=================================================================== RCS file: /home/cvs/OpenXM/doc/Papers/Attic/dagb-noro.tex,v retrieving revision 1.1 retrieving revision 1.7 diff -u -p -r1.1 -r1.7 --- OpenXM/doc/Papers/Attic/dagb-noro.tex 2001/10/03 08:32:58 1.1 +++ OpenXM/doc/Papers/Attic/dagb-noro.tex 2001/10/10 06:32:10 1.7 @@ -1,291 +1,517 @@ -% $OpenXM$ +% $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.6 2001/10/09 11:44:43 noro Exp $ \setlength{\parskip}{10pt} \begin{slide}{} -\fbox{A computer algebra system Risa/Asir} +\begin{center} +\fbox{\large Part I : OpenXM and Risa/Asir --- overview and history} +\end{center} +\end{slide} +\begin{slide}{} +\fbox{Integration of mathematical software systems} + \begin{itemize} -\item Old style software for polynomial computation +\item Data integration \begin{itemize} -\item Domain specification is not necessary prior to computation -\item automatic conversion of inputs into internal canonical forms +\item OpenMath ({\tt http://www.openmath.org}) , MP [GRAY98] \end{itemize} -\item User language with C-like syntax +Standards for representing mathematical objects +\item Control integration + \begin{itemize} -\item No type declaration of variables -\item Builtin debugger for user programs +\item MCP [WANG99], OMEI [LIAO01] \end{itemize} -\item Open source +Protocols for remote subroutine calls or session management +\item Combination of two integrations + \begin{itemize} -\item Whole source tree is available via CVS +\item MathLink, OpenMath+MCP, MP+MCP + +and OpenXM ({\tt http://www.openxm.org}) \end{itemize} -\item OpenXM interface +Both are necessary for practical implementation -\begin{itemize} -\item As a client : can call procedures on other OpenXM servers -\item As a server : offers all its functionalities to OpenXM clients -\item As a library : OpenXM functionality is available via subroutine calls \end{itemize} -\end{itemize} \end{slide} - \begin{slide}{} -\fbox{Major functionalities} +\fbox{OpenXM (Open message eXchange protocol for Mathematics) } \begin{itemize} -\item Fundamental polynomial arithmetics +\item An environment for parallel distributed computation -\begin{itemize} -\item Internal form of a polynomial : recursive representaion or distributed -representation -\end{itemize} +Both for interactive, non-interactive environment -\item Polynomial factorization +\item Client-server architecture -\begin{itemize} -\item Univariate factorization over the rationals, algebraic number fields and various finite fields +Client $\Leftarrow$ OX (OpenXM) message $\Rightarrow$ Server -\item Multivariate factorization over the rationals +OX (OpenXM) message : command and data + +\item Data + +Encoding : CMO (Common Mathematical Object format) + +Serialized representation of mathematical object + +--- Main idea was borrowed from OpenMath +\item Command + +stack machine command --- server is a stackmachine + ++ server's own command sequences --- hybrid server \end{itemize} +\end{slide} -\item Groebner basis computation +\begin{slide}{} +\fbox{A computer algebra system Risa/Asir} +({\tt http://www.math.kobe-u.ac.jp/Asir/asir.html}) + \begin{itemize} -\item Buchberger and $F_4$ algorithm +\item Traditional style software for polynomial computation -\item Change of ordering/RUR of 0-dimensional ideals +No domain specification, automatic expansion -\item Primary ideal decomposition +\item User language with C-like syntax -\item Computation of $b$-function -\end{itemize} +C language without type declaration, with list processing -\item PARI library interface +\item Builtin {\tt gdb}-like debugger for user programs -\item Paralell distributed computation under OpenXM +\item