=================================================================== RCS file: /home/cvs/OpenXM/doc/Papers/Attic/dagb-noro.tex,v retrieving revision 1.4 retrieving revision 1.7 diff -u -p -r1.4 -r1.7 --- OpenXM/doc/Papers/Attic/dagb-noro.tex 2001/10/04 08:22:20 1.4 +++ OpenXM/doc/Papers/Attic/dagb-noro.tex 2001/10/10 06:32:10 1.7 @@ -1,409 +1,378 @@ -% $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.3 2001/10/04 08:16:26 noro Exp $ +% $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.6 2001/10/09 11:44:43 noro Exp $ \setlength{\parskip}{10pt} \begin{slide}{} \begin{center} -\fbox{\large Part I : Overview and history of Risa/Asir} +\fbox{\large Part I : OpenXM and Risa/Asir --- overview and history} \end{center} \end{slide} \begin{slide}{} -\fbox{A computer algebra system Risa/Asir} +\fbox{Integration of mathematical software systems} \begin{itemize} -\item Old style software for polynomial computation +\item Data integration \begin{itemize} -\item Domain specification is not necessary prior to computation -\item automatic conversion of inputs into internal canonical forms +\item OpenMath ({\tt http://www.openmath.org}) , MP [GRAY98] \end{itemize} -\item User language with C-like syntax +Standards for representing mathematical objects +\item Control integration + \begin{itemize} -\item No type declaration of variables -\item Builtin debugger for user programs +\item MCP [WANG99], OMEI [LIAO01] \end{itemize} -\item Open source +Protocols for remote subroutine calls or session management +\item Combination of two integrations + \begin{itemize} -\item Whole source tree is available via CVS +\item MathLink, OpenMath+MCP, MP+MCP + +and OpenXM ({\tt http://www.openxm.org}) \end{itemize} -\item OpenXM ((Open message eXchange protocol for Mathematics) interface +Both are necessary for practical implementation -\begin{itemize} -\item As a client : can call procedures on other OpenXM servers -\item As a server : offers all its functionalities to OpenXM clients -\item As a library : OpenXM functionality is available via subroutine calls \end{itemize} -\end{itemize} \end{slide} - \begin{slide}{} -\fbox{Major functionalities} +\fbox{OpenXM (Open message eXchange protocol for Mathematics) } \begin{itemize} -\item Fundamental polynomial arithmetics +\item An environment for parallel distributed computation -\begin{itemize} -\item Internal form of a polynomial : recursive representaion or distributed -representation -\end{itemize} +Both for interactive, non-interactive environment -\item Polynomial factorization +\item Client-server architecture -\begin{itemize} -\item Univariate factorization over the rationals, algebraic number fields and various finite fields +Client $\Leftarrow$ OX (OpenXM) message $\Rightarrow$ Server -\item Multivariate factorization over the rationals -\end{itemize} +OX (OpenXM) message : command and data -\item Groebner basis computation +\item Data -\begin{itemize} -\item Buchberger and $F_4$ [Faug\'ere] algorithm +Encoding : CMO (Common Mathematical Object format) -\item Change of ordering/RUR [Rouillier] of 0-dimensional ideals +Serialized representation of mathematical object -\item Primary ideal decomposition +--- Main idea was borrowed from OpenMath +\item Command -\item Computation of $b$-function -\end{itemize} +stack machine command --- server is a stackmachine -\item PARI [PARI] library interface - -\item Paralell distributed computation under OpenXM ++ server's own command sequences --- hybrid server \end{itemize} \end{slide} \begin{slide}{} -\fbox{History of development : ---1994} +\fbox{A computer algebra system Risa/Asir} -\begin{itemize} -\item --1989 +({\tt http://www.math.kobe-u.ac.jp/Asir/asir.html}) -Several subroutines were developed for a Prolog program. - -\item 1989--1992 - \begin{itemize} -\item Reconfigured as Risa/Asir with a parser and Boehm's conservative GC [Boehm] +\item Traditional style software for polynomial computation -\item