[BACK]Return to cmo-basic1.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / OpenXM-specs

Annotation of OpenXM/doc/OpenXM-specs/cmo-basic1.tex, Revision 1.14

1.14    ! noro        1: %% $OpenXM: OpenXM/doc/OpenXM-specs/cmo-basic1.tex,v 1.13 2005/03/04 03:49:47 takayama Exp $
1.1       noro        2: //&jp \section{ 数, 多項式 の  CMO 表現 }
                      3: //&eg \section{ CMOexpressions for numbers and polynomials }
1.4       noro        4: \label{sec:basic1}
1.1       noro        5: /*&C
                      6: @../SSkan/plugin/cmotag.h
                      7: \begin{verbatim}
                      8: #define     CMO_MONOMIAL32  19
                      9: #define     CMO_ZZ          20
                     10: #define     CMO_QQ          21
                     11: #define     CMO_ZERO        22
                     12: #define     CMO_DMS_GENERIC  24
                     13: #define     CMO_DMS_OF_N_VARIABLES  25
                     14: #define     CMO_RING_BY_NAME   26
                     15: #define     CMO_DISTRIBUTED_POLYNOMIAL 31
                     16: #define     CMO_RATIONAL       34
1.14    ! noro       17: #define     CMO_COMPLEX       35
1.1       noro       18:
                     19:
                     20: #define     CMO_INDETERMINATE  60
                     21: #define     CMO_TREE           61
                     22: #define     CMO_LAMBDA         62    /* for function definition */
                     23: \end{verbatim}
                     24:
                     25: */
                     26:
                     27: /*&jp
1.4       noro       28: 以下, グループ CMObject/Basic, CMObject/Tree
1.1       noro       29: および CMObject/DistributedPolynomial
                     30: に属する CMObject の形式を説明する.
                     31:
1.5       noro       32: \noindent
                     33: {\tt OpenXM/src/ox\_toolkit} にある {\tt bconv} をもちいると
                     34: CMO expression を binary format に変換できるので,
                     35: これを参考にするといい.
1.1       noro       36: */
                     37: /*&eg
                     38: In the sequel, we will explain on the groups
1.4       noro       39: CMObject/Basic, CMObject/Tree
1.1       noro       40: and CMObject/DistributedPolynomial.
1.5       noro       41:
                     42: \noindent
                     43: The program {\tt bconv} at {\tt OpenXM/src/ox\_toolkit}
                     44: translates
                     45: CMO expressions into binary formats.
                     46: It is convinient to understand the binary formats explained in
                     47: this section.
1.1       noro       48: */
                     49:
1.5       noro       50: /*&C
                     51: \noindent Example:
                     52: \begin{verbatim}
                     53: bash$ ./bconv
                     54: > (CMO_ZZ,123123);
                     55: 00 00 00 14 00 00 00 01 00 01 e0 f3
                     56: \end{verbatim}
                     57: */
1.1       noro       58: /*&jp
                     59:
                     60: \bigbreak
                     61: \noindent
1.4       noro       62: Group CMObject/Basic requires CMObject/Primitive. \\
1.12      takayama   63: ZZ, QQ, Zero, Rational, Indeterminate $\in$ CMObject/Basic. \\
1.1       noro       64: \begin{eqnarray*}
                     65: \mbox{Zero} &:& ({\tt CMO\_ZERO}) \\
                     66: & & \mbox{ --- ユニバーサルな ゼロを表す. } \\
1.12      takayama   67: \mbox{ZZ}         &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots ,
1.9       noro       68: {\sl byte}\, \mbox{a[$|$f$|$]} ) \\
1.1       noro       69: &:& \mbox{ --- bignum をあらわす. a[i] についてはあとで説明}\\
1.9       noro       70: \mbox{QQ}        &:& ({\tt CMO\_QQ},
                     71:                       {\sl int32}\, {\rm m}, {\sl byte}\, \mbox{a[1]}, \ldots, {\sl byte}\, \mbox{a[$|$m$|$]},
                     72:                       {\sl int32}\, {\rm n}, {\sl byte}\, \mbox{b[1]}, \ldots, {\sl byte}\, \mbox{b[$|$n$|$]})\\
1.1       noro       73: & & \mbox{ --- 有理数 $a/b$ を表す. } \\
                     74: \mbox{Rational}        &:& ({\tt CMO\_RATIONAL}, {\sl CMObject}\, {\rm a}, {\sl CMObject}\, {\rm b}) \\
                     75: & & \mbox{ ---  $a/b$ を表す. } \\
1.14    ! noro       76: \mbox{Bigfloat}         &:& ({\tt CMO\_BIGFLOAT},
        !            77: {\sl int32}\, {\rm sign}, {\sl int32}\, {\rm prec}, {\sl int64}\, {\rm exp},
        !            78: {\sl int32}\, \mbox{a[1]}, \ldots , {\sl int32}\, \mbox{a[$\lfloor \frac{{\rm prec}+31}{32} \rfloor$]} ) \\
        !            79: &:& \mbox{ --- bigfloat をあらわす. a[i] についてはあとで説明}\\
        !            80: \mbox{Complex}        &:& ({\tt CMO\_COMPLEX}, {\sl CMObject}\, {\rm re}, {\sl CMObject}\, {\rm im}) \\
        !            81: & & \mbox{ ---  $a+b\sqrt{-1}$ を表す. } \\
1.1       noro       82: \mbox{Indeterminate}        &:& ({\tt CMO\_INDETERMINATE}, {\sl Cstring}\, {\rm v}) \\
                     83: & & \mbox{ --- 変数名 $v$ . } \\
                     84: \end{eqnarray*}
                     85: */
1.12      takayama   86:
                     87:
1.1       noro       88: /*&eg
                     89:
                     90: \bigbreak
                     91: \noindent
1.4       noro       92: Group CMObject/Basic requires CMObject/Primitive. \\
1.12      takayama   93: ZZ, QQ, Zero, Rational, Indeterminate $\in$ CMObject/Basic. \\
1.1       noro       94: \begin{eqnarray*}
                     95: \mbox{Zero} &:& ({\tt CMO\_ZERO}) \\
                     96: & & \mbox{ --- Universal zero } \\