Open source + +Whole source tree is available via CVS + +\item OpenXM interface + +\begin{itemize} +\item Risa/Asir is a main client in OpenXM package. +\item An OpenXM server {\tt ox\_asir} +\item A library with OpenXM library interface {\tt libasir.a} \end{itemize} +\end{itemize} \end{slide} \begin{slide}{} -\fbox{History of development : ---1994} +\fbox{Goal of developing Risa/Asir} \begin{itemize} -\item --1989 +\item Efficient implementation in specific area -Several subroutines were developed for a Prolog program. +\begin{itemize} +\item Polynomial factorization -\item 1989--1992 +\item Groebner basis related computation -\begin{itemize} -\item Reconfigured as Risa/Asir with the parser and Boehm's conservative GC. +Main target : coefficient swells in characteristic 0 cases -\item Developed univariate and multivariate factorizers over the rationals. +Main tool : modular method \end{itemize} -\item 1992--1994 +\item Front-end or server of a general purpose math software +We do not persist in self-containedness + \begin{itemize} -\item Started implementation of Groebner basis computation -User language $\Rightarrow$ rewritten in C (by Murao) $\Rightarrow$ -trace lifting +\item contains PARI library ({\tt http://www.parigp-home.de}) from the very beginning -\item Univariate factorization over algebraic number fields +\item also acts as a main client of OpenXM package -Intensive use of successive extension, non-squarefree norms +One can use various OpenXM servers + \end{itemize} -\end{itemize} +\end{itemize} \end{slide} \begin{slide}{} -\fbox{History of development : 1994-1996} +\fbox{Capability for polynomial computation} \begin{itemize} -\item Free distribution of binary versions +\item Fundamental polynomial arithmetics -\item Primary ideal decomposition +recursive representation and distributed representation +\item Polynomial factorization + \begin{itemize} -\item Shimoyama-Yokoyama algorithm +\item Univariate : over {\bf Q}, algebraic number fields and finite fields + +\item Multivariate : over {\bf Q} \end{itemize} -\item Improvement of Buchberger algorithm +\item Groebner basis computation \begin{itemize} -\item Trace lifting+homogenization +\item Buchberger and $F_4$ [FAUG99] algorithm -\item Omitting check by compatible prime +\item Change of ordering/RUR [ROUI96] of 0-dimensional ideals -\item Modular change of ordering, Modular RUR +\item Primary ideal decomposition -\item Noro met Faug\`ere at RISC-Linz and he mentioned $F_4$. +\item Computation of $b$-function (in Weyl Algebra) \end{itemize} \end{itemize} - \end{slide} \begin{slide}{} -\fbox{History of development : 1996-1998} +\fbox{History of development : Polynomial factorization} \begin{itemize} -\item Distributed compuatation +\item 1989 -\begin{itemize} -\item A prototype of OpenXM -\end{itemize} +Start of Risa/Asir with Boehm's conservative GC -\item Improvement of Buchberger algorithm +({\tt http://www.hpl.hp.com/personal/Hans\_Boehm/gc}) -\begin{itemize} -\item Content reduction during nomal form computation +\item 1989-1992 -\item Its parallelization by the above facility +Univariate and multivariate factorizers over {\bf Q} -\item Application : computation of odd order replicable functions +\item 1992-1994 -Risa/Asir : it took 5days to compute a DRL basis ({\it McKay}) +Univariate factorization over algebraic number fields -From Faug\`ere : computation of the DRL basis 53sec -\end{itemize} +Intensive use of successive extension, non-squarefree norms +\item 1996-1998 -\item Univariate factorization over large finite fields +Univariate factorization over large finite fields -\begin{itemize} -\item To implement Schoof-Elkies-Atkin algorithm +\item 2000-current -Counting rational points on elliptic curves --- not free - -But related functions are freely available +Multivariate factorization over small finite fields (in progress) \end{itemize} -\end{itemize} - \end{slide} \begin{slide}{} -\fbox{History of development : 1998-2000} -\begin{itemize} -\item OpenXM +\fbox{History of development : Groebner basis} \begin{itemize} -\item OpenXM specification was written by Noro and Takayama +\item 1992-1994 -\item Functions for distributed computation were rewritten -\end{itemize} +User language $\Rightarrow$ C version; trace lifting [TRAV88] -\item Risa/Asir on Windows +\item 1994-1996 -\begin{itemize} -\item Requirement from a company for which Noro worked +Trace lifting with homogenization -Written in Visual C++ -\end{itemize} +Omitting GB check by compatible prime [NOYO99] -\item Test implementation of $F_4$ +Modular change of ordering/RUR [NOYO99] -\begin{itemize} -\item Over $GF(p)$ : pretty good +Primary ideal decomposition [SHYO96] -\item Over the rationals : not so good except for {\it McKay} +\item 1996-1998 + +Efficient content reduction during NF computation [NORO97] +Solved {\it McKay} system for the first time + +\item 1998-2000 + +Test implementation of $F_4$ + +\item 2000-current + +Buchberger algorithm in Weyl algebra [TAKA90] + +Efficient $b$-function computation by a modular method \end{itemize} -\end{itemize} \end{slide} \begin{slide}{} -\fbox{History of development : 2000-current} -\begin{itemize} -\item The source code is freely available +\fbox{Performance --- Factorizer} \begin{itemize} -\item Noro moved from Fujitsu to Kobe university. +\item 4 years ago -\item Fujitsu kindly permitted to make Risa/Asir open source. -\end{itemize} +Over {\bf Q} : fine compared with existing software +like REDUCE, Mathematica, maple -\item OpenXM +Univariate, over algebraic number fields : +fine because of some tricks for polynomials +derived from norms. -\begin{itemize} -\item Revising the specification : OX-RFC100, 101, (102) +\item Current -\item OX-RFC102 : ommunications between servers via MPI +Multivariate : moderate + +Univariate : completely obsoleted by M. van Hoeij's new algorithm +[HOEI00] \end{itemize} -\item Rings of differential operators +\end{slide} -\begin{itemize} -\item Buchberger algorithm +\begin{slide}{} +\fbox{Timing data --- Factorization} -\item $b$-function computation +\underline{Univariate; over {\bf Q}} -Minimal polynomial computation by modular method -\end{itemize} -\end{itemize} +$N_i$ : a norm of a poly, $\deg(N_i) = i$ +\begin{center} +\begin{tabular}{|c||c|c|c|c|} \hline + & $N_{105}$ & $N_{120}$ & $N_{168}$ & $N_{210}$ \\ \hline +Asir & 0.86 & 59 & 840 & hard \\ \hline +Asir NormFactor & 1.6 & 2.2& 6.1& hard \\ \hline +Singular& hard? & hard?& hard? & hard? \\ \hline +CoCoA 4 & 0.2 & 7.1 & 16 & 0.5 \\ \hline\hline +NTL-5.2 & 0.16 & 0.9 & 1.4 & 0.4 \\ \hline +\end{tabular} +\end{center} -\end{slide} +\underline{Multivariate; over {\bf Q}} +$W_{i,j,k} = Wang[i]\cdot Wang[j]\cdot Wang[k]$ in {\tt asir2000/lib/fctrdata} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|} \hline + & $W_{1,2,3}$ & $W_{4,5,6}$ & $W_{7,8,9}$ & $W_{10,11,12}$ & $W_{13,14,15}$ \\ \hline +Asir & 0.2 & 4.7 & 14 & 17 & 0.4 \\ \hline +Singular& $>$15min & --- & ---& ---& ---\\ \hline +CoCoA 4 & 5.2 & $>$15min & $>$15min & $>$15min & 117 \\ \hline\hline +Mathematica& 0.2 & 16 & 23 & 36 & 1.1 \\ \hline +\end{tabular} +\end{center} + +--- : not tested +\end{slide} \begin{slide}{} -\fbox{Status of each component --- Factorizer} +\fbox{Performance --- Groebner basis related computation} \begin{itemize} -\item 10 years ago +\item 7 years ago -its performace