[BACK]Return to cmo-basic1.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / OpenXM-specs

Annotation of OpenXM/doc/OpenXM-specs/cmo-basic1.tex, Revision 1.12

1.12    ! takayama    1: %% $OpenXM: OpenXM/doc/OpenXM-specs/cmo-basic1.tex,v 1.11 2001/08/27 05:39:15 takayama Exp $
1.1       noro        2: //&jp \section{ 数, 多項式 の  CMO 表現 }
                      3: //&eg \section{ CMOexpressions for numbers and polynomials }
1.4       noro        4: \label{sec:basic1}
1.1       noro        5: /*&C
                      6: @../SSkan/plugin/cmotag.h
                      7: \begin{verbatim}
                      8: #define     CMO_MONOMIAL32  19
                      9: #define     CMO_ZZ          20
                     10: #define     CMO_QQ          21
                     11: #define     CMO_ZERO        22
                     12: #define     CMO_DMS_GENERIC  24
                     13: #define     CMO_DMS_OF_N_VARIABLES  25
                     14: #define     CMO_RING_BY_NAME   26
                     15: #define     CMO_DISTRIBUTED_POLYNOMIAL 31
                     16: #define     CMO_RATIONAL       34
                     17:
                     18:
                     19: #define     CMO_INDETERMINATE  60
                     20: #define     CMO_TREE           61
                     21: #define     CMO_LAMBDA         62    /* for function definition */
                     22: \end{verbatim}
                     23:
                     24: */
                     25:
                     26: /*&jp
1.4       noro       27: 以下, グループ CMObject/Basic, CMObject/Tree
1.1       noro       28: および CMObject/DistributedPolynomial
                     29: に属する CMObject の形式を説明する.
                     30:
1.5       noro       31: \noindent
                     32: {\tt OpenXM/src/ox\_toolkit} にある {\tt bconv} をもちいると
                     33: CMO expression を binary format に変換できるので,
                     34: これを参考にするといい.
1.1       noro       35: */
                     36: /*&eg
                     37: In the sequel, we will explain on the groups
1.4       noro       38: CMObject/Basic, CMObject/Tree
1.1       noro       39: and CMObject/DistributedPolynomial.
1.5       noro       40:
                     41: \noindent
                     42: The program {\tt bconv} at {\tt OpenXM/src/ox\_toolkit}
                     43: translates
                     44: CMO expressions into binary formats.
                     45: It is convinient to understand the binary formats explained in
                     46: this section.
1.1       noro       47: */
                     48:
1.5       noro       49: /*&C
                     50: \noindent Example:
                     51: \begin{verbatim}
                     52: bash$ ./bconv
                     53: > (CMO_ZZ,123123);
                     54: 00 00 00 14 00 00 00 01 00 01 e0 f3
                     55: \end{verbatim}
                     56: */
1.1       noro       57: /*&jp
                     58:
                     59: \bigbreak
                     60: \noindent
1.4       noro       61: Group CMObject/Basic requires CMObject/Primitive. \\
1.12    ! takayama   62: ZZ, QQ, Zero, Rational, Indeterminate $\in$ CMObject/Basic. \\
1.1       noro       63: \begin{eqnarray*}
                     64: \mbox{Zero} &:& ({\tt CMO\_ZERO}) \\
                     65: & & \mbox{ --- ユニバーサルな ゼロを表す. } \\
1.12    ! takayama   66: \mbox{ZZ}         &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots ,
1.9       noro       67: {\sl byte}\, \mbox{a[$|$f$|$]} ) \\
1.1       noro       68: &:& \mbox{ --- bignum をあらわす. a[i] についてはあとで説明}\\
1.9       noro       69: \mbox{QQ}        &:& ({\tt CMO\_QQ},
                     70:                       {\sl int32}\, {\rm m}, {\sl byte}\, \mbox{a[1]}, \ldots, {\sl byte}\, \mbox{a[$|$m$|$]},
                     71:                       {\sl int32}\, {\rm n}, {\sl byte}\, \mbox{b[1]}, \ldots, {\sl byte}\, \mbox{b[$|$n$|$]})\\
1.1       noro       72: & & \mbox{ --- 有理数 $a/b$ を表す. } \\
                     73: \mbox{Rational}        &:& ({\tt CMO\_RATIONAL}, {\sl CMObject}\, {\rm a}, {\sl CMObject}\, {\rm b}) \\
                     74: & & \mbox{ ---  $a/b$ を表す. } \\
                     75: \mbox{Indeterminate}        &:& ({\tt CMO\_INDETERMINATE}, {\sl Cstring}\, {\rm v}) \\
                     76: & & \mbox{ --- 変数名 $v$ . } \\
                     77: \end{eqnarray*}
                     78: */
1.12    ! takayama   79:
        !            80:
1.1       noro       81: /*&eg
                     82:
                     83: \bigbreak
                     84: \noindent
1.4       noro       85: Group CMObject/Basic requires CMObject/Primitive. \\
1.12    ! takayama   86: ZZ, QQ, Zero, Rational, Indeterminate $\in$ CMObject/Basic. \\
1.1       noro       87: \begin{eqnarray*}
                     88: \mbox{Zero} &:& ({\tt CMO\_ZERO}) \\
                     89: & & \mbox{ --- Universal zero } \\
1.12    ! takayama   90: \mbox{ZZ}         &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots ,
1.9       noro       91: {\sl byte}\, \mbox{a[$|$m$|$]} ) \\
1.1       noro       92: &:& \mbox{ --- bignum. The meaning of a[i] will be explained later.}\\
1.9       noro       93: \mbox{QQ}        &:& ({\tt CMO\_QQ},
                     94:                       {\sl int32}\, {\rm m}, {\sl byte}\, \mbox{a[1]}, \ldots, {\sl byte}\, \mbox{a[$|$m$|$]},
                     95:                       {\sl int32}\, {\rm n}, {\sl byte}\, \mbox{b[1]}, \ldots, {\sl byte}\, \mbox{b[$|$n$|$]})\\
1.1       noro       96: & & \mbox{ --- Rational number $a/b$. } \\
                     97: \mbox{Rational}        &:& ({\tt CMO\_RATIONAL}, {\sl CMObject}\, {\rm a}, {\sl CMObject}\, {\rm b}) \\
                     98: & & \mbox{ ---  Rational expression $a/b$. } \\
                     99: \mbox{Indeterminate}        &:& ({\tt CMO\_INDETERMINATE}, {\sl Cstring}\, {\rm v}) \\
                    100: & & \mbox{ --- Variable name $v$ . } \\
                    101: \end{eqnarray*}
                    102: */
                    103: /*&C
                    104:
                    105: */
1.12    ! takayama  106: /*&C
        !           107:
        !           108: */
1.1       noro      109:
                    110: /*&jp
                    111: Indeterminate は変数名をあらわす.
