=================================================================== RCS file: /home/cvs/OpenXM/doc/Papers/Attic/dagb-noro.tex,v retrieving revision 1.1 retrieving revision 1.9 diff -u -p -r1.1 -r1.9 --- OpenXM/doc/Papers/Attic/dagb-noro.tex 2001/10/03 08:32:58 1.1 +++ OpenXM/doc/Papers/Attic/dagb-noro.tex 2001/10/11 08:43:08 1.9 @@ -1,291 +1,480 @@ -% $OpenXM$ +% $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.8 2001/10/11 01:34:42 noro Exp $ \setlength{\parskip}{10pt} \begin{slide}{} +\begin{center} +\fbox{\large Part I : OpenXM and Risa/Asir --- overview and history} +\end{center} +\end{slide} + +%\begin{slide}{} +%\fbox{Integration of mathematical software systems} +% +%\begin{itemize} +%\item Data integration +% +%\begin{itemize} +%\item OpenMath ({\tt http://www.openmath.org}) , MP [GRAY98] +%\end{itemize} +% +%Standards for representing mathematical objects +% +%\item Control integration +% +%\begin{itemize} +%\item MCP [WANG99], OMEI [LIAO01] +%\end{itemize} +% +%Protocols for remote subroutine calls or session management +% +%\item Combination of two integrations +% +%\begin{itemize} +%\item MathLink, OpenMath+MCP, MP+MCP +% +%and OpenXM ({\tt http://www.openxm.org}) +%\end{itemize} +% +%Both are necessary for practical implementation +% +%\end{itemize} +%\end{slide} +\begin{slide}{} \fbox{A computer algebra system Risa/Asir} -\begin{itemize} -\item Old style software for polynomial computation +({\tt http://www.math.kobe-u.ac.jp/Asir/asir.html}) \begin{itemize} -\item Domain specification is not necessary prior to computation -\item automatic conversion of inputs into internal canonical forms -\end{itemize} +\item Software mainly for polynomial computation \item User language with C-like syntax -\begin{itemize} -\item No type declaration of variables -\item Builtin debugger for user programs -\end{itemize} +C language without type declaration, with list processing +\item Builtin {\tt gdb}-like debugger for user programs + \item Open source -\begin{itemize} -\item Whole source tree is available via CVS -\end{itemize} +Whole source tree is available via CVS +The latest version : see {\tt http://www.openxm.org} + \item OpenXM interface \begin{itemize} -\item As a client : can call procedures on other OpenXM servers -\item As a server : offers all its functionalities to OpenXM clients -\item As a library : OpenXM functionality is available via subroutine calls +\item OpenXM + +An infrastructure for exchanging mathematical data +\item Risa/Asir is a main client in OpenXM package. +\item An OpenXM server {\tt ox\_asir} +\item A library with OpenXM library interface {\tt libasir.a} \end{itemize} \end{itemize} \end{slide} \begin{slide}{} -\fbox{Major functionalities} +\fbox{Goal of developing Risa/Asir} \begin{itemize} -\item Fundamental polynomial arithmetics +\item Testing new algorithms \begin{itemize} -\item Internal form of a polynomial : recursive representaion or distributed -representation -\end{itemize} +\item Development started in Fujitsu labs -\item Polynomial factorization - -\begin{itemize} -\item Univariate factorization over the rationals, algebraic number fields and various finite fields - -\item Multivariate factorization over the rationals +Polynomial factorization, Groebner basis related computation, +cryptosystems , quantifier elimination , $\ldots$ \end{itemize} -\item Groebner basis computation +\item To be a general purpose, open system -\begin{itemize} -\item Buchberger and $F_4$ algorithm +Since 1997, we have been developing OpenXM package +containing various servers and clients -\item Change of ordering/RUR of 0-dimensional ideals +Risa/Asir is a component of OpenXM -\item Primary ideal decomposition +\item Environment for parallel and distributed computation -\item Computation of $b$-function \end{itemize} - -\item PARI library interface - -\item Paralell distributed computation under OpenXM -\end{itemize} \end{slide} +%\begin{slide}{} +%\fbox{Capability for polynomial computation} +% +%\begin{itemize} +%\item Fundamental polynomial arithmetics +% +%recursive representation and distributed representation +% +%\item Polynomial factorization +% +%\begin{itemize} +%\item Univariate : over {\bf Q}, algebraic number fields and finite fields +% +%\item Multivariate : over {\bf Q} +%\end{itemize} +% +%\item Groebner basis computation +% +%\begin{itemize} +%\item Buchberger and $F_4$ [FAUG99] algorithm +% +%\item Change of ordering/RUR [ROUI96] of 0-dimensional ideals +% +%\item Primary ideal decomposition +% +%\item Computation of $b$-function (in Weyl Algebra) +%\end{itemize} +%\end{itemize} +%\end{slide} + \begin{slide}{} -\fbox{History of development : ---1994} +\fbox{History of development : Polynomial factorization} \begin{itemize} -\item --1989 +\item 1989 -Several subroutines were developed for a Prolog program. +Start of Risa/Asir with Boehm's conservative GC -\item 1989--1992 +({\tt http://www.hpl.hp.com/personal/Hans\_Boehm/gc}) -\begin{itemize} -\item Reconfigured as Risa/Asir with the parser and Boehm's conservative GC. +\item 1989-1992 -\item Developed univariate and multivariate factorizers over the rationals. -\end{itemize} +Univariate and multivariate factorizers over {\bf Q} -\item 1992--1994 +\item 1992-1994 -\begin{itemize} -\item Started implementation of Groebner basis computation +Univariate factorization over algebraic number fields -User language $\Rightarrow$ rewritten in C (by Murao) $\Rightarrow$ -trace lifting +Intensive use of successive extension, non-squarefree norms -\item Univariate factorization over algebraic number fields +\item 1996-1998 -Intensive use of successive extension, non-squarefree norms -\end{itemize} -\end{itemize} +Univariate factorization over large finite fields +Motivated by a reseach project in Fujitsu on cryptography + +\item 2000-current + +Multivariate factorization over small finite fields (in progress) +\end{itemize} \end{slide} \begin{slide}{} -\fbox{History of development : 1994-1996} +\fbox{History of development : Groebner basis} \begin{itemize} -\item Free distribution of binary versions +\item 1992-1994 -\item Primary ideal decomposition +User language $\Rightarrow$ C version; trace lifting [TRAV88] -\begin{itemize} -\item Shimoyama-Yokoyama algorithm -\end{itemize} +\item 1994-1996 -\item Improvement of Buchberger algorithm +Trace lifting with homogenization -\begin{itemize} -\item Trace lifting+homogenization +Omitting GB check by compatible prime [NOYO99] -\item Omitting check by compatible prime +Modular change of ordering/RUR[ROUI96] [NOYO99] -\item Modular change of ordering, Modular RUR +Primary ideal decomposition [SHYO96] -\item Noro met Faug\`ere at RISC-Linz and he mentioned $F_4$. -\end{itemize} -\end{itemize} +\item 1996-1998 -\end{slide} +Efficient content reduction during NF computation [NORO97] +Solved {\it McKay} system for the first time -\begin{slide}{} -\fbox{History of development : 1996-1998} +\item 1998-2000 -\begin{itemize} -\item Distributed compuatation +Test implementation of $F_4$ [FAUG99] -\begin{itemize} -\item A prototype of