1.12      takayama   97: \mbox{ZZ}         &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots ,
1.9       noro       98: {\sl byte}\, \mbox{a[$|$m$|$]} ) \\
1.1       noro       99: &:& \mbox{ --- bignum. The meaning of a[i] will be explained later.}\\
1.9       noro      100: \mbox{QQ}        &:& ({\tt CMO\_QQ},
                    101:                       {\sl int32}\, {\rm m}, {\sl byte}\, \mbox{a[1]}, \ldots, {\sl byte}\, \mbox{a[$|$m$|$]},
                    102:                       {\sl int32}\, {\rm n}, {\sl byte}\, \mbox{b[1]}, \ldots, {\sl byte}\, \mbox{b[$|$n$|$]})\\
1.1       noro      103: & & \mbox{ --- Rational number $a/b$. } \\
                    104: \mbox{Rational}        &:& ({\tt CMO\_RATIONAL}, {\sl CMObject}\, {\rm a}, {\sl CMObject}\, {\rm b}) \\
                    105: & & \mbox{ ---  Rational expression $a/b$. } \\
1.14    ! noro      106: \mbox{Bigfloat}         &:& ({\tt CMO\_BIGFLOAT},
        !           107: {\sl int32}\, {\rm sign}, {\sl int32}\, {\rm prec}, {\sl int64}\, {\rm exp},
        !           108: {\sl int32}\, \mbox{a[1]}, \ldots , {\sl int32}\, \mbox{a[$\lfloor \frac{{\rm prec}+31}{32} \rfloor$]} ) \\
        !           109: &:& \mbox{ --- bignfloat. The meaning of a[i] will be explained later.}\\
        !           110: \mbox{Complex}        &:& ({\tt CMO\_COMPLEX}, {\sl CMObject}\, {\rm re}, {\sl CMObject}\, {\rm im}) \\
        !           111: & & \mbox{ ---  Complex number $a+b\sqrt{-1}$. } \\
1.1       noro      112: \mbox{Indeterminate}        &:& ({\tt CMO\_INDETERMINATE}, {\sl Cstring}\, {\rm v}) \\
                    113: & & \mbox{ --- Variable name $v$ . } \\
                    114: \end{eqnarray*}
                    115: */
                    116: /*&C
                    117:
                    118: */
1.12      takayama  119: /*&C
                    120:
                    121: */
1.1       noro      122:
                    123: /*&jp
                    124: Indeterminate は変数名をあらわす.
                    125: v はバイト列であればなにを用いてもよいが,
                    126: システム毎に変数名として用いられるバイト列は制限がある.
                    127: 各システム xxx は任意の文字列を各システム固有の変数名へ1対1に変換できるように
                    128: 実装しないといけない.
                    129: (これを
                    130: {\tt Dx} は {\tt \#dx} と変換するなどの
                    131: escape sequence を用いて実現するのは, 無理があるようである.
                    132: テーブルを作成する必要があるであろう.)
                    133: */
                    134: /*&eg
1.12      takayama  135: The name of a variable should be expressed by using Indeterminate.
1.1       noro      136: v may be any sequence of bytes, but each system has its own
                    137: restrictions on the names of variables.
                    138: Indeterminates of CMO and internal variable names must be translated
1.12      takayama  139: in one-to-one correspondence.
1.1       noro      140: */
                    141:
1.12      takayama  142:
1.1       noro      143: /*&jp
1.12      takayama  144: \subsection{Indeterminate および Tree}
1.1       noro      145:
                    146: \noindent
1.4       noro      147: Group CMObject/Tree requires CMObject/Basic. \\
1.12      takayama  148: Tree, Lambda $\in$ CMObject/Tree. \\
1.1       noro      149: \begin{eqnarray*}
                    150: \mbox{Tree}        &:& ({\tt CMO\_TREE}, {\sl Cstring}\, {\rm name},
1.11      takayama  151:  {\sl List}\, {\rm attributes}, {\sl List}\, {\rm leaves}) \\
1.1       noro      152: & & \mbox{ --- 名前 name の定数または関数. 関数の評価はおこなわない. } \\
1.11      takayama  153: & & \mbox{ --- attributes は空リストでなければ name の属性を保持している. }\\
                    154: & & \mbox{ --- 属性リストは, key と 値のペアである. }\\
1.1       noro      155: \mbox{Lambda}        &:& ({\tt CMO\_LAMBDA}, {\sl List}\, {\rm args},
                    156:                           {\sl Tree} {\rm body}) \\
                    157: & & \mbox{ --- body を args を引数とする関数とする. } \\
                    158: \end{eqnarray*}
                    159: */
                    160: /*&eg
1.12      takayama  161: \subsection{Indeterminate and Tree}
1.1       noro      162:
                    163: \noindent
1.4       noro      164: Group CMObject/Tree requires CMObject/Basic. \\
1.12      takayama  165: Tree, Lambda $\in$ CMObject/Tree. \\
1.1       noro      166: \begin{eqnarray*}
                    167: \mbox{Tree}        &:& ({\tt CMO\_TREE}, {\sl Cstring}\, {\rm name},
1.11      takayama  168:  {\sl List}\, {\rm attributes}, {\sl List}\, {\rm leaves}) \\
1.12      takayama  169: & & \mbox{ --- ``name'' is the name of the node of the tree. } \\
                    170: & & \mbox{ --- Attributes may be a null list. If it is not null, it is a list of}\\
1.11      takayama  171: & & \mbox{ --- key and value pairs. } \\
1.1       noro      172: \mbox{Lambda}        &:& ({\tt CMO\_LAMBDA}, {\sl List}\, {\rm args},
                    173:                           {\sl Tree} {\rm body}) \\
                    174: & & \mbox{ --- a function with the arguments body. } \\
                    175: \end{eqnarray*}
                    176: */
                    177:
                    178: /*&jp
                    179: 数式を処理するシステムでは, Tree 構造が一般にもちいられる.
                    180: たとえば, $\sin(x+e)$ は,
                    181: {\tt (sin, (plus, x, e))}
                    182: なる Tree であらわすのが一般的である.
                    183: Tree の表現を スタックマシンのレベルでおこなうとすると,
                    184: {\tt ox\_BEGIN\_BLOCK}, {\tt ox\_END\_BLOCK} で評価を抑制するのが
                    185: 一つの方法である (cf. Postscript の {\tt \{ }, {\tt \} }).