Developed univariate and multivariate factorizers over the rationals. -\end{itemize} +No domain specification, automatic expansion -\item 1992--1994 +\item User language with C-like syntax -\begin{itemize} -\item Started implementation of Buchberger algorithm +C language without type declaration, with list processing -Written in user language $\Rightarrow$ rewritten in C (by Murao) +\item Builtin {\tt gdb}-like debugger for user programs -$\Rightarrow$ trace lifting [Traverso] +\item Open source -\item Univariate factorization over algebraic number fields +Whole source tree is available via CVS -Intensive use of successive extension, non-squarefree norms +\item OpenXM interface + +\begin{itemize} +\item Risa/Asir is a main client in OpenXM package. +\item An OpenXM server {\tt ox\_asir} +\item A library with OpenXM library interface {\tt libasir.a} \end{itemize} \end{itemize} - \end{slide} \begin{slide}{} -\fbox{History of development : 1994-1996} +\fbox{Goal of developing Risa/Asir} \begin{itemize} -\item Free distribution of binary versions from Fujitsu +\item Efficient implementation in specific area -\item Primary ideal decomposition - \begin{itemize} -\item Shimoyama-Yokoyama algorithm [SY] +\item Polynomial factorization + +\item Groebner basis related computation + +Main target : coefficient swells in characteristic 0 cases + +Main tool : modular method \end{itemize} -\item Improvement of Buchberger algorithm +\item Front-end or server of a general purpose math software +We do not persist in self-containedness + \begin{itemize} -\item Trace lifting+homogenization -\item Omitting check by compatible prime +\item contains PARI library ({\tt http://www.parigp-home.de}) from the very beginning -\item Modular change of ordering, Modular RUR +\item also acts as a main client of OpenXM package -These are joint works with Yokoyama [NY] +One can use various OpenXM servers + \end{itemize} -\end{itemize} +\end{itemize} \end{slide} \begin{slide}{} -\fbox{History of development : 1996-1998} +\fbox{Capability for polynomial computation} \begin{itemize} -\item Distributed compuatation +\item Fundamental polynomial arithmetics -\begin{itemize} -\item A prototype of OpenXM -\end{itemize} +recursive representation and distributed representation -\item Improvement of Buchberger algorithm +\item Polynomial factorization \begin{itemize} -\item Content reduction during nomal form computation +\item Univariate : over {\bf Q}, algebraic number fields and finite fields -\item Its parallelization by the above facility - -\item Computation of odd order replicable functions [Noro] - -Risa/Asir : it took 5days to compute a DRL basis ({\it McKay}) - -Faug\`ere FGb : computation of the DRL basis 53sec +\item Multivariate : over {\bf Q} \end{itemize} +\item Groebner basis computation -\item Univariate factorization over large finite fields - \begin{itemize} -\item To implement Schoof-Elkies-Atkin algorithm +\item Buchberger and $F_4$ [FAUG99] algorithm -Counting rational points on elliptic curves +\item Change of ordering/RUR [ROUI96] of 0-dimensional ideals ---- not free But related functions are freely available +\item Primary ideal decomposition + +\item Computation of $b$-function (in Weyl Algebra) \end{itemize} \end{itemize} - \end{slide} \begin{slide}{} -\fbox{History of development : 1998-2000} -\begin{itemize} -\item OpenXM +\fbox{History of development : Polynomial factorization} \begin{itemize} -\item OpenXM specification was written by Noro and Takayama +\item 1989 -Borrowed idea on encoding, phrase book from OpenMath [OpenMath] +Start of Risa/Asir with Boehm's conservative GC -\item Functions for distributed computation were rewritten -\end{itemize} +({\tt http://www.hpl.hp.com/personal/Hans\_Boehm/gc}) -\item Risa/Asir on Windows +\item 1989-1992 -\begin{itemize} -\item Requirement from a company for which Noro worked +Univariate and multivariate factorizers over {\bf Q} -Written in Visual C++ -\end{itemize} +\item 1992-1994 -\item Test implementation of $F_4$ +Univariate factorization over algebraic number fields -\begin{itemize} -\item Implemented according to [Faug\`ere] +Intensive use of successive extension, non-squarefree norms -\item Over $GF(p)$ : pretty good +\item 1996-1998 -\item Over the rationals : not so good except for {\it McKay} +Univariate factorization over large finite fields + +\item 2000-current + +Multivariate factorization over small finite fields (in progress) \end{itemize} -\end{itemize} \end{slide} \begin{slide}{} -\fbox{History of development : 2000-current} -\begin{itemize} -\item The source code is freely available +\fbox{History of development : Groebner basis} \begin{itemize} -\item Noro moved from Fujitsu to Kobe university +\item 1992-1994 -Started Kobe branch [Risa/Asir] -\end{itemize} +User language $\Rightarrow$ C version; trace lifting [TRAV88] -\item OpenXM [OpenXM] +\item 1994-1996 -\begin{itemize} -\item Revising the specification : OX-RFC100, 101, (102) +Trace lifting with homogenization -\item OX-RFC102 : communications between servers via MPI -\end{itemize} +Omitting GB check by compatible prime [NOYO99] -\item Weyl algebra +Modular change of ordering/RUR [NOYO99] -\begin{itemize} -\item Buchberger algorithm [Takayama] +Primary ideal decomposition [SHYO96] -\item $b$-function computation [Oaku] +\item 1996-1998 -Minimal polynomial computation by modular method -\end{itemize} -\end{itemize} +Efficient content reduction during NF computation [NORO97] +Solved {\it McKay} system for the first time +\item 1998-2000 + +Test implementation of $F_4$ + +\item 2000-current + +Buchberger algorithm in Weyl algebra [TAKA90] + +Efficient $b$-function computation by a modular method +\end{itemize} \end{slide} \begin{slide}{} -\fbox{Status of each component --- Factorizer} +\fbox{Performance --- Factorizer} \begin{itemize} -\item 10 years ago - -its performace was fine compared with existing software -like REDUCE, Mathematica. - \item 4 years ago -Univarate factorization over algebraic number fields was -still fine because of some tricks on factoring polynomials +Over {\bf Q} : fine compared with existing software +like REDUCE, Mathematica, maple + +Univariate, over algebraic number fields : +fine because of some tricks for polynomials derived from norms. \item Current -Multivariate : not so bad +Multivariate : moderate -Univariate : completely obsolete by M. van Hoeij's new algorithm -[Hoeij] +Univariate : completely obsoleted by M. van Hoeij's new algorithm +[HOEI00] \end{itemize} \end{slide} \begin{slide}{} -\fbox{Status of each component --- Groebner basis related functions} +\fbox{Timing data --- Factorization} -\begin{itemize} -\item 8 years ago +\underline{Univariate; over {\bf Q}} -The performace was poor with only the sugar strategy. +$N_i$ : a norm of a poly, $\deg(N_i) = i$ +\begin{center} +\begin{tabular}{|c||c|c|c|c|} \hline + & $N_{105}$ & $N_{120}$ & $N_{168}$ & $N_{210}$ \\ \hline +Asir & 0.86 & 59 & 840 & hard \\ \hline +Asir NormFactor & 1.6 & 2.2& 6.1& hard \\ \hline +Singular& hard? & hard?& hard? & hard? \\ \hline +CoCoA 4 & 0.2 & 7.1 & 16 & 0.5 \\ \hline\hline +NTL-5.2 & 0.16 & 0.9 & 1.4 & 0.4 \\ \hline +\end{tabular} +\end{center} -\item 7 years ago +\underline{Multivariate; over {\bf Q}} -Rather fine with trace lifting but Faug\`ere's (old)Gb was more -efficient. +$W_{i,j,k} = Wang[i]\cdot Wang[j]\cdot Wang[k]$ in {\tt asir2000/lib/fctrdata} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|} \hline + & $W_{1,2,3}$ & $W_{4,5,6}$ & $W_{7,8,9}$ & $W_{10,11,12}$ & $W_{13,14,15}$ \\ \hline +Asir & 0.2 & 4.7 & 14 & 17 & 0.4 \\ \hline +Singular& $>$15min & --- & ---& ---& ---\\ \hline +CoCoA 4 & 5.2 & $>$15min & $>$15min & $>$15min & 117 \\ \hline\hline +Mathematica& 0.2 & 16 & 23 & 36 & 1.1 \\ \hline +\end{tabular} +\end{center} -Homogenization+trace lifting made it possible to compute -wider range of Groebner bases. - -\item 