ構造を持つと定義する。
317: \begin{quote}
1.81 ! ohara 318: cmo\_int32 := (CMO\_INT32, {\sl int32})
1.73 ohara 319: \end{quote}
1.81 ! ohara 320: 同様に、cmo\_null, cmo\_string, cmo\_list, cmo\_mathcap のシンタッ
! 321: クスは次のように定義される。
! 322: \begin{quote}
! 323: cmo\_null := (CMO\_NULL) \\
! 324: cmo\_string := (CMO\_STRING, {\sl int32} $n$, {\sl string} $s$) \\
! 325: cmo\_list := (CMO\_LIST, {\sl int32} $m$, {\sl cmo} $c_1$, $\ldots$,
! 326: {\sl cmo} $c_m$) \\
! 327: cmo\_mathcap := (CMO\_MATHCAP, {\sl cmo\_list})
! 328: \end{quote}
! 329: ただし、{\sl string}は適当な長さのバイト列を表す。$s$ のバイト長は $n$
! 330: と一致することが要求される。
1.76 tam 331:
1.77 tam 332: %{\Huge 同様に cmo\_string, cmo\_list などを定義}
333:
1.81 ! ohara 334: {\Large 以下、田村の書いた部分であるが、問題外であることよ。\\
! 335: こんないい加減なことばかり書くから、信用されないんだよ。
! 336: 「CMO の 32 ビット整数」なんてどこで定義したんだよ。規約にもそんな馬鹿な
! 337: 言葉はないぞ。まじめに書く気があるのか?
! 338: }
! 339:
1.78 tam 340: これは CMO の 32 ビット整数 $a$ を表す。
1.81 ! ohara 341:
1.78 tam 342: 他のオブジェクトも定義するために、
1.76 tam 343: 以後 ``{\sl string} $s$'' を文字列 $s$ 、
1.78 tam 344: ``{\sl cmo} $ob$'' を CMO の $ob$ とする。
1.76 tam 345: これを用いて、 cmo\_string, cmo\_list を定義する。
346:
1.81 ! ohara 347: {\Large またいい加減なことを...。``文字列'' の概念がはっきりしないでしょ
! 348: うが。}
! 349:
1.77 tam 350: \begin{quote}
351: cmo\_string := (CMO\_STRING, {\sl int32} $len$, {\sl string} $str$) \\
352: cmo\_list := (CMO\_LIST, {\sl int32} $n$, {\sl cmo} $ob_1$,
353: {\sl cmo} $ob_2$, $\cdots$,{\sl cmo} $ob_n$)
354: \end{quote}
1.73 ohara 355:
1.77 tam 356: これはそれぞれ長さ $len$ の文字列 $str$ と、
357: $ob_1$, $ob_2$, $\cdots$, $ob_n$ からなる長さ $n$ のリストを表す。
1.74 tam 358:
1.73 ohara 359:
360: % ここで 32 bit の整数の表現方法について触れておく。
361: % OpenXM 規約ではバイトストリームで 32 bit の整数 20 を
362: % {\tt 00 00 00 14} と表す方法と {\tt 14 00 00 00} と表す方法がある。
363: % この表現方法の違いはクライアントとサーバの最初の接続時に
364: % 双方の合意で決定することになっている。
365: % なお、合意がない場合には前者の表現方法
366: % (以後、この表現方法をネットワークバイトオーダーと呼ぶ)を
367: % 使うことになっている。
368: % また、負の数を表現する必要があるときには、
369: % 2 の補数表現を使うことになっている。
370:
371: % 先ほどの、 (CMO\_INT32, 123456789) をネットワークバイトオーダーで
372: % バイト列に直すと、
373: % \begin{center}
374: % {\tt 00 00 00 02 07 5b cd 15}
375: % \end{center}
376: % となり、
377: % (CMO\_STRING, 6, ``OpenXM'') は
378: % \begin{center}
379: % {\tt 00 00 00 04 00 00 00 06 4f 70 65 6e 58 4d}
380: % \end{center}
381: % となる。
382:
383: % CMO 形式の多倍長整数は、 Gnu MPライブラリ等を参考にしており、
384: % 符号付き絶対値表現を用いている。
385: % タグ以降の形式は次のようになる。
386:
387: % \begin{tabular}{|c|c|c|c|c|} \hline
388: % $f$ & $b_0$ & $b_1$ & $\cdots$ & $b_{n-1}$ \\ \hline
389: % \end{tabular}
390:
391: % ここで、 1 つの枠は 4 バイトを表し、
392: % $f$ は符号付き 32 ビット整数を、
393: % $b_0$, $b_1$, $\cdots$, $b_{n-1}$ は符号なし 32 ビット整数を表している。
394: % さらに、 $|f| = n$ が成り立たなければならない。
395: % このオブジェクトは
396: % \[ \mbox{sgn}(f) \times \{ b_0 (2^{32})^0 + b_1 (2^{32})^1 + \cdots
397: % + b_{n-1} (2^{32})^{n-1} \} \]
398: % という整数であると定義されている。
399: % ただし、
400: % \[ \mbox{sgn}(f) = \left\{ \begin{array}{ll}
401: % 1 & f>0 \\
402: % 0 & f=0 \\
403: % -1 & f<0 \\ \end{array} \right. \]
404: % である。
405:
406: % ここで具体例をだそう。
407: % $4294967298 = 1 \times 2^{32} + 2$ を CMO 形式の
408: % ネットワークバイトオーダー、多倍長整数で表現すると、
409: % \begin{center}
410: % {\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01}
411: % \end{center}
412: % となる。また、同じ表現方法で $-1$ を表現すると、
413: % \begin{center}
414: % {\tt 00 00 00 14 ff ff ff ff 00 00 00 01}
415: % \end{center}
416: % となる。
1.4 tam 417:
1.1 tam 418:
1.50 ohara 419: \section{mathcap について}
1.30 ohara 420:
1.68 ohara 421: OpenXM 規約では、通信時に用いられるメッセージの種類を各ソフトウェアが制
422: 限する方法を用意している。これは各ソフトウェアの実装によってはすべてのメッ
423: セージをサポートするのが困難な場合があるからである。また、各ソフトウェア
424: でメッセージの種類を拡張したい場合にも有効である。この制限(あるいは拡張)
425: は mathcap と呼ばれるデータ構造によって行われる。この節では mathcap のデー
426: タ構造と、具体的なメッセージの制限の手続きについて説明する。
1.50 ohara 427:
1.73 ohara 428: では、手続きについて説明しよう。
429:
430: 第一にサーバの機能を制限するには次のようにする。クライアントが mathcap
431: オブジェクトをサーバへ送ると、サーバは受け取ったmathcap をスタックに積む。
432: 次にクライアントが命令 SM\_setMathCap を送ると、サーバはスタックの最上位
433: に積まれている mathcap オブジェクトを取り出し、mathcap で設定されていな
434: いメッセージをクライアントへ送らないように制限を行う。
435:
436: 第二にクライアントを制限するには次のようにする。クライアントがサーバに命
437: 令 SM\_mathcap を送ると、サーバは mathcap オブジェクトをスタックに積む。
438: さらに命令 SM\_popCMO を送ると、サーバはスタックの最上位のオブジェクト
439: (すなわち mathcap オブジェクト)をボディとするメッセージをクライアントに
440: 送付する。クライアントはそのオブジェクトを解析して、制限をかける。
1.50 ohara 441:
1.56 tam 442: 次に mathcap のデータ構造について説明する。
1.77 tam 443: mathcap は CMO の一種であるので、すでに説明したように \\
444: \begin{tabular}{|c|c|} \hline
445: ヘッダ & \hspace{10mm} ボディ \hspace{10mm} \\ \hline
446: \end{tabular} \\
1.73 ohara 447: の構造を持ちヘッダの値は 5 である(\ref{sec:cmo} 節を参照のこと)。
448: ボディは cmo\_list オブジェクトでなければならない。
1.67 tam 449:
1.77 tam 450: %\begin{quote}
451: % cmo\_mathcap := (CMO\_MATHCAP,{\sl cmo} obj)
452: %\end{quote}
453:
1.73 ohara 454: さて、mathcap オブジェクトのボディの cmo\_list オブジェクトは以下の条件を
455: 満たすことを要求される。
456:
457: まず、その cmo\_list オブジェクトは少なくともリスト長が 3 以上でなければ
458: ならない。
1.56 tam 459:
1.77 tam 460: \begin{quote}
1.81 ! ohara 461: (CMO\_LIST, {\sl int32}, {\sl cmo} $A$, {\sl cmo} $B$, {\sl cmo} $C$, $\ldots$)
1.77 tam 462: \end{quote}
1.56 tam 463:
1.73 ohara 464: 第一要素 $A$ はまた cmo\_list であり、リスト長は 4 以上、
1.56 tam 465: $a_1$ は 32 ビット整数でバージョンナンバーを、
1.78 tam 466: $a_2$, $a_3$, $a_4$ は文字列で
1.81 ! ohara 467: それぞれシステムの名前、、 HOSTTYPE を表すことになっている。
1.77 tam 468: \begin{quote}
1.81 ! ohara 469: (CMO\_LIST, {\sl int32},
! 470: {\sl cmo\_int32} $a_1$, {\sl cmo\_string} $a_2$, {\sl cmo\_string}
! 471: $a_3$, {\sl cmo\_string} $a_4$, $\ldots$)
1.77 tam 472: \end{quote}
1.56 tam 473:
1.81 ! ohara 474: 第二要素 $B$ の部分は次のようなリスト構造をしている。
! 475: この $b_1$, $b_2$, $\cdots$, $b_n$ はすべて cmo\_int32 である。
! 476: \ref{sec:oxsm} 節で説明したが、
! 477: スタックマシンへの命令はすべて {\sl int32} で表されていたことに注意しよ
! 478: う。各 $b_i$ は利用可能な命令をボディとした cmo\_int32 となっている。
1.77 tam 479: \begin{quote}
480: (CMO\_LIST, {\sl int32} $n$,
481: {\sl cmo\_int32} $b_1$, {\sl cmo\_int32} $b_2$,
482: $\cdots$, {\sl cmo\_int32} $b_n$)
483: \end{quote}
1.58 tam 484:
1.80 tam 485: 第三要素 $C$ は以下のようなリスト構造をしている。
1.77 tam 486: \begin{quote}
1.79 tam 487: (CMO\_LIST, {\sl int32} $m$, \\
488: \hspace{10mm} (CMO\_LIST, {\sl int32} $l_1$, {\sl cmo\_int32} $c_{11}$,
489: {\sl cmo} $c_{12}$, $\cdots$, {\sl cmo} $c_{1l_1}$) \\
490: \hspace{10mm} (CMO\_LIST, {\sl int32} $l_2$, {\sl cmo\_int32} $c_{21}$,
491: {\sl cmo} $c_{22}$, $\cdots$, {\sl cmo} $c_{1l_2}$) \\
492: \hspace{10mm} $\vdots$ \\
493: \hspace{10mm} (CMO\_LIST, {\sl int32} $l_m$, {\sl cmo\_int32} $c_{m1}$,
494: {\sl cmo} $c_{m2}$, $\cdots$, {\sl cmo} $c_{1l_m}$))
1.77 tam 495: \end{quote}
1.79 tam 496: どの $c_{i1}$ にも 32 ビットの整数が入っており、
497: OX\_COMMAND 以外の、受け取れるメッセージのタグが入っている。
1.60 tam 498: $c_{i2}$ 以降については最初の $c_{i1}$ の値によってそれぞれ異なる。
1.58 tam 499: ここでは、最初の要素が OX\_DATA の場合についてのみ説明する。
1.60 tam 500: この $c_{i1}$ が OX\_DATA の場合、
1.79 tam 501: $c_{i1}$, $c_{i2}$, $\cdots$, $c_{il_i}$ を要素とする cmo\_list は
502: CMO 形式についての情報を表しており、 $l_i=2$ と決められている。