                    186: たとえば上の方法では
                    187: {\tt x, e, plus, sin } を begin block, end block でかこめばよろしい.
                    188: われわれはスタックマシンの実装をなるべく簡単にするという立場をとりたい,
                    189: また数学オブジェクトを OX スタックマシンと CMObject を混在して表現したく
                    190: ない.
                    191: したがって,
                    192: Tree 構造は Open Math 風の表現をもちいた CMO を導入することにした.
                    193: またこのほうが, われわれの想定するシステム xxx において, Open XM 対応が
                    194: はるかに容易である.
                    195: なお, Tree は, Open Math では, Symbol, Application のメカニズムに相当する.
                    196: */
                    197: /*&eg
                    198: In many computer algebra systems, mathematical expressions are usually
                    199: expressed in terms of a tree structure.
                    200: For example,
                    201: $\sin(x+e)$ is expressed as
                    202: {\tt (sin, (plus, x, e))}
                    203: as a tree.
1.4       noro      204: Tree may be expressed by putting the expression between
1.3       noro      205: {\tt SM\_beginBlock} and {\tt SM\_endBlock}, which are
                    206: stack machine commands for delayed evaluation.
                    207: (cf. {\tt \{ }, {\tt \} } in PostScript).
                    208: However it makes the implementation of stack machines complicated.
                    209: It is desirable that CMObject is independent of OX stack machine.
                    210: Therefore we introduce an OpenMath like tree representation for CMO
1.7       noro      211: Tree object.
1.3       noro      212: This method allows us to implement tree structure easily
                    213: on individual OpenXM systems.
                    214: Note that CMO Tree corresponds to Symbol and Application in OpenMath.
1.1       noro      215: */
                    216:
                    217:
                    218: /*&C
                    219:
                    220: */
                    221: /*&jp
                    222: Lambda は関数を定義するための関数である.
                    223: Lisp の Lambda 表現と同じ.
1.3       noro      224: */
                    225: /*&eg
                    226: Lambda is used to define functions.
1.12      takayama  227: The notion ``lambda'' is borrowed from the language Lisp.
1.3       noro      228: */
1.1       noro      229:
                    230: \noindent
1.3       noro      231: //&jp 例: $sin(x+e)$ の表現.
                    232: //&eg Example: the expression of $sin(x+e)$.
1.1       noro      233: \begin{verbatim}
1.11      takayama  234: (CMO_TREE, (CMO_STRING, "sin"),
                    235:     (CMO_LIST,[size=]1,(CMO_LIST,[size=]2,(CMO_STRING, "cdname"),
                    236:                                           (CMO_STRING,"basic")))
1.1       noro      237:     (CMO_LIST,[size=]1,
                    238:         (CMO_TREE, (CMO_STRING, "plus"), (CMO_STRING, "basic"),
                    239:             (CMO_LIST,[size=]2, (CMO_INDETERMINATE,"x"),
1.6       noro      240: //&jp                  (CMO_TREE,(CMO_STRING, "e"),  自然対数の底
                    241: //&eg                  (CMO_TREE,(CMO_STRING, "e"),  the base of natural logarithms
1.12      takayama  242:     (CMO_LIST,[size=]1,(CMO_LIST,[size=]2,(CMO_STRING, "cdname"),
                    243:                                           (CMO_STRING,"basic")))
1.1       noro      244:         ))
                    245:     )
                    246: )
                    247: \end{verbatim}
1.10      takayama  248: //&jp  Leave の成分には, 多項式を含む任意のオブジェクトがきてよい.
                    249: //&eg  Elements of the leave may be any objects including polynomials.
1.1       noro      250:
                    251: \noindent
                    252: Example:
                    253: \begin{verbatim}
1.12      takayama  254: sm1> [(plus) [[(cdname) (basic)]] [(123).. (345)..]] [(class) (tree)] dc ::
                    255: Class.tree [$plus$ , [[$cdname$ , $basic$ ]], [ 123 , 345 ]  ]
1.1       noro      256: \end{verbatim}
                    257:
1.12      takayama  258: \noindent
                    259: Example:
                    260: \begin{verbatim}
                    261: asir
                    262: [753] taka_cmo100_xml_form(quote(sin(x+1)));
                    263: <cmo_tree>  <cmo_string>"sin"</cmo_string>
                    264:  <cmo_list><cmo_int32 for="length">1</cmo_int32>
                    265:    <cmo_list><cmo_int32 for="length">2</cmo_int32>
                    266:      <cmo_string>"cdname"</cmo_string>
                    267:      <cmo_string>"basic"</cmo_string>
                    268:    </cmo_list> </cmo_list>
                    269: <cmo_tree>    <cmo_string>"plus"</cmo_string>
                    270:   <cmo_list><cmo_int32 for="length">1</cmo_int32>
                    271:     <cmo_list><cmo_int32 for="length">2</cmo_int32>
                    272:       <cmo_string>"cdname"</cmo_string>
                    273:       <cmo_string>"basic"</cmo_string>
                    274:     </cmo_list> </cmo_list>
                    275:  <cmo_indeterminate> <cmo_string>"x"</cmo_string>  </cmo_indeterminate>
                    276:  <cmo_zz>1</cmo_zz>
                    277: </cmo_tree></cmo_tree>
                    278: \end{verbatim}
1.1       noro      279:
                    280:
                    281: \bigbreak
1.3       noro      282: //&jp 次に, 分散表現多項式に関係するグループを定義しよう.
1.4       noro      283: /*&eg
1.12      takayama  284: Let us define a group for distributed polynomials. In the following,
1.4       noro      285: DMS stands for Distributed Monomial System.