                    112: v はバイト列であればなにを用いてもよいが,
                    113: システム毎に変数名として用いられるバイト列は制限がある.
                    114: 各システム xxx は任意の文字列を各システム固有の変数名へ1対1に変換できるように
                    115: 実装しないといけない.
                    116: (これを
                    117: {\tt Dx} は {\tt \#dx} と変換するなどの
                    118: escape sequence を用いて実現するのは, 無理があるようである.
                    119: テーブルを作成する必要があるであろう.)
                    120: */
                    121: /*&eg
1.12    ! takayama  122: The name of a variable should be expressed by using Indeterminate.
1.1       noro      123: v may be any sequence of bytes, but each system has its own
                    124: restrictions on the names of variables.
                    125: Indeterminates of CMO and internal variable names must be translated
1.12    ! takayama  126: in one-to-one correspondence.
1.1       noro      127: */
                    128:
1.12    ! takayama  129:
1.1       noro      130: /*&jp
1.12    ! takayama  131: \subsection{Indeterminate および Tree}
1.1       noro      132:
                    133: \noindent
1.4       noro      134: Group CMObject/Tree requires CMObject/Basic. \\
1.12    ! takayama  135: Tree, Lambda $\in$ CMObject/Tree. \\
1.1       noro      136: \begin{eqnarray*}
                    137: \mbox{Tree}        &:& ({\tt CMO\_TREE}, {\sl Cstring}\, {\rm name},
1.11      takayama  138:  {\sl List}\, {\rm attributes}, {\sl List}\, {\rm leaves}) \\
1.1       noro      139: & & \mbox{ --- 名前 name の定数または関数. 関数の評価はおこなわない. } \\
1.11      takayama  140: & & \mbox{ --- attributes は空リストでなければ name の属性を保持している. }\\
                    141: & & \mbox{ --- 属性リストは, key と 値のペアである. }\\
1.1       noro      142: \mbox{Lambda}        &:& ({\tt CMO\_LAMBDA}, {\sl List}\, {\rm args},
                    143:                           {\sl Tree} {\rm body}) \\
                    144: & & \mbox{ --- body を args を引数とする関数とする. } \\
                    145: \end{eqnarray*}
                    146: */
                    147: /*&eg
1.12    ! takayama  148: \subsection{Indeterminate and Tree}
1.1       noro      149:
                    150: \noindent
1.4       noro      151: Group CMObject/Tree requires CMObject/Basic. \\
1.12    ! takayama  152: Tree, Lambda $\in$ CMObject/Tree. \\
1.1       noro      153: \begin{eqnarray*}
                    154: \mbox{Tree}        &:& ({\tt CMO\_TREE}, {\sl Cstring}\, {\rm name},
1.11      takayama  155:  {\sl List}\, {\rm attributes}, {\sl List}\, {\rm leaves}) \\
1.12    ! takayama  156: & & \mbox{ --- ``name'' is the name of the node of the tree. } \\
        !           157: & & \mbox{ --- Attributes may be a null list. If it is not null, it is a list of}\\
1.11      takayama  158: & & \mbox{ --- key and value pairs. } \\
1.1       noro      159: \mbox{Lambda}        &:& ({\tt CMO\_LAMBDA}, {\sl List}\, {\rm args},
                    160:                           {\sl Tree} {\rm body}) \\
                    161: & & \mbox{ --- a function with the arguments body. } \\
                    162: \end{eqnarray*}
                    163: */
                    164:
                    165: /*&jp
                    166: 数式を処理するシステムでは, Tree 構造が一般にもちいられる.
                    167: たとえば, $\sin(x+e)$ は,
                    168: {\tt (sin, (plus, x, e))}
                    169: なる Tree であらわすのが一般的である.
                    170: Tree の表現を スタックマシンのレベルでおこなうとすると,
                    171: {\tt ox\_BEGIN\_BLOCK}, {\tt ox\_END\_BLOCK} で評価を抑制するのが
                    172: 一つの方法である (cf. Postscript の {\tt \{ }, {\tt \} }).
                    173: たとえば上の方法では
                    174: {\tt x, e, plus, sin } を begin block, end block でかこめばよろしい.
                    175: われわれはスタックマシンの実装をなるべく簡単にするという立場をとりたい,
                    176: また数学オブジェクトを OX スタックマシンと CMObject を混在して表現したく
                    177: ない.
                    178: したがって,
                    179: Tree 構造は Open Math 風の表現をもちいた CMO を導入することにした.
                    180: またこのほうが, われわれの想定するシステム xxx において, Open XM 対応が
                    181: はるかに容易である.
                    182: なお, Tree は, Open Math では, Symbol, Application のメカニズムに相当する.
                    183: */
                    184: /*&eg
                    185: In many computer algebra systems, mathematical expressions are usually
                    186: expressed in terms of a tree structure.
                    187: For example,
                    188: $\sin(x+e)$ is expressed as
                    189: {\tt (sin, (plus, x, e))}
                    190: as a tree.