1.65 tam 503: $c_{i1}$ にはもちろんのこと OX\_DATA が入っており、
1.79 tam 504: $c_{i2}$ は以下の図のような cmo\_list になっている。
1.63 tam 505: 各要素は 32 ビットの整数であり、
506: 受け取ることが可能な CMO 形式のタグが入る。
1.79 tam 507: \begin{quote}
508: (CMO\_LIST, {\sl int32} $k$,
509: {\sl cmo\_int32} $c_{i21}$, {\sl cmo\_int32} $c_{i22}$,
510: $\cdots$, {\sl cmo\_int32} $c_{i2k}$)
511: \end{quote}
1.50 ohara 512:
1.65 tam 513: 具体的な mathcap の例をあげよう。
1.79 tam 514: 名前が ``ox\_test''、バージョンナンバーが 199911250 のサーバで、
515: PC-UNIX 上で動いていれば、
1.63 tam 516: $A$ の部分は
1.79 tam 517: \begin{quote}
1.81 ! ohara 518: (CMO\_LIST, 4, (CMO\_INT32, $199911250$),
! 519: {\sl cmo\_string} "ox\_test",
! 520: {\sl cmo\_string} "199911250",
! 521: (CMO\_STRING, 4, "i386"))
1.79 tam 522: \end{quote}
1.81 ! ohara 523: となる。({\Large 修正をみて、ただしく直すこと})
! 524:
1.63 tam 525: さらに、このサーバのスタックマシンが
1.65 tam 526: 命令コード 2, 3, 5, 7, 11 番を利用可能
1.81 ! ohara 527: (実際にはこのような命令コードは存在しない)
! 528: {\Large じゃあ書くな}
! 529: であれば、 $B$ の部分は
1.79 tam 530: \begin{quote}
531: (CMO\_LIST, {\sl int32} $5$,
532: {\sl cmo\_int32} $2$, {\sl cmo\_int32} $3$,
533: {\sl cmo\_int32} $5$, {\sl cmo\_int32} $7$,
534: {\sl cmo\_int32} $11$)
535: \end{quote}
1.65 tam 536: となり、
1.63 tam 537: CMO 形式の 32 ビット整数、文字列、 mathcap 、リスト構造のみが
538: 受け取れるときには、 $C$ の部分は
1.79 tam 539: \begin{quote}
540: (CMO\_LIST, {\sl int32} $1$, \\
541: \ \ (CMO\_LIST, {\sl int32} $4$,
542: {\sl cmo\_int32} $2$, {\sl cmo\_int32} $4$,
543: {\sl cmo\_int32} $5$, {\sl cmo\_int32} $17$))
544: \end{quote}
1.64 tam 545: となる。
1.31 tam 546:
1.81 ! ohara 547: % なお、データが受け取れることと、データの論理構造が理解できることとはまっ
! 548: % たく別物であるので注意する必要がある。
1.80 tam 549: %{\Huge ってなんででしょうか? データの論理構造を知らないと受け取れないと
550: %思うんですが$\ldots$}
1.70 ohara 551:
1.81 ! ohara 552: % なお、この mathcap では、データの論理構造が理解できるかどうか
! 553: % までは分からないので注意する必要がある。
1.31 tam 554:
555: \section{セキュリティ対策}
556:
1.70 ohara 557: OpenXM 規約は TCP/IP を用いて通信を行うことを考慮している。ネットワーク
558: によって接続される現代の多くのソフトウェアと同様、OpenXM 規約もまた通信
559: 時のセキュリティについて注意している。以下、このことについて説明しよう。
1.50 ohara 560:
1.81 ! ohara 561: {\large\bf 意味不明なことを書いているが、}
! 562: OpenXM では侵入者に攻撃の機会をできるだけ与えないようにするため、接続が
! 563: 必要になった時のみ接続を待つようにし、常に接続に関与するといったことは避
! 564: けている。
! 565: (表現を少しかえただけではだめでしょう。内容がわからないんだから。)
! 566:
! 567: しかし、これだけでは侵入者が接続を行なう一瞬のすきを狙ってくる可能性もあ
! 568: る。そこで接続を行なう時に、接続を待つ port 番号をランダムに決めている。