                    286: */
1.1       noro      287:
                    288: \medbreak
                    289: \noindent
1.4       noro      290: Group CMObject/DistributedPolynomials requires CMObject/Primitive,
                    291: CMObject/Basic. \\
1.1       noro      292: Monomial, Monomial32, Coefficient, Dpolynomial, DringDefinition,
                    293: Generic DMS ring, RingByName, DMS of N variables $\in$
                    294: CMObject/DistributedPolynomials. \\
1.3       noro      295: /*&jp
1.1       noro      296: \begin{eqnarray*}
                    297: \mbox{Monomial} &:& \mbox{Monomial32}\, |\, \mbox{Zero} \\
                    298: \mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, {\sl int32}\, n,
                    299: {\sl int32}\, \mbox{e[1]}, \ldots,
                    300: {\sl int32}\, \mbox{e[n]}, \\
                    301: & & \ \mbox{Coefficient}) \\
                    302: & & \mbox{ --- e[i] で, $n$ 変数 monomial
                    303: $x^e = x_1^{e_1} \cdots x_n^{e_n}$ の各指数 $e_i$
                    304: をあらわす.} \\
                    305: \mbox{Coefficient}&:& \mbox{ZZ} | \mbox{Integer32} \\
                    306: \mbox{Dpolynomial}&:& \mbox{Zero} \\
1.12      takayama  307: & & |\ ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},{\sl int32}\, m, \\
1.1       noro      308: & & \ \ \mbox{DringDefinition},
                    309: [\mbox{Monomial32}|\mbox{Zero}], \\
                    310: & &\ \
                    311: \{\mbox{Monomial32}\}) \\
                    312: & &\mbox{--- m はモノミアルの個数である.}\\
                    313: \mbox{DringDefinition}
                    314: &:& \mbox{DMS of N variables} \\
                    315: & & |\ \mbox{RingByName} \\
                    316: & & |\ \mbox{Generic DMS ring} \\
                    317: & & \mbox{ --- 分散表現多項式環の定義. } \\
                    318: \mbox{Generic DMS ring}
1.2       noro      319: &:& \mbox{({\tt CMO\_DMS\_GENERIC}) --- 新版はこちら}\\
1.1       noro      320: \mbox{RingByName}&:& ({\tt CMO\_RING\_BY\_NAME}, {\sl Cstring}\  {\rm s}) \\
                    321: & & \mbox{ --- 名前 s で, 格納された ring 定義.} \\
                    322: \mbox{DMS of N variables}
                    323: &:& ({\tt CMO\_DMS\_OF\_N\_VARIABLES}, \\
                    324: & & \ ({\tt CMO\_LIST}, {\sl int32}\, \mbox{m},
                    325: {\sl Integer32}\,  \mbox{n}, {\sl Integer32}\,\mbox{p} \\
                    326: & & \ \ [,{\sl object}\,\mbox{s}, {\sl Cstring}\,\mbox{c},
                    327:           {\sl List}\, \mbox{vlist},
                    328: {\sl List}\, \mbox{wvec}, {\sl List}\, \mbox{outord}]) \\
                    329: & & \mbox{ --- m はあとに続く要素の数} \\
                    330: & & \mbox{ --- n は変数の数, p は 標数} \\
                    331: & & \mbox{ --- s は ring の名前} \\
                    332: & & \mbox{ --- c は係数環, QQ, ZZ の場合は文字列で QQ, ZZ と書く.} \\
                    333: & & \mbox{ --- vlist は Indeterminate のリスト(新版). 多項式環の変数リスト} \\
                    334: & & \mbox{ --- wvec は order をきめる weight vector,} \\
                    335: & & \mbox{ --- outord は出力するときの変数順序.} \\
                    336: \end{eqnarray*}
1.3       noro      337: */
                    338: /*&eg
                    339: \begin{eqnarray*}
                    340: \mbox{Monomial} &:& \mbox{Monomial32}\, |\, \mbox{Zero} \\
                    341: \mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, {\sl int32}\, n,
                    342:                       {\sl int32}\, \mbox{e[1]}, \ldots,
                    343:                       {\sl int32}\, \mbox{e[n]}, \\
                    344:                  & & \ \mbox{Coefficient}) \\
                    345:                  & & \mbox{ --- e[i] is the exponent $e_i$ of the monomial
                    346:                       $x^e = x_1^{e_1} \cdots x_n^{e_n}$. } \\
                    347: \mbox{Coefficient}&:& \mbox{ZZ} | \mbox{Integer32} \\
                    348: \mbox{Dpolynomial}&:& \mbox{Zero} \\
1.12      takayama  349:                  & & |\ ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},{\sl int32}\, m, \\
1.3       noro      350:                  & & \ \ \mbox{DringDefinition}, [\mbox{Monomial32}|\mbox{Zero}], \\
                    351:                  & &\ \
                    352:                     \{\mbox{Monomial32}\})  \\
                    353:                  & &\mbox{--- m is equal to the number of monomials.}\\
                    354: \mbox{DringDefinition}
                    355:                  &:& \mbox{DMS of N variables} \\
                    356:                  & & |\ \mbox{RingByName} \\
                    357:                  & & |\ \mbox{Generic DMS ring} \\
                    358:                  & & \mbox{ --- definition of the ring of distributed polynomials. } \\
                    359: \mbox{Generic DMS ring}
                    360:                  &:& ({\tt CMO\_DMS\_GENERIC}) \\
                    361: \mbox{RingByName}&:& ({\tt CMO\_RING\_BY\_NAME}, {\sl Cstring} s) \\
1.4       noro      362:                  & & \mbox{ --- The ring definition referred by the name ``s''.} \\
1.3       noro      363: \mbox{DMS of N variables}
                    364:                  &:& ({\tt CMO\_DMS\_OF\_N\_VARIABLES}, \\
                    365:                  & & \ ({\tt CMO\_LIST}, {\sl int32}\, \mbox{m},
                    366:                   {\sl Integer32}\,  \mbox{n}, {\sl Integer32}\, \mbox{p} \\
                    367:                  & & \ \ [,{\sl Cstring}\,\mbox{s}, {\sl List}\, \mbox{vlist},
                    368:                           {\sl List}\, \mbox{wvec}, {\sl List}\, \mbox{outord}]) \\
                    369:                  & & \mbox{ --- m is the number of elements.} \\
                    370:                  & & \mbox{ --- n is the number of variables, p is the characteristic} \\
                    371:                  & & \mbox{ --- s is the name of the ring, vlist is the list of variables.} \\
                    372:                  & & \mbox{ --- wvec is the weight vector.} \\
                    373:                  & & \mbox{ --- outord is the order of variables to output.} \\
                    374: \end{eqnarray*}
                    375: */
1.1       noro      376:
1.3       noro      377: /*&jp
1.1       noro      378: RingByName や DMS of N variables はなくても, DMS を定義できる.