4 years ago - -Modular RUR was comparable with Rouillier's implementation. - -\item Current - -FGb seems much more efficient than our $F_4$ implementation. - -Singular [Singular] is also several times -faster than Risa/Asir, because Singular seems to have efficient -monomial and polynomial representation. - -\end{itemize} +--- : not tested \end{slide} - \begin{slide}{} -\fbox{OpenXM} +\fbox{Performance --- Groebner basis related computation} \begin{itemize} -\item An environment for parallel distributed computation +\item 7 years ago -Both for interactive, non-interactive environment +Trace lifting : rather fine but coefficient swells often occur -\item Message passing +Homogenization+trace lifting : robust and fast in the above cases -OX (OpenXM) message : command and data +\item 4 years ago -\item Hybrid command execution +Modular RUR was comparable with Rouillier's implementation. -\begin{itemize} -\item Stack machine command +DRL basis of {\it McKay}: -push, pop, function execution, $\ldots$ +5 days on Risa/Asir, 53 seconds on Faug\`ere FGb +\item Current -\item accepts its own command sequences +$F_4$ in FGb : much more efficient than $F_4$ in Risa/Asir -{\tt execute\_string} --- easy to use -\end{itemize} +Buchberger in Singular ({\tt http://www.singular.uni-kl.de}) +: faster than Risa/Asir -\item Data is represented as CMO -CMO (Common Mathematical Object format) +$\Leftarrow$ efficient monomial and polynomial computation ---- Serialized representation of mathematical object - -{\sl Integer32}, {\sl Cstring}, {\sl List}, {\sl ZZ}, $\ldots$ \end{itemize} \end{slide} - \begin{slide}{} -\fbox{OpenXM and OpenMath} +\fbox{Timing data --- DRL Groebner basis computation} -\begin{itemize} -\item OpenMath +\underline{Over $GF(32003)$} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|c|c|} \hline + & $C_7$ & $C_8$ & $K_7$ & $K_8$ & $K_9$ & $K_{10}$ & $K_{11}$ \\ \hline +Asir $Buchberger$ & 31 & 1687 & 2.6 & 27 & 294 & 4309 & --- \\ \hline +Singular & 8.7 & 278 & 0.6 & 5.6 & 54 & 508 & 5510 \\ \hline +CoCoA 4 & 241 & & 3.8 & 35 & 402 & & --- \\ \hline\hline +Asir $F_4$ & 5.3 & 129 & 0.5 & 4.5 & 31 & 273 & 2641 \\ \hline +FGb(estimated) & 0.9 & 23 & 0.1 & 0.8 & 6 & 51 & 366 \\ \hline +\end{tabular} +\end{center} -\begin{itemize} -\item A standard for representing mathematical objects +\underline{Over {\bf Q}} -\item CD (Content Dictionary) : assigns semantics to symbols - -\item Phrasebook : convesion between internal and OpenMath objects. - -\item Encoding : format for actual data exchange -\end{itemize} - -\item OpenXM - -\begin{itemize} -\item Specification for encoding and exchanging messages - -\item It also specifies behavior of servers and session management -\end{itemize} - -\end{itemize} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|} \hline + & $C_7$ & $Homog. C_7$ & $K_7$ & $K_8$ & $McKay$ \\ \hline +Asir $Buchberger$ & 389 & 594 & 29 & 299 & 34950 \\ \hline +Singular & --- & 15247 & 7.6 & 79 & $>$ 20h \\ \hline +CoCoA 4 & --- & 13227 & 57 & 709 & --- \\ \hline\hline +Asir $F_4$ & 989 & 456 & 90 & 991 & 4939 \\ \hline +FGb(estimated) & 8 &11 & 0.6 & 5 & 10 \\ \hline +\end{tabular} +\end{center} +--- : not tested \end{slide} - \begin{slide}{} -\fbox{OpenXM server interface in Risa/Asir} +\fbox{How do we proceed?} -\begin{itemize} -\item TCP/IP stream +\underline{Total performance : not excellent, but not so bad} \begin{itemize} -\item Launcher +\item Trying to improve our implementation -A client executes a launcher on a host. +This is very important as a motivation of further development -The launcher launches a server on the same host. +\begin{itemize} -\item Server +\item Computation of $b$-function -A server reads from the descriptor 3, write to the descriptor 4. +fast but not satisfactory +$\Rightarrow$ Groebner basis computation in Weyl +algebra should be improved \end{itemize} -\item Subroutine call +\item Developing new OpenXM servers -Risa/Asir subroutine library provides interfaces corresponding to -pushing and popping data and executing stack commands. -\end{itemize} -\end{slide} +{ox\_NTL} for univariate factorization, -\begin{slide}{} -\fbox{OpenXM client interface in Risa/Asir} +{ox\_???