was fine compared with existing software -like REDUCE, Maple, Mathematica. +Trace lifting : rather fine but coefficient swells often occur +Homogenization+trace lifting : robust and fast in the above cases + \item 4 years ago -Univarate factorization over algebraic number fields was -still fine because of some tricks on factoring polynomials -derived from norms. +Modular RUR was comparable with Rouillier's implementation. +DRL basis of {\it McKay}: + +5 days on Risa/Asir, 53 seconds on Faug\`ere FGb \item Current -Multivariate : not so bad +$F_4$ in FGb : much more efficient than $F_4$ in Risa/Asir -Univariate : completely obsolete by M. van Hoeij's new algorithm -\end{itemize} +Buchberger in Singular ({\tt http://www.singular.uni-kl.de}) +: faster than Risa/Asir + +$\Leftarrow$ efficient monomial and polynomial computation + +\end{itemize} \end{slide} \begin{slide}{} -\fbox{Status of each component --- Groebner basis related functions} +\fbox{Timing data --- DRL Groebner basis computation} +\underline{Over $GF(32003)$} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|c|c|} \hline + & $C_7$ & $C_8$ & $K_7$ & $K_8$ & $K_9$ & $K_{10}$ & $K_{11}$ \\ \hline +Asir $Buchberger$ & 31 & 1687 & 2.6 & 27 & 294 & 4309 & --- \\ \hline +Singular & 8.7 & 278 & 0.6 & 5.6 & 54 & 508 & 5510 \\ \hline +CoCoA 4 & 241 & & 3.8 & 35 & 402 & & --- \\ \hline\hline +Asir $F_4$ & 5.3 & 129 & 0.5 & 4.5 & 31 & 273 & 2641 \\ \hline +FGb(estimated) & 0.9 & 23 & 0.1 & 0.8 & 6 & 51 & 366 \\ \hline +\end{tabular} +\end{center} + +\underline{Over {\bf Q}} + +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|} \hline + & $C_7$ & $Homog. C_7$ & $K_7$ & $K_8$ & $McKay$ \\ \hline +Asir $Buchberger$ & 389 & 594 & 29 & 299 & 34950 \\ \hline +Singular & --- & 15247 & 7.6 & 79 & $>$ 20h \\ \hline +CoCoA 4 & --- & 13227 & 57 & 709 & --- \\ \hline\hline +Asir $F_4$ & 989 & 456 & 90 & 991 & 4939 \\ \hline +FGb(estimated) & 8 &11 & 0.6 & 5 & 10 \\ \hline +\end{tabular} +\end{center} +--- : not tested +\end{slide} +\begin{slide}{} +\fbox{How do we proceed?} + +\underline{Total performance : not excellent, but not so bad} + \begin{itemize} -\item 8 years ago +\item Trying to improve our implementation -The performace was poor with only the sugar strategy. +This is very important as a motivation of further development -\item 7 years ago +\begin{itemize} -Rather fine with trace lifting but Faug\`ere's (old)Gb was more -efficient. +\item Computation of $b$-function -Homogenization+trace lifting made it possible to compute -wider range of Groebner bases. +fast but not satisfactory -\item 4 years ago +$\Rightarrow$ Groebner basis computation in Weyl +algebra should be improved +\end{itemize} -Modular RUR was comparable with Rouillier's implementation. +\item Developing new OpenXM servers -\item Current +{ox\_NTL} for univariate factorization, -FGb seems much more efficient than our $F_4$ implementation. +{ox\_???} for Groebner basis computation, etc. -Singular's Groebner basis computation is also several times -faster than Risa/Asir, because Singular seems to have efficient -monomial and polynomial representation. +$\Rightarrow$ Risa/Asir can be a front-end of efficient servers \end{itemize} + +\begin{center} +\underline{In both cases, OpenXM interface is important} +\end{center} \end{slide} + +%\begin{slide}{} +%\fbox{CMO = Serialized representation of mathematical object} +% +%\begin{itemize} +%\item primitive data +%\begin{eqnarray*} +%\mbox{Integer32} &:& ({\tt CMO\_INT32}, {\sl int32}\ \mbox{n}) \\ +%\mbox{Cstring}&:& ({\tt CMO\_STRING},{\sl int32}\, \mbox{ n}, {\sl string}\, \mbox{s}) \\ +%\mbox{List} &:& ({\tt CMO\_LIST}, {\sl