version 1.2, 2001/10/10 06:32:10 |
version 1.3, 2001/10/12 02:22:17 |
|
|
% $OpenXM: OpenXM/doc/Papers/dag-noro.tex,v 1.1 2001/10/03 08:32:58 noro Exp $ |
% $OpenXM: OpenXM/doc/Papers/dag-noro.tex,v 1.2 2001/10/10 06:32:10 noro Exp $ |
\documentstyle[epsf]{slides} |
\documentclass{slides} |
\newtheorem{df}{Definition} |
\usepackage{color} |
\newtheorem{pr}[df]{Proposition} |
\usepackage{rgb} |
\newtheorem{lm}[df]{Lemma} |
\usepackage{graphicx} |
\newtheorem{th}[df]{Theorem} |
\usepackage{epsfig} |
\newtheorem{co}[df]{Corollary} |
|
\newtheorem{al}[df]{Algorithm} |
|
\newtheorem{re}[df]{Remark} |
|
\newtheorem{ex}[df]{Example} |
|
\newtheorem{mt}[df]{Method} |
|
\newtheorem{nt}[df]{Notation} |
|
\newtheorem{as}[df]{Assumption} |
|
\newtheorem{pro}[df]{Procedure} |
|
\newtheorem{prob}[df]{Probrem} |
|
\newcommand{\qed}{$\Box$} |
\newcommand{\qed}{$\Box$} |
\newcommand{\mred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}}} |
\newcommand{\mred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}}} |
\newcommand{\tmred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}\limits^{\scriptstyle *}}} |
\newcommand{\tmred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}\limits^{\scriptstyle *}}} |
|
|
\columnsep 0.33in |
\columnsep 0.33in |
\topmargin -1in |
\topmargin -1in |
|
|
\title{OpenXM and a computer algebra system Risa/Asir} |
\title{A computer algebra system Risa/Asir and OpenXM} |
|
|
\author{Masayuki Noro\\ Kobe University} |
\author{Masayuki Noro\\ Kobe University, Japan} |
\begin{document} |
\begin{document} |
\setlength{\parskip}{10pt} |
\setlength{\parskip}{10pt} |
\maketitle |
\maketitle |
\blackandwhite{dagb-noro.tex} |
|
\end{document} |
|
|
|
|
%\begin{slide}{} |
|
%\begin{center} |
|
%\fbox{\large Part I : OpenXM and Risa/Asir --- overview and history} |
|
%\end{center} |
|
%\end{slide} |
|
|
|
%\begin{slide}{} |
|
%\fbox{Integration of mathematical software systems} |
|
% |
|
%\begin{itemize} |
|
%\item Data integration |
|
% |
|
%\begin{itemize} |
|
%\item OpenMath ({\tt http://www.openmath.org}) , MP [GRAY98] |
|
%\end{itemize} |
|
% |
|
%Standards for representing mathematical objects |
|
% |
|
%\item Control integration |
|
% |
|
%\begin{itemize} |
|
%\item MCP [WANG99], OMEI [LIAO01] |
|
%\end{itemize} |
|
% |
|
%Protocols for remote subroutine calls or session management |
|
% |
|
%\item Combination of two integrations |
|
% |
|
%\begin{itemize} |
|
%\item MathLink, OpenMath+MCP, MP+MCP |
|
% |
|
%and OpenXM ({\tt http://www.openxm.org}) |
|
%\end{itemize} |
|
% |
|
%Both are necessary for practical implementation |
|
% |
|
%\end{itemize} |
|
%\end{slide} |
|
\begin{slide}{} |
|
\fbox{A computer algebra system Risa/Asir} |
|
|
|
({\tt http://www.math.kobe-u.ac.jp/Asir/asir.html}) |
|
|
|
\begin{itemize} |
|
\item Software mainly for polynomial computation |
|
|
|
\item User language with C-like syntax |
|
|
|
C language without type declaration, with list processing |
|
|
|
\item Builtin {\tt gdb}-like debugger for user programs |
|
|
|
\item Open source |
|
|