OpenXM -\end{itemize} +\item 2000-current -\item Improvement of Buchberger algorithm +Buchberger algorithm in Weyl algebra -\begin{itemize} -\item Content reduction during nomal form computation +Efficient $b$-function computation[OAKU97] by a modular method +\end{itemize} +\end{slide} -\item Its parallelization by the above facility +\begin{slide}{} +\fbox{Timing data --- Factorization} -\item Application : computation of odd order replicable functions +\underline{Univariate; over {\bf Q}} -Risa/Asir : it took 5days to compute a DRL basis ({\it McKay}) +$N_i$ : a norm of a polynomial, $\deg(N_i) = i$ +\begin{center} +\begin{tabular}{|c||c|c|c|c|} \hline + & $N_{105}$ & $N_{120}$ & $N_{168}$ & $N_{210}$ \\ \hline +Asir & 0.86 & 59 & 840 & hard \\ \hline +Asir NormFactor & 1.6 & 2.2& 6.1& hard \\ \hline +%Singular& hard? & hard?& hard? & hard? \\ \hline +CoCoA 4 & 0.2 & 7.1 & 16 & 0.5 \\ \hline\hline +NTL-5.2 & 0.16 & 0.9 & 1.4 & 0.4 \\ \hline +\end{tabular} +\end{center} -From Faug\`ere : computation of the DRL basis 53sec -\end{itemize} +\underline{Multivariate; over {\bf Q}} +$W_{i,j,k} = Wang[i]\cdot Wang[j]\cdot Wang[k]$ in {\tt asir2000/lib/fctrdata} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|} \hline + & $W_{1,2,3}$ & $W_{4,5,6}$ & $W_{7,8,9}$ & $W_{10,11,12}$ & $W_{13,14,15}$ \\ \hline +Asir & 0.2 & 4.7 & 14 & 17 & 0.4 \\ \hline +%Singular& $>$15min & --- & ---& ---& ---\\ \hline +CoCoA 4 & 5.2 & $>$15min & $>$15min & $>$15min & 117 \\ \hline\hline +Mathematica 4& 0.2 & 16 & 23 & 36 & 1.1 \\ \hline +Maple 7& 0.5 & 18 & 967 & 48 & 1.3 \\ \hline +\end{tabular} +\end{center} -\item Univariate factorization over large finite fields +%--- : not tested +\end{slide} -\begin{itemize} -\item To implement Schoof-Elkies-Atkin algorithm +\begin{slide}{} +\fbox{Timing data --- DRL Groebner basis computation} -Counting rational points on elliptic curves --- not free +\underline{Over $GF(32003)$} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|c|c|} \hline + & $C_7$ & $C_8$ & $K_7$ & $K_8$ & $K_9$ & $K_{10}$ & $K_{11}$ \\ \hline +Asir $Buchberger$ & 31 & 1687 & 2.6 & 27 & 294 & 4309 & --- \\ \hline +Singular & 8.7 & 278 & 0.6 & 5.6 & 54 & 508 & 5510 \\ \hline +CoCoA 4 & 241 & $>$ 5h & 3.8 & 35 & 402 &7021 & --- \\ \hline\hline +Asir $F_4$ & 5.3 & 129 & 0.5 & 4.5 & 31 & 273 & 2641 \\ \hline +FGb(estimated) & 0.9 & 23 & 0.1 & 0.8 & 6 & 51 & 366 \\ \hline +\end{tabular} +\end{center} -But related functions are freely available -\end{itemize} -\end{itemize} +\underline{Over {\bf Q}} +\begin{center} +\begin{tabular}{|c||c|c|c|c|c|} \hline + & $C_7$ & $Homog. C_7$ & $K_7$ & $K_8$ & $McKay$ \\ \hline +Asir $Buchberger$ & 389 & 594 & 29 & 299 & 34950 \\ \hline +Singular & --- & 15247 & 7.6 & 79 & $>$ 20h \\ \hline +CoCoA 4 & --- & 13227 & 57 & 709 & --- \\ \hline\hline +Asir $F_4$ & 989 & 456 & 90 & 991 & 4939 \\ \hline +FGb(estimated) & 8 &11 & 0.6 & 5 & 10 \\ \hline +\end{tabular} +\end{center} +--- : not tested \end{slide} \begin{slide}{} -\fbox{History of development : 1998-2000} +\fbox{Summary of performance} + \begin{itemize} -\item OpenXM +\item Factorizer \begin{itemize} -\item OpenXM specification was written by Noro and Takayama +\item Multivariate : reasonable performance -\item Functions for distributed computation were rewritten +\item Univariate : obsoleted by M. van Hoeij's new algorithm [HOEI00] \end{itemize} -\item Risa/Asir on Windows +\item Groebner basis computation \begin{itemize} -\item Requirement from a company for which Noro worked +\item Buchberger -Written in Visual C++ -\end{itemize} +Singular shows nice perfomance -\item Test implementation of $F_4$ +Trace lifting is efficient in some cases over {\bf Q} -\begin{itemize} -\item Over $GF(p)$ : pretty good +\item $F_4$ -\item Over the rationals : not so good except for {\it McKay} +FGb is much faster than Risa/Asir + +But we observe that {\it McKay} is computed efficiently by $F_4$ \end{itemize} \end{itemize} + \end{slide} \begin{slide}{} -\fbox{History of development : 2000-current} -\begin{itemize} -\item The source code is freely available +\fbox{Summary} \begin{itemize} -\item Noro moved from Fujitsu to Kobe university. +\item Total performance is not excellent, but not so bad -\item Fujitsu kindly permitted to make Risa/Asir open source. -\end{itemize} +\item A completely open system -\item OpenXM +The whole source is available -\begin{itemize} -\item Revising the specification : OX-RFC100, 101, (102) +\item Interface compliant to OpenXM RFC-100 -\item OX-RFC102 : ommunications between servers via MPI +The interface is fully documented \end{itemize} -\item Rings of differential operators +\end{slide} + +%\begin{slide}{} +%\fbox{CMO = Serialized representation of mathematical object} +% +%\begin{itemize} +%\item primitive data +%\begin{eqnarray*} +%\mbox{Integer32} &:& ({\tt CMO\_INT32}, {\sl int32}\ \mbox{n}) \\ +%\mbox{Cstring}&:& ({\tt CMO\_STRING},{\sl int32}\, \mbox{ n}, {\sl string}\, \mbox{s}) \\ +%\mbox{List} &:& ({\tt CMO\_LIST}, {\sl int32}\, len, ob[0], \ldots,ob[m-1]) +%\end{eqnarray*} +% +%\item numbers and polynomials +%\begin{eqnarray*} +%\mbox{ZZ} &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots +%{\sl byte}\, \mbox{a[$|$f$|$]} ) \\ +%\mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, n, \mbox{e[1]}, \ldots, \mbox{e[n]}, \mbox{Coef}) \\ +%\mbox{Coef}&:& \mbox{ZZ} | \mbox{Integer32} \\ +%\mbox{Dpolynomial}&:& ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},\\ +% & & m, \mbox{DringDefinition}, \mbox{Monomial32}, \ldots)\\ +%\mbox{DringDefinition} +% &:& \mbox{DMS of N variables} \\ +% & & ({\tt CMO\_RING\_BY\_NAME}, name) \\ +% & & ({\tt CMO\_DMS\_GENERIC}) \\ +%\end{eqnarray*} +%\end{itemize} +%\end{slide} +% +%\begin{slide}{} +%\fbox{Stack based communication} +% +%\begin{itemize} +%\item Data arrived a client +% +%Pushed to the stack +% +%\item Result +% +%Pushd to the stack +% +%Written to the stream when requested by a command +% +%\item The reason why we use the stack +% +%\begin{itemize} +%\item Stack = I/O buffer for (possibly large) objects +% +%Multiple requests can be sent before their execution +% +%A server does not get stuck in sending results +%\end{itemize} +%\end{itemize} +%\end{slide} + +\begin{slide}{} +\fbox{OpenXM (Open message eXchange protocol for Mathematics) } + \begin{itemize} -\item Buchberger algorithm +\item An environment for parallel distributed computation -\item $b$-function computation +Both for interactive, non-interactive environment -Minimal polynomial computation by modular method -\end{itemize} -\end{itemize} +\item OpenXM RFC-100 = Client-server architecture -\end{slide} +Client $\Leftarrow$ OX (OpenXM) message $\Rightarrow$ Server -\begin{slide}{} -\fbox{Status of each component --- Factorizer} +OX (OpenXM) message : command and data -\begin{itemize} -\item 10 years ago +\item Data -its performace was fine compared with existing software -like REDUCE, Maple, Mathematica. +Encoding : CMO (Common Mathematical Object format) -\item 4 years ago +Serialized representation of mathematical object -Univarate factorization over algebraic number fields was -still fine because of some tricks on factoring polynomials -derived from norms. +--- Main idea was borrowed from OpenMath -\item Current +({\tt http://www.openmath.org}) -Multivariate : not so bad +\item Command -Univariate : completely obsolete by M. van Hoeij's new algorithm +stack machine command --- server is a stackmachine + ++ server's own command sequences --- hybrid server \end{itemize} +\end{slide} +\begin{slide}{} +\fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } + +\begin{verbatim} +/* competitive Gbase computation over GF(M) */ +/* Cf. A.28 in SINGULAR Manual */ +/* Process list is specified as an option : grvsf4(...|proc=P) */ +def grvsf4(G,V,M,O) +{ + P = getopt(proc); + if ( type(P) == -1 ) return dp_f4_mod_main(G,V,M,O); + P0 = P[0]; P1 = P[1]; P = [P0,P1]; + map(ox_reset,P); + ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); + ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); + map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ + F = ox_select(P); R = ox_get(F[0]); + if ( F[0] == P0 ) { Win = "F4"; Lose = P1;} + else { Win = "Buchberger"; Lose = P0; } + ox_reset(Lose); /* simply resets the loser */ + return [Win,R]; +} +\end{verbatim} \end{slide} \begin{slide}{} -\fbox{Status of each component --- Groebner basis related functions} +\fbox{References} -\begin{itemize} -\item 8 years ago +[BERN97] L. Bernardin, On square-free factorization of +multivariate polynomials over a finite field, Theoretical +Computer Science 187 (1997), 105-116. -The performace was poor with only the sugar strategy. +[FAUG99] J.C. Faug\`ere, +A new efficient algorithm for computing Groebner bases ($F_4$), +Journal of Pure and Applied Algebra (139) 1-3 (1999), 61-88. -\item 7 years ago +[GRAY98] S. Gray et al, +Design and Implementation of MP, A Protocol for Efficient Exchange of +Mathematical Expression, +J. Symb. Comp. {\bf 25} (1998), 213-238. -Rather fine with trace lifting but Faug\`ere's (old)Gb was more -efficient. +[HOEI00] M. van Hoeij, Factoring polynomials and the knapsack problem, +to appear in Journal of Number Theory (2000). -Homogenization+trace lifting made it possible to compute -wider range of Groebner bases. +[LIAO01] W. Liao et al, +OMEI: An Open Mathematical Engine Interface, +Proc. ASCM2001 (2001), 82-91. +[NORO97] M. Noro, J. McKay, +Computation of replicable functions on Risa/Asir. +Proc. PASCO'97, ACM Press (1997), 130-138. +\end{slide} -\item 4 years ago +\begin{slide}{} -Modular RUR was comparable with Rouillier's implementation. +[NOYO99] M. Noro, K. Yokoyama, +A Modular Method to Compute the Rational Univariate +Representation of Zero-Dimensional Ideals. +J. Symb. Comp. {\bf 28}/1 (1999), 243-263. -\item Current +[OAKU97] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic +local cohomology groups of $D$-modules. +Advances in Applied Mathematics, 19 (1997), 61-105. -FGb seems much more efficient than our $F_4$ implementation. +[ROUI96] F. Rouillier, +R\'esolution des syst\`emes z\'ero-dimensionnels. +Doctoral Thesis(1996), University of Rennes I, France. -Singular's Groebner basis computation is also several times -faster than Risa/Asir, because Singular seems to have efficient -monomial and polynomial representation. +[SHYO96] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. {\bf 22} (1996), 247-277. -\end{itemize} +[TRAV88] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. + +[WANG99] P. S. Wang, +Design and Protocol for Internet Accessible Mathematical