1.4       noro      191: Tree may be expressed by putting the expression between
1.3       noro      192: {\tt SM\_beginBlock} and {\tt SM\_endBlock}, which are
                    193: stack machine commands for delayed evaluation.
                    194: (cf. {\tt \{ }, {\tt \} } in PostScript).
                    195: However it makes the implementation of stack machines complicated.
                    196: It is desirable that CMObject is independent of OX stack machine.
                    197: Therefore we introduce an OpenMath like tree representation for CMO
1.7       noro      198: Tree object.
1.3       noro      199: This method allows us to implement tree structure easily
                    200: on individual OpenXM systems.
                    201: Note that CMO Tree corresponds to Symbol and Application in OpenMath.
1.1       noro      202: */
                    203:
                    204:
                    205: /*&C
                    206:
                    207: */
                    208: /*&jp
                    209: Lambda は関数を定義するための関数である.
                    210: Lisp の Lambda 表現と同じ.
1.3       noro      211: */
                    212: /*&eg
                    213: Lambda is used to define functions.
1.12    ! takayama  214: The notion ``lambda'' is borrowed from the language Lisp.
1.3       noro      215: */
1.1       noro      216:
                    217: \noindent
1.3       noro      218: //&jp 例: $sin(x+e)$ の表現.
                    219: //&eg Example: the expression of $sin(x+e)$.
1.1       noro      220: \begin{verbatim}
1.11      takayama  221: (CMO_TREE, (CMO_STRING, "sin"),
                    222:     (CMO_LIST,[size=]1,(CMO_LIST,[size=]2,(CMO_STRING, "cdname"),
                    223:                                           (CMO_STRING,"basic")))
1.1       noro      224:     (CMO_LIST,[size=]1,
                    225:         (CMO_TREE, (CMO_STRING, "plus"), (CMO_STRING, "basic"),
                    226:             (CMO_LIST,[size=]2, (CMO_INDETERMINATE,"x"),
1.6       noro      227: //&jp                  (CMO_TREE,(CMO_STRING, "e"),  自然対数の底
                    228: //&eg                  (CMO_TREE,(CMO_STRING, "e"),  the base of natural logarithms
1.12    ! takayama  229:     (CMO_LIST,[size=]1,(CMO_LIST,[size=]2,(CMO_STRING, "cdname"),
        !           230:                                           (CMO_STRING,"basic")))
1.1       noro      231:         ))
                    232:     )
                    233: )
                    234: \end{verbatim}
1.10      takayama  235: //&jp  Leave の成分には, 多項式を含む任意のオブジェクトがきてよい.
                    236: //&eg  Elements of the leave may be any objects including polynomials.
1.1       noro      237:
                    238: \noindent
                    239: Example:
                    240: \begin{verbatim}
1.12    ! takayama  241: sm1> [(plus) [[(cdname) (basic)]] [(123).. (345)..]] [(class) (tree)] dc ::
        !           242: Class.tree [$plus$ , [[$cdname$ , $basic$ ]], [ 123 , 345 ]  ]
1.1       noro      243: \end{verbatim}
                    244:
1.12    ! takayama  245: \noindent
        !           246: Example:
        !           247: \begin{verbatim}
        !           248: asir
        !           249: [753] taka_cmo100_xml_form(quote(sin(x+1)));
        !           250: <cmo_tree>  <cmo_string>"sin"</cmo_string>
        !           251:  <cmo_list><cmo_int32 for="length">1</cmo_int32>
        !           252:    <cmo_list><cmo_int32 for="length">2</cmo_int32>
        !           253:      <cmo_string>"cdname"</cmo_string>
        !           254:      <cmo_string>"basic"</cmo_string>
        !           255:    </cmo_list> </cmo_list>
        !           256: <cmo_tree>    <cmo_string>"plus"</cmo_string>
        !           257:   <cmo_list><cmo_int32 for="length">1</cmo_int32>
        !           258:     <cmo_list><cmo_int32 for="length">2</cmo_int32>
        !           259:       <cmo_string>"cdname"</cmo_string>
        !           260:       <cmo_string>"basic"</cmo_string>
        !           261:     </cmo_list> </cmo_list>
        !           262:  <cmo_indeterminate> <cmo_string>"x"</cmo_string>  </cmo_indeterminate>
        !           263:  <cmo_zz>1</cmo_zz>
        !           264: </cmo_tree></cmo_tree>
        !           265: \end{verbatim}
1.1       noro      266:
                    267:
                    268: \bigbreak
1.3       noro      269: //&jp 次に, 分散表現多項式に関係するグループを定義しよう.
1.4       noro      270: /*&eg
1.12    ! takayama  271: Let us define a group for distributed polynomials. In the following,
1.4       noro      272: DMS stands for Distributed Monomial System.