|
Whole source tree is available via CVS |
|
|
|
The latest version : see {\tt http://www.openxm.org} |
|
|
|
\item OpenXM interface |
|
|
|
\begin{itemize} |
|
\item OpenXM |
|
|
|
An infrastructure for exchanging mathematical data |
|
\item Risa/Asir is a main client in OpenXM package. |
|
\item An OpenXM server {\tt ox\_asir} |
|
\item A library with OpenXM library interface {\tt libasir.a} |
|
\end{itemize} |
|
\end{itemize} |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{Goal of developing Risa/Asir} |
|
|
|
\begin{itemize} |
|
\item Testing new algorithms |
|
|
|
\begin{itemize} |
|
\item Development started in Fujitsu labs |
|
|
|
Polynomial factorization, Groebner basis related computation, |
|
cryptosystems , quantifier elimination , $\ldots$ |
|
\end{itemize} |
|
|
|
\item To be a general purpose, open system |
|
|
|
Since 1997, we have been developing OpenXM package |
|
containing various servers and clients |
|
|
|
Risa/Asir is a component of OpenXM |
|
|
|
\item Environment for parallel and distributed computation |
|
|
|
\end{itemize} |
|
\end{slide} |
|
|
|
%\begin{slide}{} |
|
%\fbox{Capability for polynomial computation} |
|
% |
|
%\begin{itemize} |
|
%\item Fundamental polynomial arithmetics |
|
% |
|
%recursive representation and distributed representation |
|
% |
|
%\item Polynomial factorization |
|
% |
|
%\begin{itemize} |
|
%\item Univariate : over {\bf Q}, algebraic number fields and finite fields |
|
% |
|
%\item Multivariate : over {\bf Q} |
|
%\end{itemize} |
|
% |
|
%\item Groebner basis computation |
|
% |
|
%\begin{itemize} |
|
%\item Buchberger and $F_4$ [FAUG99] algorithm |
|
% |
|
%\item Change of ordering/RUR [ROUI96] of 0-dimensional ideals |
|
% |
|
%\item Primary ideal decomposition |
|
% |
|
%\item Computation of $b$-function (in Weyl Algebra) |
|
%\end{itemize} |
|
%\end{itemize} |
|
%\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{History of development : Polynomial factorization} |
|
|
|
\begin{itemize} |
|
\item 1989 |
|
|
|
Start of Risa/Asir with Boehm's conservative GC |
|
|
|
({\tt http://www.hpl.hp.com/personal/Hans\_Boehm/gc}) |
|
|
|
\item 1989-1992 |
|
|
|
Univariate and multivariate factorizers over {\bf Q} |
|
|
|
\item 1992-1994 |
|
|
|
Univariate factorization over algebraic number fields |
|
|
|
Intensive use of successive extension, non-squarefree norms |
|
|
|
\item 1996-1998 |
|
|
|
Univariate factorization over large finite fields |
|
|
|
Motivated by a reseach project in Fujitsu on cryptography |
|
|
|
\item 2000-current |
|
|
|
Multivariate factorization over small finite fields (in progress) |
|
\end{itemize} |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{History of development : Groebner basis} |
|
|
|
\begin{itemize} |
|
\item 1992-1994 |
|
|
|
User language $\Rightarrow$ C version; trace lifting [TRAV88] |
|
|
|
\item 1994-1996 |
|
|
|
Trace lifting with homogenization |
|
|
|
Omitting GB check by compatible prime [NOYO99] |
|
|
|
Modular change of ordering/RUR[ROUI96] [NOYO99] |
|
|
|
Primary ideal decomposition [SHYO96] |