                    379: したがって, これらを実装してないシステムで DMS を扱うものが
                    380: あってもかまわない.
                    381:
                    382: 以下, 以上の CMObject  にたいする,
                    383: xxx = asir, kan の振舞いを記述する.
1.3       noro      384: */
                    385: /*&eg
                    386: Note that it is possible to define DMS without RingByName and
                    387: DMS of N variables.
                    388:
                    389: In the following we describe how the above CMObjects
                    390: are implemented on Asir and Kan.
                    391: */
1.1       noro      392:
                    393: \subsection{ Zero}
1.3       noro      394: /*&jp
1.12      takayama  395: CMO では ゼロの表現法がなんとおりもあることに注意.
                    396: %% どのようなゼロをうけとっても,
                    397: %% システムのゼロに変換できるべきである.
1.3       noro      398: */
                    399: /*&eg
1.12      takayama  400: Note that CMO has various representations of zero.
1.3       noro      401: */
1.1       noro      402:
                    403:
1.3       noro      404: //&jp \subsection{ 整数 ZZ }
                    405: //&eg \subsection{ Integer ZZ }
1.1       noro      406:
                    407: \begin{verbatim}
                    408: #define     CMO_ZZ          20
                    409: \end{verbatim}
                    410:
1.3       noro      411: /*&jp
                    412: この節ではOpen xxx 規約における任意の大きさの整数(bignum)の扱いについ
                    413: て説明する.  Open XM 規約における多重精度整数を表すデータ型 CMO\_ZZ は
                    414: GNU MPライブラリなどを参考にして設計されていて, 符号付き絶対値表現を用
                    415: いている.  (cf. {\tt kan/sm1} の配布ディレクトリのなかの {\tt
                    416: plugin/cmo-gmp.c}) CMO\_ZZ は次の形式をとる.
                    417: */
                    418: /*&eg
1.12      takayama  419: We describe the bignum (multi-precision integer) representation
                    420: {\tt CMO\_ZZ} in OpenXM.
                    421: The format is similar
1.3       noro      422: to that in GNU MP. (cf. {\tt plugin/cmo-gmp.c} in the {\tt kan/sm1}
                    423: distribution). CMO\_ZZ is defined as follows.
                    424: */
1.1       noro      425:
                    426: \begin{tabular}{|c|c|c|c|c|}
                    427: \hline
                    428: {\tt int32 CMO\_ZZ} & {\tt int32 $f$} & {\tt int32 $b_0$} & $\cdots$ &
                    429: {\tt int32 $b_{n}$} \\
                    430: \hline
1.3       noro      431: \end{tabular}
                    432:
                    433: /*&jp
                    434: $f$ は32bit整数である.  $b_0, \ldots, b_n$ は unsigned int32 である.
                    435: $|f|$ は $n+1$ である.  この CMO の符号は $f$ の符号で定める.  前述し
                    436: たように, 32bit整数の負数は 2 の補数表現で表される.
                    437:
                    438: Open xxx 規約では上の CMO は以下の整数を意味する. ($R = 2^{32}$)
                    439: */
                    440: /*&eg
                    441: $f$ is a 32bit integer. $b_0, \ldots, b_n$ are unsigned 32bit integers.
                    442: $|f|$ is equal to $n+1$.
1.12      takayama  443: The sign of $f$ represents that of the above integer to be expressed.
                    444: As stated in Section
1.3       noro      445: \ref{sec:basic0}, a negative 32bit integer is represented by
                    446: two's complement.
                    447:
                    448: In OpenXM the above CMO represents the following integer. ($R = 2^{32}$.)
                    449: */
1.1       noro      450:
                    451: \[
                    452: \mbox{sgn}(f)\times (b_0 R^{0}+ b_1 R^{1} + \cdots + b_{n-1}R^{n-1} + b_n R^n).
                    453: \]
1.3       noro      454:
                    455: /*&jp
1.12      takayama  456: \noindent  例:
1.3       noro      457: {\tt int32} を network byte order で表現
                    458: しているとすると,例えば, 整数 $14$ は CMO\_ZZ で表わすと,
                    459: */
                    460: /*&eg
1.12      takayama  461: \noindent Example:
1.3       noro      462: If we express {\tt int32} by the network byte order,
                    463: a CMO\_ZZ $14$ is expressed by
                    464: */
1.1       noro      465: \[
                    466: \mbox{(CMO\_ZZ, 1, 0, 0, 0, e)},
                    467: \]
1.3       noro      468: //&jp と表わす. これはバイト列では
1.4       noro      469: //&eg The corresponding byte sequence is
1.1       noro      470: \[
                    471: \mbox{\tt 00 00 00 14 00 00 00 01 00 00 00 0e}
                    472: \]
1.3       noro      473: //&jp となる.
1.1       noro      474:
                    475:
1.3       noro      476: //&jp なお ZZ の 0 ( (ZZ) 0 と書く ) は, {\tt (CMO\_ZZ, 00,00,00,00)} と表現する.
                    477: //&eg Note that CMO\_ZZ 0 is expressed by {\tt (CMO\_ZZ, 00,00,00,00)}.
1.1       noro      478:
                    479:
1.3       noro      480: //&jp \subsection{ 分散表現多項式 Dpolynomial }
                    481: //&eg \subsection{ Distributed polynomial Dpolynomial }
1.1       noro      482:
1.3       noro      483: /*&jp
1.1       noro      484: 環とそれに属する多項式は次のような考えかたであつかう.
                    485:
                    486: Generic DMS ring に属する元は,
                    487: 変数を $n$ 個持つ 適当な係数集合 $K$ を持つ多項式環 $K[x_1, \ldots, x_n]$
                    488: の元である.
                    489: 係数集合 $K$ がなにかは, 実際データを読み込み, Coefficient を見た段階で
                    490: わかる.
                    491: この環に属する多項式を CMO 形式でうけとった場合, 各サーバはその
                    492: サーバの対応する Object  に変換しないといけない.
                    493: この変換の仕方は, 各サーバ毎にきめる.
                    494:
                    495: Asir の場合は, $K[x_1, \ldots, x_n]$ の元は分散表現多項式に変換される.
                    496: \noroa{ でも, order はどうなるの? }
                    497:
                    498: {\tt kan/sm1} の場合は事情は複雑である.
                    499: {\tt kan/sm1} は, Generic DMS ring にあたる クラスをもたない.