                    273: */
1.1       noro      274:
                    275: \medbreak
                    276: \noindent
1.4       noro      277: Group CMObject/DistributedPolynomials requires CMObject/Primitive,
                    278: CMObject/Basic. \\
1.1       noro      279: Monomial, Monomial32, Coefficient, Dpolynomial, DringDefinition,
                    280: Generic DMS ring, RingByName, DMS of N variables $\in$
                    281: CMObject/DistributedPolynomials. \\
1.3       noro      282: /*&jp
1.1       noro      283: \begin{eqnarray*}
                    284: \mbox{Monomial} &:& \mbox{Monomial32}\, |\, \mbox{Zero} \\
                    285: \mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, {\sl int32}\, n,
                    286: {\sl int32}\, \mbox{e[1]}, \ldots,
                    287: {\sl int32}\, \mbox{e[n]}, \\
                    288: & & \ \mbox{Coefficient}) \\
                    289: & & \mbox{ --- e[i] で, $n$ 変数 monomial
                    290: $x^e = x_1^{e_1} \cdots x_n^{e_n}$ の各指数 $e_i$
                    291: をあらわす.} \\
                    292: \mbox{Coefficient}&:& \mbox{ZZ} | \mbox{Integer32} \\
                    293: \mbox{Dpolynomial}&:& \mbox{Zero} \\
1.12    ! takayama  294: & & |\ ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},{\sl int32}\, m, \\
1.1       noro      295: & & \ \ \mbox{DringDefinition},
                    296: [\mbox{Monomial32}|\mbox{Zero}], \\
                    297: & &\ \
                    298: \{\mbox{Monomial32}\}) \\
                    299: & &\mbox{--- m はモノミアルの個数である.}\\
                    300: \mbox{DringDefinition}
                    301: &:& \mbox{DMS of N variables} \\
                    302: & & |\ \mbox{RingByName} \\
                    303: & & |\ \mbox{Generic DMS ring} \\
                    304: & & \mbox{ --- 分散表現多項式環の定義. } \\
                    305: \mbox{Generic DMS ring}
1.2       noro      306: &:& \mbox{({\tt CMO\_DMS\_GENERIC}) --- 新版はこちら}\\
1.1       noro      307: \mbox{RingByName}&:& ({\tt CMO\_RING\_BY\_NAME}, {\sl Cstring}\  {\rm s}) \\
                    308: & & \mbox{ --- 名前 s で, 格納された ring 定義.} \\
                    309: \mbox{DMS of N variables}
                    310: &:& ({\tt CMO\_DMS\_OF\_N\_VARIABLES}, \\
                    311: & & \ ({\tt CMO\_LIST}, {\sl int32}\, \mbox{m},
                    312: {\sl Integer32}\,  \mbox{n}, {\sl Integer32}\,\mbox{p} \\
                    313: & & \ \ [,{\sl object}\,\mbox{s}, {\sl Cstring}\,\mbox{c},
                    314:           {\sl List}\, \mbox{vlist},
                    315: {\sl List}\, \mbox{wvec}, {\sl List}\, \mbox{outord}]) \\
                    316: & & \mbox{ --- m はあとに続く要素の数} \\
                    317: & & \mbox{ --- n は変数の数, p は 標数} \\
                    318: & & \mbox{ --- s は ring の名前} \\
                    319: & & \mbox{ --- c は係数環, QQ, ZZ の場合は文字列で QQ, ZZ と書く.} \\
                    320: & & \mbox{ --- vlist は Indeterminate のリスト(新版). 多項式環の変数リスト} \\
                    321: & & \mbox{ --- wvec は order をきめる weight vector,} \\
                    322: & & \mbox{ --- outord は出力するときの変数順序.} \\
                    323: \end{eqnarray*}
1.3       noro      324: */
                    325: /*&eg
                    326: \begin{eqnarray*}
                    327: \mbox{Monomial} &:& \mbox{Monomial32}\, |\, \mbox{Zero} \\
                    328: \mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, {\sl int32}\, n,
                    329:                       {\sl int32}\, \mbox{e[1]}, \ldots,
                    330:                       {\sl int32}\, \mbox{e[n]}, \\
                    331:                  & & \ \mbox{Coefficient}) \\
                    332:                  & & \mbox{ --- e[i] is the exponent $e_i$ of the monomial
                    333:                       $x^e = x_1^{e_1} \cdots x_n^{e_n}$. } \\
                    334: \mbox{Coefficient}&:& \mbox{ZZ} | \mbox{Integer32} \\
                    335: \mbox{Dpolynomial}&:& \mbox{Zero} \\
1.12    ! takayama  336:                  & & |\ ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},{\sl int32}\, m, \\
1.3       noro      337:                  & & \ \ \mbox{DringDefinition}, [\mbox{Monomial32}|\mbox{Zero}], \\
                    338:                  & &\ \
                    339:                     \{\mbox{Monomial32}\})  \\
                    340:                  & &\mbox{--- m is equal to the number of monomials.}\\
                    341: \mbox{DringDefinition}
                    342:                  &:& \mbox{DMS of N variables} \\
                    343:                  & & |\ \mbox{RingByName} \\
                    344:                  & & |\ \mbox{Generic DMS ring} \\
                    345:                  & & \mbox{ --- definition of the ring of distributed polynomials. } \\
                    346: \mbox{Generic DMS ring}
                    347:                  &:& ({\tt CMO\_DMS\_GENERIC}) \\
                    348: \mbox{RingByName}&:& ({\tt CMO\_RING\_BY\_NAME}, {\sl Cstring} s) \\
1.4       noro      349:                  & & \mbox{ --- The ring definition referred by the name ``s''.} \\
1.3       noro      350: \mbox{DMS of N variables}
                    351:                  &:& ({\tt CMO\_DMS\_OF\_N\_VARIABLES}, \\
                    352:                  & & \ ({\tt CMO\_LIST}, {\sl int32}\, \mbox{m},
                    353:                   {\sl Integer32}\,  \mbox{n}, {\sl Integer32}\, \mbox{p} \\
                    354:                  & & \ \ [,{\sl Cstring}\,\mbox{s}, {\sl List}\, \mbox{vlist},
                    355:                           {\sl List}\, \mbox{wvec}, {\sl List}\, \mbox{outord}]) \\
                    356:                  & & \mbox{ --- m is the number of elements.} \\
                    357:                  & & \mbox{ --- n is the number of variables, p is the characteristic} \\
                    358:                  & & \mbox{ --- s is the name of the ring, vlist is the list of variables.} \\
                    359:                  & & \mbox{ --- wvec is the weight vector.} \\
                    360:                  & & \mbox{ --- outord is the order of variables to output.} \\
                    361: \end{eqnarray*}
                    362: */
1.1       noro      363:
1.3       noro      364: /*&jp
1.1       noro      365: RingByName や DMS of N variables はなくても, DMS を定義できる.
                    366: したがって, これらを実装してないシステムで DMS を扱うものが
                    367: あってもかまわない.
                    368:
                    369: 以下, 以上の CMObject  にたいする,
                    370: xxx = asir, kan の振舞いを記述する.
1.3       noro      371: */
                    372: /*&eg
                    373: Note that it is possible to define DMS without RingByName and
                    374: DMS of N variables.