|
|
|
\item 1996-1998 |
|
|
|
Efficient content reduction during NF computation [NORO97] |
|
Solved {\it McKay} system for the first time |
|
|
|
\item 1998-2000 |
|
|
|
Test implementation of $F_4$ [FAUG99] |
|
|
|
\item 2000-current |
|
|
|
Buchberger algorithm in Weyl algebra |
|
|
|
Efficient $b$-function computation[OAKU97] by a modular method |
|
\end{itemize} |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{Timing data --- Factorization} |
|
|
|
\underline{Univariate; over {\bf Q}} |
|
|
|
$N_i$ : a norm of a polynomial, $\deg(N_i) = i$ |
|
\begin{center} |
|
\begin{tabular}{|c||c|c|c|c|} \hline |
|
& $N_{105}$ & $N_{120}$ & $N_{168}$ & $N_{210}$ \\ \hline |
|
Asir & 0.86 & 59 & 840 & hard \\ \hline |
|
Asir NormFactor & 1.6 & 2.2& 6.1& hard \\ \hline |
|
%Singular& hard? & hard?& hard? & hard? \\ \hline |
|
CoCoA 4 & 0.2 & 7.1 & 16 & 0.5 \\ \hline\hline |
|
NTL-5.2 & 0.16 & 0.9 & 1.4 & 0.4 \\ \hline |
|
\end{tabular} |
|
\end{center} |
|
|
|
\underline{Multivariate; over {\bf Q}} |
|
|
|
$W_{i,j,k} = Wang[i]\cdot Wang[j]\cdot Wang[k]$ in {\tt asir2000/lib/fctrdata} |
|
\begin{center} |
|
\begin{tabular}{|c||c|c|c|c|c|} \hline |
|
& $W_{1,2,3}$ & $W_{4,5,6}$ & $W_{7,8,9}$ & $W_{10,11,12}$ & $W_{13,14,15}$ \\ \hline |
|
Asir & 0.2 & 4.7 & 14 & 17 & 0.4 \\ \hline |
|
%Singular& $>$15min & --- & ---& ---& ---\\ \hline |
|
CoCoA 4 & 5.2 & $>$15min & $>$15min & $>$15min & 117 \\ \hline\hline |
|
Mathematica 4& 0.2 & 16 & 23 & 36 & 1.1 \\ \hline |
|
Maple 7& 0.5 & 18 & 967 & 48 & 1.3 \\ \hline |
|
\end{tabular} |
|
\end{center} |
|
|
|
%--- : not tested |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{Timing data --- DRL Groebner basis computation} |
|
|
|
\underline{Over $GF(32003)$} |
|
\begin{center} |
|
\begin{tabular}{|c||c|c|c|c|c|c|c|} \hline |
|
& $C_7$ & $C_8$ & $K_7$ & $K_8$ & $K_9$ & $K_{10}$ & $K_{11}$ \\ \hline |
|
Asir $Buchberger$ & 31 & 1687 & 2.6 & 27 & 294 & 4309 & --- \\ \hline |
|
Singular & 8.7 & 278 & 0.6 & 5.6 & 54 & 508 & 5510 \\ \hline |
|
CoCoA 4 & 241 & $>$ 5h & 3.8 & 35 & 402 &7021 & --- \\ \hline\hline |
|
Asir $F_4$ & 5.3 & 129 & 0.5 & 4.5 & 31 & 273 & 2641 \\ \hline |
|
FGb(estimated) & 0.9 & 23 & 0.1 & 0.8 & 6 & 51 & 366 \\ \hline |
|
\end{tabular} |
|
\end{center} |
|
|
|
\underline{Over {\bf Q}} |
|
|
|
\begin{center} |
|
\begin{tabular}{|c||c|c|c|c|c|} \hline |
|
& $C_7$ & $Homog. C_7$ & $K_7$ & $K_8$ & $McKay$ \\ \hline |
|
Asir $Buchberger$ & 389 & 594 & 29 & 299 & 34950 \\ \hline |
|
Singular & --- & 15247 & 7.6 & 79 & $>$ 20h \\ \hline |
|
CoCoA 4 & --- & 13227 & 57 & 709 & --- \\ \hline\hline |
|
Asir $F_4$ & 989 & 456 & 90 & 991 & 4939 \\ \hline |
|
FGb(estimated) & 8 &11 & 0.6 & 5 & 10 \\ \hline |
|
\end{tabular} |
|
\end{center} |
|
--- : not tested |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{Summary of performance} |
|
|
|
\begin{itemize} |
|
\item Factorizer |
|
|
|
\begin{itemize} |
|
\item Multivariate : reasonable performance |
|
|
|
\item Univariate : obsoleted by M. van Hoeij's new algorithm [HOEI00] |