                    500: つまり, Default で存在する, $n$ 変数の分散表現多項式環は存在しないわけである.
                    501: したがって, {\tt kan/sm1} では, DMS of N variables が来た場合,
                    502: これを CurrentRing の元として読み込む.  CurrentRing の変数の数が $n'$
                    503: で, $n' < n$ だと新しい多項式環を生成してデータを読み込む.
                    504: Order その他の optional 情報はすべて無視する.
                    505:
                    506: DMS の 2 番目のフィールドで,
                    507: Ring by Name を用いた場合, 現在の名前空間で変数 yyy に格納された ring object
                    508: の元として, この多項式を変換しなさいという意味になる.
                    509: {\tt kan/sm1} の場合, 環の定義は ring object として格納されており,
                    510: この ring object を 変数 yyy で参照することにより CMO としてうけとった
                    511: 多項式をこの ring の元として格納できる.
1.3       noro      512: */
1.1       noro      513:
1.3       noro      514: /*&eg
                    515: We treat polynomial rings and their elements as follows.
1.1       noro      516:
1.4       noro      517: Generic DMS ring is an $n$-variate polynomial ring $K[x_1, \ldots, x_n]$,
1.12      takayama  518: where $K$ is a coefficient set. $K$ is unknown in advance
1.4       noro      519: and it is determined when coefficients of an element are received.
                    520: When a server has received an element in Generic DMS ring,
1.3       noro      521: the server has to translate it into the corresponding local object
                    522: on the server. Each server has its own translation scheme.
                    523: In Asir such an element are translated into a distributed polynomial.
                    524: In {\tt kan/sm1} things are complicated.
1.4       noro      525: {\tt kan/sm1} does not have any class corresponding to Generic DMS ring.
1.3       noro      526: {\tt kan/sm1} translates a DMS of N variables into an element of
                    527: the CurrentRing.
                    528: If the CurrentRing is $n'$-variate and $n' < n$, then
1.12      takayama  529: an $n$-variate polynomial ring is newly created.
                    530:
1.3       noro      531:
1.4       noro      532: If RingByName ({\tt CMO\_RING\_BY\_NAME}, yyy)
1.3       noro      533: is specified as the second field of DMS,
                    534: it requests a sever to use a ring object whose name is yyy
                    535: as the destination ring for the translation.
                    536: */
1.1       noro      537:
                    538: \medbreak \noindent
1.3       noro      539: //&jp {\bf Example}: (すべての数の表記は 16 進表記)
                    540: //&eg {\bf Example}: (all numbers are represented in hexadecimal notation)
1.1       noro      541: {\footnotesize \begin{verbatim}
                    542: Z/11Z [6 variables]
                    543: (kxx/cmotest.sm1) run
                    544: [(x,y) ring_of_polynomials ( ) elimination_order 11 ] define_ring ;
                    545: (3x^2 y). cmo /ff set ;
                    546: [(cmoLispLike) 1] extension ;
                    547: ff ::
                    548: Class.CMO CMO StandardEncoding: size = 52, size/sizeof(int) = 13,
                    549: tag=CMO_DISTRIBUTED_POLYNOMIAL
                    550:
                    551:   0  0  0 1f  0  0  0  1  0  0  0 18  0  0  0 13  0  0  0  6
                    552:   0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  1
                    553:   0  0  0  0  0  0  0  2  0  0  0  3
                    554:
                    555: ff omc ::
                    556:  (CMO_DISTRIBUTED_POLYNOMIAL[1f],[size=]1,(CMO_DMS_GENERIC[18],),
                    557:   (CMO_MONOMIAL32[13],3*x^2*y),),
                    558: \end{verbatim} }
1.3       noro      559: /*&jp
                    560: $ 3 x^2 y$ は 6 変数の多項式環の 元としてみなされている.
                    561: */
                    562: /*&eg
                    563: $3 x^2 y$ is regarded as an element of a six-variate polynomial ring.
                    564: */
1.1       noro      565:
                    566:
1.3       noro      567: //&jp \subsection{再帰表現多項式の定義}
                    568: //&eg \subsection{Recursive polynomials}
1.1       noro      569:
                    570: \begin{verbatim}
                    571: #define CMO_RECURSIVE_POLYNOMIAL        27
                    572: #define CMO_POLYNOMIAL_IN_ONE_VARIABLE  33
                    573: \end{verbatim}
                    574:
1.4       noro      575: Group CMObject/RecursivePolynomial requires CMObject/Primitive, CMObject/Basic.\\
1.1       noro      576: Polynomial in 1 variable, Coefficient, Name of the main variable,
                    577: Recursive Polynomial, Ring definition for recursive polynomials
                    578: $\in$ CMObject/RecursivePolynomial \\
                    579:
1.3       noro      580: /*&jp
1.1       noro      581: \begin{eqnarray*}
                    582: \mbox{Polynomial in 1 variable} &:&
                    583: \mbox{({\tt CMO\_POLYNOMIAL\_IN\_ONE\_VARIABLE},\, {\sl int32}\, m, } \\
                    584: & & \quad \mbox{ Name of the main variable }, \\
1.12      takayama  585: & & \quad \mbox{ \{ {\sl int32} e, Coefficient \}} ) \\
1.1       noro      586: & & \mbox{ --- m はモノミアルの個数. } \\
                    587: & & \mbox{ --- e, Coefficieint はモノミアルを表現している. } \\
                    588: & & \mbox{ --- 順序の高い順にならべる. 普通は巾の高い順.} \\
                    589: & & \mbox{ ---  e は 1変数多項式の巾をあらわす. } \\
                    590: \mbox{Coefficient} &:& \mbox{ ZZ} \,|\, \mbox{ QQ } \,|\,
                    591: \mbox{ integer32  } \,|\,
                    592: \mbox{ Polynomial in 1 variable } \\
                    593: & & \quad \,|\, \mbox{Tree} \,|\, \mbox{Zero} \,|\,\mbox{Dpolynomial}\\
                    594: \mbox{Name of the main variable } &:&
                    595: \mbox{ {\sl int32} v }   \\
                    596: & & \mbox{ --- v は 変数番号 (0 からはじまる) を表す. } \\
                    597: \mbox{Recursive Polynomial} &:&