                    375:
                    376: In the following we describe how the above CMObjects
                    377: are implemented on Asir and Kan.
                    378: */
1.1       noro      379:
                    380: \subsection{ Zero}
1.3       noro      381: /*&jp
1.12    ! takayama  382: CMO では ゼロの表現法がなんとおりもあることに注意.
        !           383: %% どのようなゼロをうけとっても,
        !           384: %% システムのゼロに変換できるべきである.
1.3       noro      385: */
                    386: /*&eg
1.12    ! takayama  387: Note that CMO has various representations of zero.
1.3       noro      388: */
1.1       noro      389:
                    390:
1.3       noro      391: //&jp \subsection{ 整数 ZZ }
                    392: //&eg \subsection{ Integer ZZ }
1.1       noro      393:
                    394: \begin{verbatim}
                    395: #define     CMO_ZZ          20
                    396: \end{verbatim}
                    397:
1.3       noro      398: /*&jp
                    399: この節ではOpen xxx 規約における任意の大きさの整数(bignum)の扱いについ
                    400: て説明する.  Open XM 規約における多重精度整数を表すデータ型 CMO\_ZZ は
                    401: GNU MPライブラリなどを参考にして設計されていて, 符号付き絶対値表現を用
                    402: いている.  (cf. {\tt kan/sm1} の配布ディレクトリのなかの {\tt
                    403: plugin/cmo-gmp.c}) CMO\_ZZ は次の形式をとる.
                    404: */
                    405: /*&eg
1.12    ! takayama  406: We describe the bignum (multi-precision integer) representation
        !           407: {\tt CMO\_ZZ} in OpenXM.
        !           408: The format is similar
1.3       noro      409: to that in GNU MP. (cf. {\tt plugin/cmo-gmp.c} in the {\tt kan/sm1}
                    410: distribution). CMO\_ZZ is defined as follows.
                    411: */
1.1       noro      412:
                    413: \begin{tabular}{|c|c|c|c|c|}
                    414: \hline
                    415: {\tt int32 CMO\_ZZ} & {\tt int32 $f$} & {\tt int32 $b_0$} & $\cdots$ &
                    416: {\tt int32 $b_{n}$} \\
                    417: \hline
1.3       noro      418: \end{tabular}
                    419:
                    420: /*&jp
                    421: $f$ は32bit整数である.  $b_0, \ldots, b_n$ は unsigned int32 である.
                    422: $|f|$ は $n+1$ である.  この CMO の符号は $f$ の符号で定める.  前述し
                    423: たように, 32bit整数の負数は 2 の補数表現で表される.
                    424:
                    425: Open xxx 規約では上の CMO は以下の整数を意味する. ($R = 2^{32}$)
                    426: */
                    427: /*&eg
                    428: $f$ is a 32bit integer. $b_0, \ldots, b_n$ are unsigned 32bit integers.
                    429: $|f|$ is equal to $n+1$.
1.12    ! takayama  430: The sign of $f$ represents that of the above integer to be expressed.
        !           431: As stated in Section
1.3       noro      432: \ref{sec:basic0}, a negative 32bit integer is represented by
                    433: two's complement.
                    434:
                    435: In OpenXM the above CMO represents the following integer. ($R = 2^{32}$.)
                    436: */
1.1       noro      437:
                    438: \[
                    439: \mbox{sgn}(f)\times (b_0 R^{0}+ b_1 R^{1} + \cdots + b_{n-1}R^{n-1} + b_n R^n).
                    440: \]
1.3       noro      441:
                    442: /*&jp
1.12    ! takayama  443: \noindent  例:
1.3       noro      444: {\tt int32} を network byte order で表現
                    445: しているとすると,例えば, 整数 $14$ は CMO\_ZZ で表わすと,
                    446: */
                    447: /*&eg
1.12    ! takayama  448: \noindent Example:
1.3       noro      449: If we express {\tt int32} by the network byte order,
                    450: a CMO\_ZZ $14$ is expressed by
                    451: */
1.1       noro      452: \[
                    453: \mbox{(CMO\_ZZ, 1, 0, 0, 0, e)},
                    454: \]
1.3       noro      455: //&jp と表わす. これはバイト列では
1.4       noro      456: //&eg The corresponding byte sequence is
1.1       noro      457: \[
                    458: \mbox{\tt 00 00 00 14 00 00 00 01 00 00 00 0e}
                    459: \]
1.3       noro      460: //&jp となる.
1.1       noro      461:
                    462:
1.3       noro      463: //&jp なお ZZ の 0 ( (ZZ) 0 と書く ) は, {\tt (CMO\_ZZ, 00,00,00,00)} と表現する.
                    464: //&eg Note that CMO\_ZZ 0 is expressed by {\tt (CMO\_ZZ, 00,00,00,00)}.
1.1       noro      465:
                    466:
1.3       noro      467: //&jp \subsection{ 分散表現多項式 Dpolynomial }
                    468: //&eg \subsection{ Distributed polynomial Dpolynomial }
1.1       noro      469:
1.3       noro      470: /*&jp
1.1       noro      471: 環とそれに属する多項式は次のような考えかたであつかう.
                    472:
                    473: Generic DMS ring に属する元は,
                    474: 変数を $n$ 個持つ 適当な係数集合 $K$ を持つ多項式環 $K[x_1, \ldots, x_n]$
                    475: の元である.
                    476: 係数集合 $K$ がなにかは, 実際データを読み込み, Coefficient を見た段階で
                    477: わかる.
                    478: この環に属する多項式を CMO 形式でうけとった場合, 各サーバはその
                    479: サーバの対応する Object  に変換しないといけない.
                    480: この変換の仕方は, 各サーバ毎にきめる.
                    481:
                    482: Asir の場合は, $K[x_1, \ldots, x_n]$ の元は分散表現多項式に変換される.
                    483: \noroa{ でも, order はどうなるの? }
                    484:
                    485: {\tt kan/sm1} の場合は事情は複雑である.