|
\end{itemize} |
|
|
|
\item Groebner basis computation |
|
|
|
\begin{itemize} |
|
\item Buchberger |
|
|
|
Singular shows nice perfomance |
|
|
|
Trace lifting is efficient in some cases over {\bf Q} |
|
|
|
\item $F_4$ |
|
|
|
FGb is much faster than Risa/Asir |
|
|
|
But we observe that {\it McKay} is computed efficiently by $F_4$ |
|
\end{itemize} |
|
\end{itemize} |
|
|
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{What is the merit to use Risa/Asir?} |
|
|
|
\begin{itemize} |
|
\item Total performance is not excellent, but not bad |
|
|
|
\item A completely open system |
|
|
|
The whole source is available |
|
|
|
\item Interface compliant to OpenXM RFC-100 |
|
|
|
The interface is fully documented |
|
|
|
\item It serves as a test bench to try new ideas |
|
|
|
Interactive debugger is very useful |
|
\end{itemize} |
|
|
|
\end{slide} |
|
|
|
|
|
%\begin{slide}{} |
|
%\fbox{CMO = Serialized representation of mathematical object} |
|
% |
|
%\begin{itemize} |
|
%\item primitive data |
|
%\begin{eqnarray*} |
|
%\mbox{Integer32} &:& ({\tt CMO\_INT32}, {\sl int32}\ \mbox{n}) \\ |
|
%\mbox{Cstring}&:& ({\tt CMO\_STRING},{\sl int32}\, \mbox{ n}, {\sl string}\, \mbox{s}) \\ |
|
%\mbox{List} &:& ({\tt CMO\_LIST}, {\sl int32}\, len, ob[0], \ldots,ob[m-1]) |
|
%\end{eqnarray*} |
|
% |
|
%\item numbers and polynomials |
|
%\begin{eqnarray*} |
|
%\mbox{ZZ} &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots |
|
%{\sl byte}\, \mbox{a[$|$f$|$]} ) \\ |
|
%\mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, n, \mbox{e[1]}, \ldots, \mbox{e[n]}, \mbox{Coef}) \\ |
|
%\mbox{Coef}&:& \mbox{ZZ} | \mbox{Integer32} \\ |
|
%\mbox{Dpolynomial}&:& ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},\\ |
|
% & & m, \mbox{DringDefinition}, \mbox{Monomial32}, \ldots)\\ |
|
%\mbox{DringDefinition} |
|
% &:& \mbox{DMS of N variables} \\ |
|
% & & ({\tt CMO\_RING\_BY\_NAME}, name) \\ |
|
% & & ({\tt CMO\_DMS\_GENERIC}) \\ |
|
%\end{eqnarray*} |
|
%\end{itemize} |
|
%\end{slide} |
|
% |
|
%\begin{slide}{} |
|
%\fbox{Stack based communication} |
|
% |
|
%\begin{itemize} |
|
%\item Data arrived a client |
|
% |
|
%Pushed to the stack |
|
% |
|
%\item Result |
|
% |
|
%Pushd to the stack |
|
% |
|
%Written to the stream when requested by a command |
|
% |
|
%\item The reason why we use the stack |
|
% |
|
%\begin{itemize} |
|
%\item Stack = I/O buffer for (possibly large) objects |
|
% |
|
%Multiple requests can be sent before their execution |
|
% |
|
%A server does not get stuck in sending results |
|
%\end{itemize} |
|
%\end{itemize} |
|
%\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{OpenXM (Open message eXchange protocol for Mathematics) } |
|
|
|
\begin{itemize} |
|
\item An environment for parallel distributed computation |
|
|
|
Both for interactive, non-interactive environment |
|
|
|
\item OpenXM RFC-100 = Client-server architecture |
|
|
|
Client $\Leftarrow$ OX (OpenXM) message $\Rightarrow$ Server |
|
|
|
OX (OpenXM) message : command and data |
|
|
|
\item Data |
|
|
|