int32}\, len, ob[0], \ldots,ob[m-1]) +%\end{eqnarray*} +% +%\item numbers and polynomials +%\begin{eqnarray*} +%\mbox{ZZ} &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots +%{\sl byte}\, \mbox{a[$|$f$|$]} ) \\ +%\mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, n, \mbox{e[1]}, \ldots, \mbox{e[n]}, \mbox{Coef}) \\ +%\mbox{Coef}&:& \mbox{ZZ} | \mbox{Integer32} \\ +%\mbox{Dpolynomial}&:& ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},\\ +% & & m, \mbox{DringDefinition}, \mbox{Monomial32}, \ldots)\\ +%\mbox{DringDefinition} +% &:& \mbox{DMS of N variables} \\ +% & & ({\tt CMO\_RING\_BY\_NAME}, name) \\ +% & & ({\tt CMO\_DMS\_GENERIC}) \\ +%\end{eqnarray*} +%\end{itemize} +%\end{slide} +% +%\begin{slide}{} +%\fbox{Stack based communication} +% +%\begin{itemize} +%\item Data arrived a client +% +%Pushed to the stack +% +%\item Result +% +%Pushd to the stack +% +%Written to the stream when requested by a command +% +%\item The reason why we use the stack +% +%\begin{itemize} +%\item Stack = I/O buffer for (possibly large) objects +% +%Multiple requests can be sent before their execution +% +%A server does not get stuck in sending results +%\end{itemize} +%\end{itemize} +%\end{slide} + \begin{slide}{} +\fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } + +\begin{verbatim} +/* competitive Gbase computation over GF(M) */ +/* Cf. A.28 in SINGULAR Manual */ +/* Process list is specified as an option : grvsf4(...|proc=P) */ +def grvsf4(G,V,M,O) +{ + P = getopt(proc); + if ( type(P) == -1 ) return dp_f4_mod_main(G,V,M,O); + P0 = P[0]; P1 = P[1]; P = [P0,P1]; + map(ox_reset,P); + ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); + ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); + map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ + F = ox_select(P); R = ox_get(F[0]); + if ( F[0] == P0 ) { Win = "F4"; Lose = P1;} + else { Win = "Buchberger"; Lose = P0; } + ox_reset(Lose); /* simply resets the loser */ + return [Win,R]; +} +\end{verbatim} +\end{slide} + +\begin{slide}{} +\fbox{References} + +[BERN97] L. Bernardin, On square-free factorization of +multivariate polynomials over a finite field, Theoretical +Computer Science 187 (1997), 105-116. + +[FAUG99] J.C. Faug\`ere, +A new efficient algorithm for computing Groebner bases ($F_4$), +Journal of Pure and Applied Algebra (139) 1-3 (1999), 61-88. + +[GRAY98] S. Gray et al, +Design and Implementation of MP, A Protocol for Efficient Exchange of +Mathematical Expression, +J. Symb. Comp. {\bf 25} (1998), 213-238. + +[HOEI00] M. van Heoij, Factoring polynomials and the knapsack problem, +to appear in Journal of Number Theory (2000). + +[LIAO01] W. Liao et al, +OMEI: An Open Mathematical Engine Interface, +Proc. ASCM2001 (2001), 82-91. +[NORO97] M. Noro, J. McKay, +Computation of replicable functions on Risa/Asir. +Proc. PASCO'97, ACM Press (1997), 130-138. +\end{slide} + +\begin{slide}{} + +[NOYO99] M. Noro, K. Yokoyama, +A Modular Method to Compute the Rational Univariate +Representation of Zero-Dimensional Ideals. +J. Symb. Comp. {\bf 28}/1 (1999), 243-263. + +[OAKU97] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic +local cohomology groups of $D$-modules. +Advances in Applied Mathematics, 19 (1997), 61-105. + +[ROUI96] F. Rouillier, +R\'esolution des syst\`emes z\'ero-dimensionnels. +Doctoral Thesis(1996), University of Rennes I, France. + +[SHYO96] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. {\bf 22} (1996), 247-277. + +[TRAV88] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. + +[WANG99] P. S. Wang, +Design and Protocol for Internet Accessible Mathematical Computation, +Proc. ISSAC '99 (1999), 291-298. +\end{slide} + +\begin{slide}{} +\begin{center} +\fbox{\large