} for Groebner basis computation, etc. -\begin{itemize} -\item Primitive interface functions +$\Rightarrow$ Risa/Asir can be a front-end of efficient servers -Pushing and popping data, sending commands etc. - -\item Convenient functions - -Launching servers, calling remote functions, - interrupting remote executions etc. - -\item Parallel distributed computation is easy - -Simple parallelization is practically important - -Competitive computation is easily realized \end{itemize} + +\begin{center} +\underline{In both cases, OpenXM interface is important} +\end{center} \end{slide} @@ -453,7 +422,7 @@ Competitive computation is easily realized %\begin{itemize} %\item Stack = I/O buffer for (possibly large) objects % -%Multiple requests can be sent before their exection +%Multiple requests can be sent before their execution % %A server does not get stuck in sending results %\end{itemize} @@ -461,39 +430,6 @@ Competitive computation is easily realized %\end{slide} \begin{slide}{} -\fbox{Executing functions on a server (I) --- {\tt SM\_executeFunction}} - -\begin{enumerate} -\item (C $\rightarrow$ S) Arguments are sent in binary encoded form. -\item (C $\rightarrow$ S) The number of aruments is sent as {\sl Integer32}. -\item (C $\rightarrow$ S) A function name is sent as {\sl Cstring}. -\item (C $\rightarrow$ S) A command {\tt SM\_executeFunction} is sent. -\item The result is pushed to the stack. -\item (C $\rightarrow$ S) A command {\tt SM\_popCMO} is sent. -\item (S $\rightarrow$ C) The result is sent in binary encoded form. -\end{enumerate} - -$\Rightarrow$ Communication is fast, but functions for binary data -conversion are necessary. -\end{slide} - -\begin{slide}{} -\fbox{Executing functions on a server (II) --- {\tt SM\_executeString}} - -\begin{enumerate} -\item (C $\rightarrow$ S) A character string represeting a request in a server's -user language is sent as {\sl Cstring}. -\item (C $\rightarrow$ S) A command {\tt SM\_executeString} is sent. -\item The result is pushed to the stack. -\item (C $\rightarrow$ S) A command {\tt SM\_popString} is sent. -\item (S $\rightarrow$ C) The result is sent in readable form. -\end{enumerate} - -$\Rightarrow$ Communication may be slow, but the client parser may be -enough to read the result. -\end{slide} - -\begin{slide}{} \fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } \begin{verbatim} @@ -521,53 +457,52 @@ def grvsf4(G,V,M,O) \begin{slide}{} \fbox{References} -[Bernardin] L. Bernardin, On square-free factorization of +[BERN97] L. Bernardin, On square-free factorization of multivariate polynomials over a finite field, Theoretical Computer Science 187 (1997), 105-116. -[Boehm] {\tt http://www.hpl.hp.com/personal/Hans\_Boehm/gc} - -[Faug\`ere] J.C. Faug\`ere, +[FAUG99] J.C. Faug\`ere, A new efficient algorithm for computing Groebner bases ($F_4$), Journal of Pure and Applied Algebra (139) 1-3 (1999), 61-88. -[Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem, +[GRAY98] S. Gray et al, +Design and Implementation of MP, A Protocol for Efficient Exchange of +Mathematical Expression, +J. Symb. Comp. {\bf 25} (1998), 213-238. + +[HOEI00] M. van Heoij, Factoring polynomials and the knapsack problem, to appear in Journal of Number Theory (2000). -[Noro] M. Noro, J. McKay, +[LIAO01] W. Liao et al, +OMEI: An Open Mathematical Engine Interface, +Proc. ASCM2001 (2001), 82-91. +[NORO97] M. Noro, J. McKay, Computation of replicable functions on Risa/Asir. -Proc. of PASCO'97, ACM Press, 130-138 (1997). +Proc. PASCO'97, ACM Press (1997), 130-138. +\end{slide} -[NY] M. Noro, K. Yokoyama, +\begin{slide}{} + +[NOYO99] M. Noro, K. Yokoyama, A Modular Method to Compute the Rational Univariate Representation of