Computation, +Proc. ISSAC '99 (1999), 291-298. \end{slide} \begin{slide}{} +\begin{center} +\fbox{\large Part II : Algorithms and implementations in Risa/Asir} +\end{center} +\end{slide} + +\begin{slide}{} \fbox{Ground fields} \begin{itemize} @@ -328,7 +517,7 @@ Berlekamp-Zassenhaus Trager's algorithm + some improvement -\item Over finite fieds +\item Over finite fields DDF + Cantor-Zassenhaus; FFT for large finite fields \end{itemize} @@ -340,9 +529,11 @@ DDF + Cantor-Zassenhaus; FFT for large finite fields Classical EZ algorithm -\item Over finite fieds +\item Over small finite fields -Modified Bernardin square free, bivariate Hensel +Modified Bernardin's square free algorithm [BERN97], + +possibly Hensel lifting over extension fields \end{itemize} \end{itemize} @@ -365,12 +556,12 @@ Guess of a groebner basis by detecting zero reduction Homogenization+guess+dehomogenization+check \end{itemize} -\item Rings of differential operators +\item Weyl Algebra \begin{itemize} \item Groebner basis of a left ideal -An efficient implementation of Leibniz rule +Key : an efficient implementation of Leibniz rule \end{itemize} \end{itemize} @@ -381,9 +572,9 @@ An efficient implementation of Leibniz rule \begin{itemize} \item Over small finite fields ($GF(p)$, $p < 2^{30}$) \begin{itemize} -\item More efficient than Buchberger algorithm +\item More efficient than our Buchberger algorithm implementation -but less efficient than FGb by Faugere +but less efficient than FGb by Faug\`ere \end{itemize} \item Over the rationals @@ -391,16 +582,18 @@ but less efficient than FGb by Faugere \begin{itemize} \item Very naive implementation +Modular computation + CRT + Checking the result at each degree + \item Less efficient than Buchberger algorithm -except for one example +except for one example (={\it McKay}) \end{itemize} \end{itemize} \end{slide} \begin{slide}{} -\fbox{Change of ordering for zero-dimimensional ideals} +\fbox{Change of ordering for zero-dimensional ideals} \begin{itemize} \item Any ordering to lex ordering @@ -448,7 +641,7 @@ An ideal whose radical is prime \begin{slide}{} \fbox{Computation of $b$-function} -$D$ : the ring of differential operators +$D=K\langle x,\partial \rangle$ : Weyl algebra $b(s)$ : a polynomial of the smallest degree s.t. there exists $P(s) \in D[s]$, $P(s)f^{s+1}=b(s)f^s$ @@ -494,42 +687,10 @@ evaluated by {\tt eval()} The knapsack factorization is available via {\tt pari(factor,{\it poly})} \end{itemize} - - \end{itemize} \end{slide} \begin{slide}{} -\fbox{OpenXM} - -\begin{itemize} -\item An environment for parallel distributed computation - -Both for interactive, non-interactive environment - -\item Message passing - -OX (OpenXM) message : command and data - -\item Hybrid command execution - -\begin{itemize} -\item Stack machine command - -push, pop, function execution, $\ldots$ - -\item accepts its own command sequences - -{\tt execute\_string} --- easy to use -\end{itemize} - -\item Data is represented as CMO - -CMO --- Common Mathematical Object format -\end{itemize} -\end{slide} - -\begin{slide}{} \fbox{OpenXM server interface in Risa/Asir} \begin{itemize} @@ -544,14 +705,19 @@ The launcher launches a server on the same host. \item Server -A server reads from the descriptor 3, write to the descriptor 4. +Reads from the descriptor 3 +Writes to the descriptor 4 + \end{itemize} \item Subroutine call -Risa/Asir subroutine library provides interfaces corresponding to -pushing and popping data and executing stack commands. +In Risa/Asir subroutine library {\tt