Part II : Algorithms and implementations in Risa/Asir} +\end{center} +\end{slide} + +\begin{slide}{} \fbox{Ground fields} \begin{itemize} @@ -328,7 +554,7 @@ Berlekamp-Zassenhaus Trager's algorithm + some improvement -\item Over finite fieds +\item Over finite fields DDF + Cantor-Zassenhaus; FFT for large finite fields \end{itemize} @@ -340,9 +566,11 @@ DDF + Cantor-Zassenhaus; FFT for large finite fields Classical EZ algorithm -\item Over finite fieds +\item Over small finite fields -Modified Bernardin square free, bivariate Hensel +Modified Bernardin's square free algorithm [BERN97], + +possibly Hensel lifting over extension fields \end{itemize} \end{itemize} @@ -365,12 +593,12 @@ Guess of a groebner basis by detecting zero reduction Homogenization+guess+dehomogenization+check \end{itemize} -\item Rings of differential operators +\item Weyl Algebra \begin{itemize} \item Groebner basis of a left ideal -An efficient implementation of Leibniz rule +Key : an efficient implementation of Leibniz rule \end{itemize} \end{itemize} @@ -381,9 +609,9 @@ An efficient implementation of Leibniz rule \begin{itemize} \item Over small finite fields ($GF(p)$, $p < 2^{30}$) \begin{itemize} -\item More efficient than Buchberger algorithm +\item More efficient than our Buchberger algorithm implementation -but less efficient than FGb by Faugere +but less efficient than FGb by Faug\`ere \end{itemize} \item Over the rationals @@ -391,16 +619,18 @@ but less efficient than FGb by Faugere \begin{itemize} \item Very naive implementation +Modular computation + CRT + Checking the result at each degree + \item Less efficient than Buchberger algorithm -except for one example +except for one example (={\it McKay}) \end{itemize} \end{itemize} \end{slide} \begin{slide}{} -\fbox{Change of ordering for zero-dimimensional ideals} +\fbox{Change of ordering for zero-dimensional ideals} \begin{itemize} \item Any ordering to lex ordering @@ -448,7 +678,7 @@ An ideal whose radical is prime \begin{slide}{} \fbox{Computation of $b$-function} -$D$ : the ring of differential operators +$D=K\langle x,\partial \rangle$ : Weyl algebra $b(s)$ : a polynomial of the smallest degree s.t. there exists $P(s) \in D[s]$, $P(s)f^{s+1}=b(s)f^s$ @@ -494,42 +724,10 @@ evaluated by {\tt eval()} The knapsack factorization is available via {\tt pari(factor,{\it poly})} \end{itemize} - - \end{itemize} \end{slide} \begin{slide}{} -\fbox{OpenXM} - -\begin{itemize} -\item An environment for parallel distributed computation - -Both for interactive, non-interactive environment - -\item Message passing - -OX (OpenXM) message : command and data - -\item Hybrid command execution - -\begin{itemize} -\item Stack machine command - -push, pop, function execution, $\ldots$ - -\item accepts its own command sequences - -{\tt execute\_string} --- easy to use -\end{itemize} - -\item Data is represented as CMO - -CMO --- Common Mathematical Object format -\end{itemize} -\end{slide} - -\begin{slide}{} \fbox{OpenXM server interface in Risa/Asir} \begin{itemize} @@ -544,14 +742,19 @@ The launcher launches a server on the same host. \item Server -A server reads from the descriptor 3, write to the descriptor 4. +Reads from the descriptor 3 +Writes to the descriptor 4 + \end{itemize} \item Subroutine call -Risa/Asir subroutine library provides interfaces corresponding to -pushing and popping data and executing stack commands. +In Risa/Asir subroutine library {\tt libasir.a}: + +OpenXM functionalities are implemented as function calls + +pushing and popping data, executing stack commands etc. \end{itemize} \end{slide} @@ -565,77 +768,26 @@ Pushing and popping data, sending commands etc. \item