                    486: {\tt kan/sm1} は, Generic DMS ring にあたる クラスをもたない.
                    487: つまり, Default で存在する, $n$ 変数の分散表現多項式環は存在しないわけである.
                    488: したがって, {\tt kan/sm1} では, DMS of N variables が来た場合,
                    489: これを CurrentRing の元として読み込む.  CurrentRing の変数の数が $n'$
                    490: で, $n' < n$ だと新しい多項式環を生成してデータを読み込む.
                    491: Order その他の optional 情報はすべて無視する.
                    492:
                    493: DMS の 2 番目のフィールドで,
                    494: Ring by Name を用いた場合, 現在の名前空間で変数 yyy に格納された ring object
                    495: の元として, この多項式を変換しなさいという意味になる.
                    496: {\tt kan/sm1} の場合, 環の定義は ring object として格納されており,
                    497: この ring object を 変数 yyy で参照することにより CMO としてうけとった
                    498: 多項式をこの ring の元として格納できる.
1.3       noro      499: */
1.1       noro      500:
1.3       noro      501: /*&eg
                    502: We treat polynomial rings and their elements as follows.
1.1       noro      503:
1.4       noro      504: Generic DMS ring is an $n$-variate polynomial ring $K[x_1, \ldots, x_n]$,
1.12    ! takayama  505: where $K$ is a coefficient set. $K$ is unknown in advance
1.4       noro      506: and it is determined when coefficients of an element are received.
                    507: When a server has received an element in Generic DMS ring,
1.3       noro      508: the server has to translate it into the corresponding local object
                    509: on the server. Each server has its own translation scheme.
                    510: In Asir such an element are translated into a distributed polynomial.
                    511: In {\tt kan/sm1} things are complicated.
1.4       noro      512: {\tt kan/sm1} does not have any class corresponding to Generic DMS ring.
1.3       noro      513: {\tt kan/sm1} translates a DMS of N variables into an element of
                    514: the CurrentRing.
                    515: If the CurrentRing is $n'$-variate and $n' < n$, then
1.12    ! takayama  516: an $n$-variate polynomial ring is newly created.
        !           517:
1.3       noro      518:
1.4       noro      519: If RingByName ({\tt CMO\_RING\_BY\_NAME}, yyy)
1.3       noro      520: is specified as the second field of DMS,
                    521: it requests a sever to use a ring object whose name is yyy
                    522: as the destination ring for the translation.
                    523: */
1.1       noro      524:
                    525: \medbreak \noindent
1.3       noro      526: //&jp {\bf Example}: (すべての数の表記は 16 進表記)
                    527: //&eg {\bf Example}: (all numbers are represented in hexadecimal notation)
1.1       noro      528: {\footnotesize \begin{verbatim}
                    529: Z/11Z [6 variables]
                    530: (kxx/cmotest.sm1) run
                    531: [(x,y) ring_of_polynomials ( ) elimination_order 11 ] define_ring ;
                    532: (3x^2 y). cmo /ff set ;
                    533: [(cmoLispLike) 1] extension ;
                    534: ff ::
                    535: Class.CMO CMO StandardEncoding: size = 52, size/sizeof(int) = 13,
                    536: tag=CMO_DISTRIBUTED_POLYNOMIAL
                    537:
                    538:   0  0  0 1f  0  0  0  1  0  0  0 18  0  0  0 13  0  0  0  6
                    539:   0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  1
                    540:   0  0  0  0  0  0  0  2  0  0  0  3
                    541:
                    542: ff omc ::
                    543:  (CMO_DISTRIBUTED_POLYNOMIAL[1f],[size=]1,(CMO_DMS_GENERIC[18],),
                    544:   (CMO_MONOMIAL32[13],3*x^2*y),),
                    545: \end{verbatim} }
1.3       noro      546: /*&jp
                    547: $ 3 x^2 y$ は 6 変数の多項式環の 元としてみなされている.
                    548: */
                    549: /*&eg
                    550: $3 x^2 y$ is regarded as an element of a six-variate polynomial ring.
                    551: */
1.1       noro      552:
                    553:
1.3       noro      554: //&jp \subsection{再帰表現多項式の定義}
                    555: //&eg \subsection{Recursive polynomials}
1.1       noro      556:
                    557: \begin{verbatim}
                    558: #define CMO_RECURSIVE_POLYNOMIAL        27
                    559: #define CMO_POLYNOMIAL_IN_ONE_VARIABLE  33
                    560: \end{verbatim}
                    561:
1.4       noro      562: Group CMObject/RecursivePolynomial requires CMObject/Primitive, CMObject/Basic.\\
1.1       noro      563: Polynomial in 1 variable, Coefficient, Name of the main variable,
                    564: Recursive Polynomial, Ring definition for recursive polynomials
                    565: $\in$ CMObject/RecursivePolynomial \\
                    566:
1.3       noro      567: /*&jp
1.1       noro      568: \begin{eqnarray*}
                    569: \mbox{Polynomial in 1 variable} &:&
                    570: \mbox{({\tt CMO\_POLYNOMIAL\_IN\_ONE\_VARIABLE},\, {\sl int32}\, m, } \\