! 569: こうすることで、特定の port 番号を狙って接続を行なう瞬間を待つ手口を幾ら
! 570: か防ぐことができる。
! 571:
! 572: さらにもう一段安全性を高めるために、接続時に 1 回だけ使用可能なパスワー
! 573: ドを作成し、そのパスワードを使って認証を行なう。このパスワードは一旦使用
! 574: されれば無効にするので、もし仮になんらかの手段でパスワードが洩れたとして
! 575: も安全である。
! 576:
! 577: なお、上記の port 番号とパスワードは安全な手段で送られていると仮定してい
! 578: る。また、同一のコンピュータ上に悪意のあるユーザはいないと仮定しているこ
! 579: とに注意しなければならない。なぜなら、現在の実装ではサーバ、およびクライ
! 580: アントの動作しているコンピュータ上ではこの port 番号とパスワードがわかっ
! 581: てしまうためである。
! 582:
! 583: なお、接続が確立した後のメッセージの送受信に関しては、特に暗号化などの処
! 584: 置を行っているわけではない。もし必要があれば、通信路の暗号化を行なう機能
! 585: があるソフトウェア ssh を使うことを考えている。
1.80 tam 586:
1.31 tam 587:
588: \section{他のプロジェクト}
589:
590: 他のプロジェクトについても触れておこう。
591:
1.66 tam 592: \begin{itemize}
1.70 ohara 593: \item OpenMath\\
594: OpenMath プロジェクトは数学的なオブジェクトをコンピュータ上で表現する方
595: 法を規定している。各ソフトウェア間でオブジェクトを交換する際のオブジェク
596: トの変換手順につても定められている。表現方法は幾つかの段階で定められて
1.73 ohara 597: いて、XML 表現やバイナリ表現などが用意されている。詳細は
1.31 tam 598:
1.70 ohara 599: http://www.openmath.org/omsoc/ A.M.Cohen
1.31 tam 600:
1.66 tam 601: \item NetSolve
1.31 tam 602:
603: http://www.cs.utk.edu/netsolve/
604:
1.66 tam 605: \item MP
1.31 tam 606:
607: http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html
608:
1.66 tam 609: \item MCP
1.31 tam 610:
611: http://horse.mcs.kent.edu/~pwang/
1.66 tam 612: \end{itemize}
1.31 tam 613:
614:
615: \section{現在提供されているソフトウェア}
616:
1.70 ohara 617: 現在 OpenXM 規約に対応しているクライアントにはasir, sm1, Mathematica が
618: ある。これらのクライアントから OpenXM 規約に対応したサーバを呼び出すこと
619: ができる。現在 OpenXM 規約に対応しているサーバソフトウェアには、asir,
620: sm1, gnuplot, Mathematica などがあり、それぞれ ox\_asir, ox\_sm1,
621: ox\_sm1\_gnuplot, ox\_math という名前で提供されている。また、 OpenMath
622: 規約の XML 表現で表現されたオブジェクトと CMO 形式のオブジェクトを変換す
623: るソフトウェアが JAVA によって実装されており、OMproxy という名前で提供さ
624: れている。
1.33 tam 625:
1.50 ohara 626: \begin{thebibliography}{99}
1.66 tam 627: \bibitem{Ohara-Takayama-Noro-1999}
628: 小原功任, 高山信毅, 野呂正行:
629: {Open asir 入門}, 1999, 数式処理, Vol 7, No 2, 2--17. (ISBN4-87243-086-7, SEG 出版, Tokyo).
1.50 ohara 630: \bibitem{OpenXM-1999}
1.53 tam 631: 野呂正行, 高山信毅:
1.50 ohara 632: {Open XM の設計と実装 --- Open message eXchange protocol for Mathematics},
633: 1999/11/22
1.49 tam 634: \end{thebibliography}
1.1 tam 635:
636: \end{document}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>