Convenient functions -Launching servers, calling remote functions, - interrupting remote executions etc. +Launching servers, -\item Parallel distributed computation is easy +Calling remote functions, -Simple parallelization is practically important +Resetting remote executions etc. -Competitive computation is easily realized -\end{itemize} -\end{slide} +\item Parallel distributed computation +Simple parallelization is practically important -\begin{slide}{} -\fbox{CMO = Serialized representation of mathematical object} - -\begin{itemize} -\item primitive data -\begin{eqnarray*} -\mbox{Integer32} &:& ({\tt CMO\_INT32}, {\sl int32}\ \mbox{n}) \\ -\mbox{Cstring}&:& ({\tt CMO\_STRING},{\sl int32}\, \mbox{ n}, {\sl string}\, \mbox{s}) \\ -\mbox{List} &:& ({\tt CMO\_LIST}, {\sl int32}\, len, ob[0], \ldots,ob[m-1]) -\end{eqnarray*} - -\item numbers and polynomials -\begin{eqnarray*} -\mbox{ZZ} &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots -{\sl byte}\, \mbox{a[$|$f$|$]} ) \\ -\mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, n, \mbox{e[1]}, \ldots, \mbox{e[n]}, \mbox{Coef}) \\ -\mbox{Coef}&:& \mbox{ZZ} | \mbox{Integer32} \\ -\mbox{Dpolynomial}&:& ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},\\ - & & m, \mbox{DringDefinition}, \mbox{Monomial32}, \ldots)\\ -\mbox{DringDefinition} - &:& \mbox{DMS of N variables} \\ - & & ({\tt CMO\_RING\_BY\_NAME}, name) \\ - & & ({\tt CMO\_DMS\_GENERIC}) \\ -\end{eqnarray*} +Competitive computation is easily realized ($\Rightarrow$ demo) \end{itemize} \end{slide} \begin{slide}{} -\fbox{Stack based communication} - -\begin{itemize} -\item Data arrived a client - -Pushed to the stack - -\item Result - -Pushd to the stack - -Written to the stream when requested by a command - -\item The reason why we use the stack - -\begin{itemize} -\item Stack = I/O buffer for (possibly large) objects - -Multiple requests can be sent before their exection - -A server does not get stuck in sending results -\end{itemize} -\end{itemize} -\end{slide} - -\begin{slide}{} \fbox{Executing functions on a server (I) --- {\tt SM\_executeFunction}} \begin{enumerate} \item (C $\rightarrow$ S) Arguments are sent in binary encoded form. -\item (C $\rightarrow$ S) The number of aruments is sent as {\sl Integer32}. +\item (C $\rightarrow$ S) The number of arguments is sent as {\sl Integer32}. \item (C $\rightarrow$ S) A function name is sent as {\sl Cstring}. \item (C $\rightarrow$ S) A command {\tt SM\_executeFunction} is sent. \item The result is pushed to the stack. @@ -651,7 +803,7 @@ conversion are necessary. \fbox{Executing functions on a server (II) --- {\tt SM\_executeString}} \begin{enumerate} -\item (C $\rightarrow$ S) A character string represeting a request in a server's +\item (C $\rightarrow$ S) A character string representing a request in a server's user language is sent as {\sl Cstring}. \item (C $\rightarrow$ S) A command {\tt SM\_executeString} is sent. \item The result is pushed to the stack. @@ -663,35 +815,168 @@ $\Rightarrow$ Communication may be slow, but the clien enough to read the result. \end{slide} -\begin{slide}{} -\fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } - -\begin{verbatim} -/* competitive Gbase computation over GF(M) */ -/* Cf. A.28 in SINGULAR Manual */ -/* Process list is specified as an option : grvsf4(...