                    571: & & \quad \mbox{ Name of the main variable }, \\
1.12    ! takayama  572: & & \quad \mbox{ \{ {\sl int32} e, Coefficient \}} ) \\
1.1       noro      573: & & \mbox{ --- m はモノミアルの個数. } \\
                    574: & & \mbox{ --- e, Coefficieint はモノミアルを表現している. } \\
                    575: & & \mbox{ --- 順序の高い順にならべる. 普通は巾の高い順.} \\
                    576: & & \mbox{ ---  e は 1変数多項式の巾をあらわす. } \\
                    577: \mbox{Coefficient} &:& \mbox{ ZZ} \,|\, \mbox{ QQ } \,|\,
                    578: \mbox{ integer32  } \,|\,
                    579: \mbox{ Polynomial in 1 variable } \\
                    580: & & \quad \,|\, \mbox{Tree} \,|\, \mbox{Zero} \,|\,\mbox{Dpolynomial}\\
                    581: \mbox{Name of the main variable } &:&
                    582: \mbox{ {\sl int32} v }   \\
                    583: & & \mbox{ --- v は 変数番号 (0 からはじまる) を表す. } \\
                    584: \mbox{Recursive Polynomial} &:&
                    585: \mbox{ ( {\tt CMO\_RECURSIVE\_POLYNOMIAL}, } \\
1.3       noro      586: & & \quad \mbox{ RringDefinition, } \\
1.1       noro      587: & & \quad
1.12    ! takayama  588: \mbox{ Polynomial in 1 variable}\, | \, \mbox{Coefficient} )  \\
1.3       noro      589: \mbox{RringDefinition}
1.1       noro      590: & : &  \mbox{ {\sl List} v } \\
1.10      takayama  591: & & \quad \mbox{ --- v は, 変数名(indeterminate) または Tree のリスト. } \\
1.1       noro      592: & & \quad \mbox{ --- 順序の高い順. } \\
                    593: \end{eqnarray*}
1.3       noro      594: */
                    595: /*&eg
                    596: \begin{eqnarray*}
                    597: \mbox{Polynomial in 1 variable} &:&
                    598: \mbox{({\tt CMO\_POLYNOMIAL\_IN\_ONE\_VARIABLE},\, {\sl int32}\, m, } \\
                    599: & & \quad \mbox{ Name of the main variable }, \\
1.12    ! takayama  600: & & \quad \mbox{ \{ {\sl int32} e, Coefficient \}} ) \\
1.4       noro      601: & & \mbox{ --- m is the number of monomials. } \\
                    602: & & \mbox{ --- A pair of e and Coefficient represents a monomial. } \\
1.3       noro      603: & & \mbox{ --- The pairs of e and Coefficient are sorted in the } \\
                    604: & & \mbox{ \quad decreasing order, usually with respect to e.} \\
                    605: & & \mbox{ ---  e denotes an exponent of a monomial with respect to } \\
                    606: & & \mbox{ \quad the main variable. } \\
                    607: \mbox{Coefficient} &:& \mbox{ ZZ} \,|\, \mbox{ QQ } \,|\,
                    608: \mbox{ integer32  } \,|\,
                    609: \mbox{ Polynomial in 1 variable } \\
                    610: & & \quad \,|\, \mbox{Tree} \,|\, \mbox{Zero} \,|\,\mbox{Dpolynomial}\\
                    611: \mbox{Name of the main variable } &:&
                    612: \mbox{ {\sl int32} v }   \\
                    613: & & \mbox{ --- v denotes a variable number. } \\
                    614: \mbox{Recursive Polynomial} &:&
                    615: \mbox{ ( {\tt CMO\_RECURSIVE\_POLYNOMIAL}, } \\
                    616: & & \quad \mbox{ RringDefinition, } \\
                    617: & & \quad
1.12    ! takayama  618: \mbox{ Polynomial in 1 variable}\, | \, \mbox{Coefficient} )  \\
1.3       noro      619: \mbox{RringDefinition}
                    620: & : &  \mbox{ {\sl List} v } \\
1.10      takayama  621: & & \quad \mbox{ --- v is a list of names of indeterminates or trees. } \\
1.3       noro      622: & & \quad \mbox{ --- It is sorted in the decreasing order. } \\
                    623: \end{eqnarray*}
                    624: */
1.1       noro      625: \bigbreak
                    626: \noindent
1.3       noro      627: Example:
1.1       noro      628: \begin{verbatim}
                    629: (CMO_RECURSIEVE_POLYNOMIAL, ("x","y"),
                    630: (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2,      0,  <--- "x"
                    631:   3, (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2, 1,  <--- "y"
                    632:        5, 1234,
                    633:        0, 17),
                    634:   1, (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2, 1,  <--- "y"
                    635:        10, 1,
                    636:        5, 31)))
                    637: \end{verbatim}
1.3       noro      638: //&jp これは,
                    639: //&eg This represents
                    640: $$   x^3 (1234 y^5 + 17 ) +  x^1 (y^{10} + 31 y^5)  $$
                    641: /*&jp
1.1       noro      642: をあらわす.
1.12    ! takayama  643: %%非可換多項式もこの形式であらわしたいので, 積の順序を上のように
        !           644: %%すること. つまり, 主変数かける係数の順番.
1.3       noro      645: */
                    646: /*&eg
1.12    ! takayama  647: %%We intend to represent non-commutative polynomials with the
        !           648: %%same form. In such a case, the order of products are defined
        !           649: %%as above, that is a power of the main variable $\times$ a coeffcient.