Zero-Dimensional Ideals. J. Symb. Comp. {\bf 28}/1 (1999), 243-263. -\end{slide} -\begin{slide}{} - -[Oaku] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic +[OAKU97] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic local cohomology groups of $D$-modules. -Advancees in Applied Mathematics, 19 (1997), 61-105. +Advances in Applied Mathematics, 19 (1997), 61-105. -[OpenMath] {\tt http://www.openmath.org} - -[OpenXM] {\tt http://www.openxm.org} - -[PARI] {\tt http://www.parigp-home.de} - -[Risa/Asir] {\tt http://www.math.kobe-u.ac.jp/Asir/asir.html} - -[Rouillier] F. Rouillier, +[ROUI96] F. Rouillier, R\'esolution des syst\`emes z\'ero-dimensionnels. Doctoral Thesis(1996), University of Rennes I, France. -[SY] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. {\bf 22} (1996), 247-277. +[SHYO96] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. {\bf 22} (1996), 247-277. -[Singular] {\tt http://www.singular.uni-kl.de} +[TRAV88] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. -[Traverso] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. - +[WANG99] P. S. Wang, +Design and Protocol for Internet Accessible Mathematical Computation, +Proc. ISSAC '99 (1999), 291-298. \end{slide} \begin{slide}{} @@ -619,7 +554,7 @@ Berlekamp-Zassenhaus Trager's algorithm + some improvement -\item Over finite fieds +\item Over finite fields DDF + Cantor-Zassenhaus; FFT for large finite fields \end{itemize} @@ -631,9 +566,9 @@ DDF + Cantor-Zassenhaus; FFT for large finite fields Classical EZ algorithm -\item Over small finite fieds +\item Over small finite fields -Modified Bernardin's square free algorithm [Bernardin], +Modified Bernardin's square free algorithm [BERN97], possibly Hensel lifting over extension fields \end{itemize} @@ -676,7 +611,7 @@ Key : an efficient implementation of Leibniz rule \begin{itemize} \item More efficient than our Buchberger algorithm implementation -but less efficient than FGb by Faugere +but less efficient than FGb by Faug\`ere \end{itemize} \item Over the rationals @@ -792,6 +727,256 @@ The knapsack factorization is available via {\tt pari( \end{itemize} \end{slide} +\begin{slide}{} +\fbox{OpenXM server interface in Risa/Asir} + +\begin{itemize} +\item TCP/IP stream + +\begin{itemize} +\item Launcher + +A client executes a launcher on a host. + +The launcher launches a server on the same host. + +\item Server + +Reads from the descriptor 3 + +Writes to the descriptor 4 + +\end{itemize} + +\item Subroutine call + +In Risa/Asir subroutine library {\tt libasir.a}: + +OpenXM functionalities are implemented as function calls + +pushing and popping data, executing stack commands etc. +\end{itemize} +\end{slide} + +\begin{slide}{} +\fbox{OpenXM client interface in Risa/Asir} + +\begin{itemize} +\item Primitive interface functions + +Pushing and popping data, sending commands etc. + +\item Convenient functions + +Launching servers, + +Calling remote functions, + +Resetting remote executions etc. + +\item Parallel distributed computation + +Simple parallelization is practically important + +Competitive computation is easily realized ($\Rightarrow$ demo) +\end{itemize} +\end{slide} + +\begin{slide}{} +\fbox{Executing functions on a server (I) --- {\tt SM\_executeFunction}} + +\begin{enumerate} +\item (C $\rightarrow$ S) Arguments are sent in binary encoded form. +\item (C $\rightarrow$ S) The number of arguments is sent as {\sl Integer32}. +\item (C $\rightarrow$ S) A function name is sent as {\sl Cstring}. +\item (C $\rightarrow$ S) A command {\tt SM\_executeFunction} is sent. +\item The result is pushed to the stack. +\item (C $\rightarrow$ S) A command {\tt SM\_popCMO} is sent. +\item (S $\rightarrow$ C) The result is sent in binary encoded form. +\end{enumerate} + +$\Rightarrow$ Communication is fast, but functions for binary data +conversion are necessary. +\end{slide} + +\begin{slide}{} +\fbox{Executing functions on a server (II) --- {\tt