|proc=P) */ -def grvsf4(G,V,M,O) -{ - P = getopt(proc); - if ( type(P) == -1 ) return dp_f4_mod_main(G,V,M,O); - P0 = P[0]; P1 = P[1]; P = [P0,P1]; - map(ox_reset,P); - ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); - ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); - map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ - F = ox_select(P); R = ox_get(F[0]); - if ( F[0] == P0 ) { Win = "F4"; Lose = P1;} - else { Win = "Buchberger"; Lose = P0; } - ox_reset(Lose); /* simply resets the loser */ - return [Win,R]; -} -\end{verbatim} - -\end{slide} - -\begin{slide}{} -\end{slide} - +%\begin{slide}{} +%\fbox{History of development : ---1994} +% +%\begin{itemize} +%\item --1989 +% +%Several subroutines were developed for a Prolog program. +% +%\item 1989--1992 +% +%\begin{itemize} +%\item Reconfigured as Risa/Asir with a parser and Boehm's conservative GC +% +%\item Developed univariate and multivariate factorizers over the rationals. +%\end{itemize} +% +%\item 1992--1994 +% +%\begin{itemize} +%\item Started implementation of Buchberger algorithm +% +%Written in user language $\Rightarrow$ rewritten in C (by Murao) +% +%$\Rightarrow$ trace lifting [TRAV88] +% +%\item Univariate factorization over algebraic number fields +% +%Intensive use of successive extension, non-squarefree norms +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1994-1996} +% +%\begin{itemize} +%\item Free distribution of binary versions from Fujitsu +% +%\item Primary ideal decomposition +% +%\begin{itemize} +%\item Shimoyama-Yokoyama algorithm [SHYO96] +%\end{itemize} +% +%\item Improvement of Buchberger algorithm +% +%\begin{itemize} +%\item Trace lifting+homogenization +% +%\item Omitting check by compatible prime +% +%\item Modular change of ordering, Modular RUR +% +%These are joint works with Yokoyama [NOYO99] +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1996-1998} +% +%\begin{itemize} +%\item Distributed computation +% +%\begin{itemize} +%\item A prototype of OpenXM +%\end{itemize} +% +%\item Improvement of Buchberger algorithm +% +%\begin{itemize} +%\item Content reduction during normal form computation +% +%\item Its parallelization by the above facility +% +%\item Computation of odd order replicable functions [NORO97] +% +%Risa/Asir : it took 5days to compute a DRL basis ({\it McKay}) +% +%Faug\`ere FGb : computation of the DRL basis 53sec +%\end{itemize} +% +% +%\item Univariate factorization over large finite fields +% +%\begin{itemize} +%\item To implement Schoof-Elkies-Atkin algorithm +% +%Counting rational points on elliptic curves +% +%--- not free But related functions are freely available +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1998-2000} +%\begin{itemize} +%\item OpenXM +% +%\begin{itemize} +%\item OpenXM specification was written by Noro and Takayama +% +%Borrowed idea on encoding, phrase book from OpenMath +% +%\item Functions for distributed computation were rewritten +%\end{itemize} +% +%\item Risa/Asir on Windows +% +%\begin{itemize} +%\item Requirement from a company for which Noro worked +% +%Written in Visual C++ +%\end{itemize} +% +%\item Test implementation of $F_4$ +% +%\begin{itemize} +%\item Implemented according to [FAUG99] +% +%\item Over $GF(p)$ : pretty good +% +%\item Over the rationals : not so good except for {\it McKay} +%\end{itemize} +%\end{itemize} +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 2000-current} +%\begin{itemize} +%\item The source code is freely available +% +%\begin{itemize} +%\item Noro moved from Fujitsu to Kobe university +% +%Started Kobe branch +%\end{itemize} +% +%\item OpenXM +% +%\begin{itemize} +%\item Revising the specification : OX-RFC100, 101, (102) +% +%\item OX-RFC102 : communications between servers via MPI +%\end{itemize} +% +%\item Weyl algebra +% +%\begin{itemize} +%\item Buchberger algorithm [TAKA90] +% +%\item $b$-function computation [OAKU97] +% +%Minimal polynomial computation by modular method +%\end{itemize} +%\end{itemize} +% +%\end{slide} \begin{slide}{} \end{slide}