        !           650:
1.3       noro      651: */
1.1       noro      652:
                    653: \noindent
                    654: \begin{verbatim}
                    655: sm1
                    656: sm1>(x^2-h). [(class) (recursivePolynomial)] dc /ff set ;
                    657: sm1>ff ::
                    658: Class.recursivePolynomial h * ((-1)) + (x^2  * (1))
                    659: \end{verbatim}
                    660:
1.3       noro      661: //&jp \subsection{CPU依存の double }
                    662: //&eg \subsection{CPU dependent double}
1.1       noro      663:
                    664: \begin{verbatim}
                    665: #define CMO_64BIT_MACHINE_DOUBLE   40
                    666: #define CMO_ARRAY_OF_64BIT_MACHINE_DOUBLE  41
                    667: #define CMO_128BIT_MACHINE_DOUBLE   42
                    668: #define CMO_ARRAY_OF_128BIT_MACHINE_DOUBLE  43
                    669: \end{verbatim}
                    670:
                    671: \noindent
1.4       noro      672: Group CMObject/MachineDouble requires CMObject/Primitive.\\
1.1       noro      673: 64bit machine double, Array of 64bit machine double
                    674: 128bit machine double, Array of 128bit machine double
                    675: $\in$ CMObject/MachineDouble \\
                    676:
1.3       noro      677: /*&jp
1.1       noro      678: \begin{eqnarray*}
                    679: \mbox{64bit machine double} &:&
                    680: \mbox{({\tt CMO\_64BIT\_MACHINE\_DOUBLE}, } \\
1.12    ! takayama  681: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s8})\\
1.1       noro      682: & & \mbox{ --- s1, $\ldots$, s8 は {\tt double} (64bit). } \\
                    683: & & \mbox{ --- この表現はCPU依存である.}\\
                    684: &&  \mbox{\quad\quad mathcap に CPU 情報を付加しておく.} \\
                    685: \mbox{Array of 64bit machine double} &:&
                    686: \mbox{({\tt CMO\_ARRAY\_OF\_64BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
                    687: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte}}\, s8[1], \ldots , {\sl byte}\, s8[m])\\
                    688: & & \mbox{ --- s*[1], $\ldots$ s*[m] は m 個の double (64bit) である. } \\
                    689: & & \mbox{ --- この表現はCPU依存である.}\\
                    690: & & \mbox{ \quad\quad mathcap に CPU 情報を付加しておく.} \\
                    691: \mbox{128bit machine double} &:&
                    692: \mbox{({\tt CMO\_128BIT\_MACHINE\_DOUBLE}, } \\
1.12    ! takayama  693: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s16})\\
1.1       noro      694: & & \mbox{ --- s1, $\ldots$, s16 は {\tt long double} (128bit). } \\
                    695: & & \mbox{ --- この表現はCPU依存である.}\\
                    696: &&  \mbox{\quad\quad mathcap に CPU 情報を付加しておく.} \\
                    697: \mbox{Array of 128bit machine double} &:&
                    698: \mbox{({\tt CMO\_ARRAY\_OF\_128BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
1.12    ! takayama  699: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte} s16[1], \ldots , {\sl byte} s16[m]})\\
1.1       noro      700: & & \mbox{ --- s*[1], $\ldots$ s*[m] は m 個の long double (128bit) である. } \\
                    701: & & \mbox{ --- この表現はCPU依存である.}\\
                    702: & & \mbox{ \quad\quad mathcap に CPU 情報を付加しておく.}
                    703: \end{eqnarray*}
1.3       noro      704: */
                    705: /*&eg
                    706: \begin{eqnarray*}
                    707: \mbox{64bit machine double} &:&
                    708: \mbox{({\tt CMO\_64BIT\_MACHINE\_DOUBLE}, } \\
1.12    ! takayama  709: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s8})\\
1.3       noro      710: & & \mbox{ --- s1, $\ldots$, s8 は {\tt double} (64bit). } \\
1.12    ! takayama  711: & & \mbox{ --- Encoding depends on CPU.}\\
1.3       noro      712: &&  \mbox{\quad\quad Add informations on CPU to the mathcap.} \\
                    713: \mbox{Array of 64bit machine double} &:&
                    714: \mbox{({\tt CMO\_ARRAY\_OF\_64BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
                    715: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte}}\, s8[1], \ldots , {\sl byte}\, s8[m])\\
                    716: & & \mbox{ --- s*[1], $\ldots$ s*[m] are 64bit double's. } \\
1.12    ! takayama  717: & & \mbox{ --- Encoding depends on CPU.}\\
1.3       noro      718: & & \mbox{\quad\quad Add informations on CPU to the mathcap.} \\
                    719: \mbox{128bit machine double} &:&
                    720: \mbox{({\tt CMO\_128BIT\_MACHINE\_DOUBLE}, } \\
1.12    ! takayama  721: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s16})\\
1.3       noro      722: & & \mbox{ --- s1, $\ldots$, s16 は {\tt long double} (128bit). } \\
1.12    ! takayama  723: & & \mbox{ --- Encoding depends on CPU.}\\
1.3       noro      724: & & \mbox{\quad\quad Add informations on CPU to the mathcap.} \\
                    725: \mbox{Array of 128bit machine double} &:&
                    726: \mbox{({\tt CMO\_ARRAY\_OF\_128BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
1.12    ! takayama  727: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte} s16[1], \ldots , {\sl byte} s16[m]})\\
1.3       noro      728: & & \mbox{ --- s*[1], $\ldots$ s*[m] are 128bit long double's. } \\
1.12    ! takayama  729: & & \mbox{ --- Encoding depends on CPU.}\\
1.3       noro      730: & & \mbox{\quad\quad Add informations on CPU to the mathcap.} \\
                    731: \end{eqnarray*}
                    732: */
1.1       noro      733:
                    734: \bigbreak
1.12    ! takayama  735:
1.1       noro      736: \begin{verbatim}
                    737: #define CMO_BIGFLOAT   50
                    738: #define CMO_IEEE_DOUBLE_FLOAT 51
                    739: \end{verbatim}
                    740:
1.3       noro      741: /*&jp
                    742: IEEE 準拠の float については, IEEE 754 double precision floating-point
                    743: format (64 bit) の定義を見よ.
                    744: */
                    745: /*&eg
1.5       noro      746: See IEEE 754 double precision floating-point (64 bit) for the details of
1.12    ! takayama  747: float compliant to the IEEE standard.
1.3       noro      748: */
1.1       noro      749:
                    750: \noindent
1.4       noro      751: Group CMObject/Bigfloat requires CMObject/Primitive, CMObject/Basic.\\
1.1       noro      752: Bigfloat
                    753: $\in$ CMObject/Bigfloat \\
                    754:
                    755: \begin{eqnarray*}
                    756: \mbox{Bigfloat} &:&
                    757: \mbox{({\tt CMO\_BIGFLOAT}, } \\
                    758: & & \quad \mbox{ {\sl ZZ} a , {\sl ZZ} e})\\
1.3       noro      759: & & \mbox{ --- $a \times 2^e$. } \\
1.1       noro      760: \end{eqnarray*}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>