                    598: \mbox{ ( {\tt CMO\_RECURSIVE\_POLYNOMIAL}, } \\
1.3       noro      599: & & \quad \mbox{ RringDefinition, } \\
1.1       noro      600: & & \quad
1.12      takayama  601: \mbox{ Polynomial in 1 variable}\, | \, \mbox{Coefficient} )  \\
1.3       noro      602: \mbox{RringDefinition}
1.1       noro      603: & : &  \mbox{ {\sl List} v } \\
1.10      takayama  604: & & \quad \mbox{ --- v は, 変数名(indeterminate) または Tree のリスト. } \\
1.1       noro      605: & & \quad \mbox{ --- 順序の高い順. } \\
                    606: \end{eqnarray*}
1.3       noro      607: */
                    608: /*&eg
                    609: \begin{eqnarray*}
                    610: \mbox{Polynomial in 1 variable} &:&
                    611: \mbox{({\tt CMO\_POLYNOMIAL\_IN\_ONE\_VARIABLE},\, {\sl int32}\, m, } \\
                    612: & & \quad \mbox{ Name of the main variable }, \\
1.12      takayama  613: & & \quad \mbox{ \{ {\sl int32} e, Coefficient \}} ) \\
1.4       noro      614: & & \mbox{ --- m is the number of monomials. } \\
                    615: & & \mbox{ --- A pair of e and Coefficient represents a monomial. } \\
1.3       noro      616: & & \mbox{ --- The pairs of e and Coefficient are sorted in the } \\
                    617: & & \mbox{ \quad decreasing order, usually with respect to e.} \\
                    618: & & \mbox{ ---  e denotes an exponent of a monomial with respect to } \\
                    619: & & \mbox{ \quad the main variable. } \\
                    620: \mbox{Coefficient} &:& \mbox{ ZZ} \,|\, \mbox{ QQ } \,|\,
                    621: \mbox{ integer32  } \,|\,
                    622: \mbox{ Polynomial in 1 variable } \\
                    623: & & \quad \,|\, \mbox{Tree} \,|\, \mbox{Zero} \,|\,\mbox{Dpolynomial}\\
                    624: \mbox{Name of the main variable } &:&
                    625: \mbox{ {\sl int32} v }   \\
                    626: & & \mbox{ --- v denotes a variable number. } \\
                    627: \mbox{Recursive Polynomial} &:&
                    628: \mbox{ ( {\tt CMO\_RECURSIVE\_POLYNOMIAL}, } \\
                    629: & & \quad \mbox{ RringDefinition, } \\
                    630: & & \quad
1.12      takayama  631: \mbox{ Polynomial in 1 variable}\, | \, \mbox{Coefficient} )  \\
1.3       noro      632: \mbox{RringDefinition}
                    633: & : &  \mbox{ {\sl List} v } \\
1.10      takayama  634: & & \quad \mbox{ --- v is a list of names of indeterminates or trees. } \\
1.3       noro      635: & & \quad \mbox{ --- It is sorted in the decreasing order. } \\
                    636: \end{eqnarray*}
                    637: */
1.1       noro      638: \bigbreak
                    639: \noindent
1.3       noro      640: Example:
1.1       noro      641: \begin{verbatim}
                    642: (CMO_RECURSIEVE_POLYNOMIAL, ("x","y"),
                    643: (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2,      0,  <--- "x"
                    644:   3, (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2, 1,  <--- "y"
                    645:        5, 1234,
                    646:        0, 17),
                    647:   1, (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2, 1,  <--- "y"
                    648:        10, 1,
                    649:        5, 31)))
                    650: \end{verbatim}
1.3       noro      651: //&jp これは,
                    652: //&eg This represents
                    653: $$   x^3 (1234 y^5 + 17 ) +  x^1 (y^{10} + 31 y^5)  $$
                    654: /*&jp
1.1       noro      655: をあらわす.
1.12      takayama  656: %%非可換多項式もこの形式であらわしたいので, 積の順序を上のように
                    657: %%すること. つまり, 主変数かける係数の順番.
1.3       noro      658: */
                    659: /*&eg
1.12      takayama  660: %%We intend to represent non-commutative polynomials with the
                    661: %%same form. In such a case, the order of products are defined
                    662: %%as above, that is a power of the main variable $\times$ a coeffcient.
                    663:
1.3       noro      664: */
1.1       noro      665:
                    666: \noindent
                    667: \begin{verbatim}
                    668: sm1
                    669: sm1>(x^2-h). [(class) (recursivePolynomial)] dc /ff set ;
                    670: sm1>ff ::
                    671: Class.recursivePolynomial h * ((-1)) + (x^2  * (1))
                    672: \end{verbatim}
                    673:
1.3       noro      674: //&jp \subsection{CPU依存の double }
                    675: //&eg \subsection{CPU dependent double}
1.1       noro      676:
                    677: \begin{verbatim}
                    678: #define CMO_64BIT_MACHINE_DOUBLE   40
                    679: #define CMO_ARRAY_OF_64BIT_MACHINE_DOUBLE  41
                    680: #define CMO_128BIT_MACHINE_DOUBLE   42
                    681: #define CMO_ARRAY_OF_128BIT_MACHINE_DOUBLE  43
                    682: \end{verbatim}
                    683:
                    684: \noindent
1.4       noro      685: Group CMObject/MachineDouble requires CMObject/Primitive.\\
1.1       noro      686: 64bit machine double, Array of 64bit machine double
                    687: 128bit machine double, Array of 128bit machine double
                    688: $\in$ CMObject/MachineDouble \\
                    689:
1.3       noro      690: /*&jp
1.1       noro      691: \begin{eqnarray*}
                    692: \mbox{64bit machine double} &:&
                    693: \mbox{({\tt CMO\_64BIT\_MACHINE\_DOUBLE}, } \\
1.12      takayama  694: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s8})\\
1.1       noro      695: & & \mbox{ --- s1, $\ldots$, s8 は {\tt double} (64bit). } \\
                    696: & & \mbox{ --- この表現はCPU依存である.}\\
1.13      takayama  697: &&  \mbox{\quad\quad byte order negotiation を用いる.} \\
1.1       noro      698: \mbox{Array of 64bit machine double} &:&