Encoding : CMO (Common Mathematical Object format) |
|
|
|
Serialized representation of mathematical object |
|
|
|
--- Main idea was borrowed from OpenMath |
|
|
|
({\tt http://www.openmath.org}) |
|
|
|
\item Command |
|
|
|
stack machine command --- server is a stackmachine |
|
|
|
+ server's own command sequences --- hybrid server |
|
\end{itemize} |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } |
|
|
|
\begin{verbatim} |
|
/* competitive Gbase computation over GF(M) */ |
|
/* Cf. A.28 in SINGULAR Manual */ |
|
/* Process list is specified as an option : grvsf4(...|proc=P) */ |
|
def grvsf4(G,V,M,O) |
|
{ |
|
P = getopt(proc); |
|
if ( type(P) == -1 ) return dp_f4_mod_main(G,V,M,O); |
|
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
|
map(ox_reset,P); |
|
ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); |
|
ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); |
|
map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ |
|
F = ox_select(P); R = ox_get(F[0]); |
|
if ( F[0] == P0 ) { Win = "F4"; Lose = P1;} |
|
else { Win = "Buchberger"; Lose = P0; } |
|
ox_reset(Lose); /* simply resets the loser */ |
|
return [Win,R]; |
|
} |
|
\end{verbatim} |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\fbox{References} |
|
|
|
[BERN97] L. Bernardin, On square-free factorization of |
|
multivariate polynomials over a finite field, Theoretical |
|
Computer Science 187 (1997), 105-116. |
|
|
|
[FAUG99] J.C. Faug\`ere, |
|
A new efficient algorithm for computing Groebner bases ($F_4$), |
|
Journal of Pure and Applied Algebra (139) 1-3 (1999), 61-88. |
|
|
|
[GRAY98] S. Gray et al, |
|
Design and Implementation of MP, A Protocol for Efficient Exchange of |
|
Mathematical Expression, |
|
J. Symb. Comp. {\bf 25} (1998), 213-238. |
|
|
|
[HOEI00] M. van Hoeij, Factoring polynomials and the knapsack problem, |
|
to appear in Journal of Number Theory (2000). |
|
|
|
[LIAO01] W. Liao et al, |
|
OMEI: An Open Mathematical Engine Interface, |
|
Proc. ASCM2001 (2001), 82-91. |
|
[NORO97] M. Noro, J. McKay, |
|
Computation of replicable functions on Risa/Asir. |
|
Proc. PASCO'97, ACM Press (1997), 130-138. |
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
|
|
[NOYO99] M. Noro, K. Yokoyama, |
|
A Modular Method to Compute the Rational Univariate |
|
Representation of Zero-Dimensional Ideals. |
|
J. Symb. Comp. {\bf 28}/1 (1999), 243-263. |
|
|
|
[OAKU97] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic |
|
local cohomology groups of $D$-modules. |
|
Advances in Applied Mathematics, 19 (1997), 61-105. |
|
|
|
[ROUI96] F. Rouillier, |
|
R\'esolution des syst\`emes z\'ero-dimensionnels. |
|
Doctoral Thesis(1996), University of Rennes I, France. |
|
|
|
[SHYO96] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. {\bf 22} (1996), 247-277. |
|
|
|
[TRAV88] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. |
|
|
|
[WANG99] P. S. Wang, |
|
Design and Protocol for Internet Accessible Mathematical Computation, |
|
Proc. ISSAC '99 (1999), 291-298. |
|
\end{slide} |
|
\end{document} |