SM\_executeString}} + +\begin{enumerate} +\item (C $\rightarrow$ S) A character string representing a request in a server's +user language is sent as {\sl Cstring}. +\item (C $\rightarrow$ S) A command {\tt SM\_executeString} is sent. +\item The result is pushed to the stack. +\item (C $\rightarrow$ S) A command {\tt SM\_popString} is sent. +\item (S $\rightarrow$ C) The result is sent in readable form. +\end{enumerate} + +$\Rightarrow$ Communication may be slow, but the client parser may be +enough to read the result. +\end{slide} + +%\begin{slide}{} +%\fbox{History of development : ---1994} +% +%\begin{itemize} +%\item --1989 +% +%Several subroutines were developed for a Prolog program. +% +%\item 1989--1992 +% +%\begin{itemize} +%\item Reconfigured as Risa/Asir with a parser and Boehm's conservative GC +% +%\item Developed univariate and multivariate factorizers over the rationals. +%\end{itemize} +% +%\item 1992--1994 +% +%\begin{itemize} +%\item Started implementation of Buchberger algorithm +% +%Written in user language $\Rightarrow$ rewritten in C (by Murao) +% +%$\Rightarrow$ trace lifting [TRAV88] +% +%\item Univariate factorization over algebraic number fields +% +%Intensive use of successive extension, non-squarefree norms +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1994-1996} +% +%\begin{itemize} +%\item Free distribution of binary versions from Fujitsu +% +%\item Primary ideal decomposition +% +%\begin{itemize} +%\item Shimoyama-Yokoyama algorithm [SHYO96] +%\end{itemize} +% +%\item Improvement of Buchberger algorithm +% +%\begin{itemize} +%\item Trace lifting+homogenization +% +%\item Omitting check by compatible prime +% +%\item Modular change of ordering, Modular RUR +% +%These are joint works with Yokoyama [NOYO99] +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1996-1998} +% +%\begin{itemize} +%\item Distributed computation +% +%\begin{itemize} +%\item A prototype of OpenXM +%\end{itemize} +% +%\item Improvement of Buchberger algorithm +% +%\begin{itemize} +%\item Content reduction during normal form computation +% +%\item Its parallelization by the above facility +% +%\item Computation of odd order replicable functions [NORO97] +% +%Risa/Asir : it took 5days to compute a DRL basis ({\it McKay}) +% +%Faug\`ere FGb : computation of the DRL basis 53sec +%\end{itemize} +% +% +%\item Univariate factorization over large finite fields +% +%\begin{itemize} +%\item To implement Schoof-Elkies-Atkin algorithm +% +%Counting rational points on elliptic curves +% +%--- not free But related functions are freely available +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1998-2000} +%\begin{itemize} +%\item OpenXM +% +%\begin{itemize} +%\item OpenXM specification was written by Noro and Takayama +% +%Borrowed idea on encoding, phrase book from OpenMath +% +%\item Functions for distributed computation were rewritten +%\end{itemize} +% +%\item Risa/Asir on Windows +% +%\begin{itemize} +%\item Requirement from a company for which Noro worked +% +%Written in Visual C++ +%\end{itemize} +% +%\item Test implementation of $F_4$ +% +%\begin{itemize} +%\item Implemented according to [FAUG99] +% +%\item Over $GF(p)$ : pretty good +% +%\item Over the rationals : not so good except for {\it McKay} +%\end{itemize} +%\end{itemize} +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 2000-current} +%\begin{itemize} +%\item The source code is freely available +% +%\begin{itemize} +%\item Noro moved from Fujitsu to Kobe university +% +%Started Kobe branch +%\end{itemize} +% +%\item OpenXM +% +%\begin{itemize} +%\item Revising the specification : OX-RFC100, 101, (102) +% +%\item OX-RFC102 : communications between servers via MPI +%\end{itemize} +% +%\item Weyl algebra +% +%\begin{itemize} +%\item Buchberger algorithm [TAKA90] +% +%\item $b$-function computation [OAKU97] +% +%Minimal polynomial computation by modular method +%\end{itemize} +%\end{itemize} +% +%\end{slide} \begin{slide}{} \end{slide}