                    699: \mbox{({\tt CMO\_ARRAY\_OF\_64BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
                    700: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte}}\, s8[1], \ldots , {\sl byte}\, s8[m])\\
                    701: & & \mbox{ --- s*[1], $\ldots$ s*[m] は m 個の double (64bit) である. } \\
                    702: & & \mbox{ --- この表現はCPU依存である.}\\
1.13      takayama  703: & & \mbox{ \quad\quad byte order negotiation を用いる.} \\
1.1       noro      704: \mbox{128bit machine double} &:&
                    705: \mbox{({\tt CMO\_128BIT\_MACHINE\_DOUBLE}, } \\
1.12      takayama  706: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s16})\\
1.1       noro      707: & & \mbox{ --- s1, $\ldots$, s16 は {\tt long double} (128bit). } \\
                    708: & & \mbox{ --- この表現はCPU依存である.}\\
1.13      takayama  709: &&  \mbox{\quad\quad byte order negotiation を用いる.} \\
1.1       noro      710: \mbox{Array of 128bit machine double} &:&
                    711: \mbox{({\tt CMO\_ARRAY\_OF\_128BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
1.12      takayama  712: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte} s16[1], \ldots , {\sl byte} s16[m]})\\
1.1       noro      713: & & \mbox{ --- s*[1], $\ldots$ s*[m] は m 個の long double (128bit) である. } \\
                    714: & & \mbox{ --- この表現はCPU依存である.}\\
1.13      takayama  715: & & \mbox{ \quad\quad byte order negotiation を用いる.}
1.1       noro      716: \end{eqnarray*}
1.3       noro      717: */
                    718: /*&eg
                    719: \begin{eqnarray*}
                    720: \mbox{64bit machine double} &:&
                    721: \mbox{({\tt CMO\_64BIT\_MACHINE\_DOUBLE}, } \\
1.12      takayama  722: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s8})\\
1.3       noro      723: & & \mbox{ --- s1, $\ldots$, s8 は {\tt double} (64bit). } \\
1.12      takayama  724: & & \mbox{ --- Encoding depends on CPU.}\\
1.13      takayama  725: &&  \mbox{\quad\quad Need the byte order negotiation.} \\
1.3       noro      726: \mbox{Array of 64bit machine double} &:&
                    727: \mbox{({\tt CMO\_ARRAY\_OF\_64BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
                    728: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte}}\, s8[1], \ldots , {\sl byte}\, s8[m])\\
                    729: & & \mbox{ --- s*[1], $\ldots$ s*[m] are 64bit double's. } \\
1.12      takayama  730: & & \mbox{ --- Encoding depends on CPU.}\\
1.13      takayama  731: & & \mbox{\quad\quad Need the byte order negotiation.} \\
1.3       noro      732: \mbox{128bit machine double} &:&
                    733: \mbox{({\tt CMO\_128BIT\_MACHINE\_DOUBLE}, } \\
1.12      takayama  734: & & \quad \mbox{ {\sl byte} s1 , \ldots , {\sl byte} s16})\\
1.3       noro      735: & & \mbox{ --- s1, $\ldots$, s16 は {\tt long double} (128bit). } \\
1.12      takayama  736: & & \mbox{ --- Encoding depends on CPU.}\\
1.13      takayama  737: & & \mbox{\quad\quad Need the byte order negotiation.} \\
1.3       noro      738: \mbox{Array of 128bit machine double} &:&
                    739: \mbox{({\tt CMO\_ARRAY\_OF\_128BIT\_MACHINE\_DOUBLE}, {\sl int32} m, } \\
1.12      takayama  740: & & \quad \mbox{ {\sl byte} s1[1] , \ldots , {\sl byte} s16[1], \ldots , {\sl byte} s16[m]})\\
1.3       noro      741: & & \mbox{ --- s*[1], $\ldots$ s*[m] are 128bit long double's. } \\
1.12      takayama  742: & & \mbox{ --- Encoding depends on CPU.}\\
1.13      takayama  743: & & \mbox{\quad\quad Need the byte order negotiation.} \\
1.3       noro      744: \end{eqnarray*}
                    745: */
1.1       noro      746:
                    747: \bigbreak
1.12      takayama  748:
1.1       noro      749: \begin{verbatim}
                    750: #define CMO_BIGFLOAT   50
                    751: #define CMO_IEEE_DOUBLE_FLOAT 51
                    752: \end{verbatim}
                    753:
1.3       noro      754: /*&jp
                    755: IEEE 準拠の float については, IEEE 754 double precision floating-point
                    756: format (64 bit) の定義を見よ.
1.13      takayama  757:
                    758: 256.100006 の Intel Pentium の double64 での内部表現は
                    759: {\tt cd 0c 80 43 } \\
                    760: 256.100006 の PowerPC (Mac) の double64 での内部表現は
                    761: {\tt 43 80 0c cd }.
                    762: この例でみるように byte の順序が逆である.
                    763: エンジンスタートの時の byte order negotiation で byte の順序を指定する.
                    764:
                    765:
1.3       noro      766: */
                    767: /*&eg
1.5       noro      768: See IEEE 754 double precision floating-point (64 bit) for the details of
1.12      takayama  769: float compliant to the IEEE standard.
1.13      takayama  770:
                    771: The internal expression of 256.100006 in the Intel Pentium  is
                    772: {\tt cd 0c 80 43 } \\
                    773: The internal expression of 256.100006 in the PowerPC (Mac) is
                    774: {\tt 43 80 0c cd }.
                    775: As you have seen in this example,
                    776: the orders of the bytes are opposite each other.
                    777: The byte order is specified by the byte order negotiation protocol
                    778: when the engine starts.
                    779:
1.3       noro      780: */
1.1       noro      781:
                    782: \noindent
1.4       noro      783: Group CMObject/Bigfloat requires CMObject/Primitive, CMObject/Basic.\\
1.1       noro      784: Bigfloat
                    785: $\in$ CMObject/Bigfloat \\
                    786:
                    787: \begin{eqnarray*}
                    788: \mbox{Bigfloat} &:&
                    789: \mbox{({\tt CMO\_BIGFLOAT}, } \\
                    790: & & \quad \mbox{ {\sl ZZ} a , {\sl ZZ} e})\\
1.3       noro      791: & & \mbox{ --- $a \times 2^e$. } \\
1.1       noro      792: \end{eqnarray*}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>