libasir.a}: + +OpenXM functionalities are implemented as function calls + +pushing and popping data, executing stack commands etc. \end{itemize} \end{slide} @@ -565,77 +731,26 @@ Pushing and popping data, sending commands etc. \item Convenient functions -Launching servers, calling remote functions, - interrupting remote executions etc. +Launching servers, -\item Parallel distributed computation is easy +Calling remote functions, -Simple parallelization is practically important +Resetting remote executions etc. -Competitive computation is easily realized -\end{itemize} -\end{slide} +\item Parallel distributed computation +Simple parallelization is practically important -\begin{slide}{} -\fbox{CMO = Serialized representation of mathematical object} - -\begin{itemize} -\item primitive data -\begin{eqnarray*} -\mbox{Integer32} &:& ({\tt CMO\_INT32}, {\sl int32}\ \mbox{n}) \\ -\mbox{Cstring}&:& ({\tt CMO\_STRING},{\sl int32}\, \mbox{ n}, {\sl string}\, \mbox{s}) \\ -\mbox{List} &:& ({\tt CMO\_LIST}, {\sl int32}\, len, ob[0], \ldots,ob[m-1]) -\end{eqnarray*} - -\item numbers and polynomials -\begin{eqnarray*} -\mbox{ZZ} &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots -{\sl byte}\, \mbox{a[$|$f$|$]} ) \\ -\mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, n, \mbox{e[1]}, \ldots, \mbox{e[n]}, \mbox{Coef}) \\ -\mbox{Coef}&:& \mbox{ZZ} | \mbox{Integer32} \\ -\mbox{Dpolynomial}&:& ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},\\ - & & m, \mbox{DringDefinition}, \mbox{Monomial32}, \ldots)\\ -\mbox{DringDefinition} - &:& \mbox{DMS of N variables} \\ - & & ({\tt CMO\_RING\_BY\_NAME}, name) \\ - & & ({\tt CMO\_DMS\_GENERIC}) \\ -\end{eqnarray*} +Competitive computation is easily realized ($\Rightarrow$ demo) \end{itemize} \end{slide} \begin{slide}{} -\fbox{Stack based communication} - -\begin{itemize} -\item Data arrived a client - -Pushed to the stack - -\item Result - -Pushd to the stack - -Written to the stream when requested by a command - -\item The reason why we use the stack - -\begin{itemize} -\item Stack = I/O buffer for (possibly large) objects - -Multiple requests can be sent before their exection - -A server does not get stuck in sending results -\end{itemize} -\end{itemize} -\end{slide} - -\begin{slide}{} \fbox{Executing functions on a server (I) --- {\tt SM\_executeFunction}} \begin{enumerate} \item (C $\rightarrow$ S) Arguments are sent in binary encoded form. -\item (C $\rightarrow$ S) The number of aruments is sent as {\sl Integer32}. +\item (C $\rightarrow$ S) The number of arguments is sent as {\sl Integer32}. \item (C $\rightarrow$ S) A function name is sent as {\sl Cstring}. \item (C $\rightarrow$ S) A command {\tt SM\_executeFunction} is sent. \item The result is pushed to the stack. @@ -651,7 +766,7 @@ conversion are necessary. \fbox{Executing functions on a server (II) --- {\tt SM\_executeString}} \begin{enumerate} -\item (C $\rightarrow$ S) A character string represeting a request in a server's +\item (C $\rightarrow$ S) A character string representing a request in a server's user language is sent as {\sl Cstring}. \item (C $\rightarrow$ S) A command {\tt SM\_executeString} is sent. \item The result is pushed to the stack. @@ -663,35 +778,168 @@ $\Rightarrow$ Communication may be slow, but the clien enough to read the result. \end{slide} -\begin{slide}{} -\fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } - -\begin{verbatim} -/* competitive Gbase computation over GF(M) */ -/* Cf. A.28 in SINGULAR Manual */ -/* Process list is specified as an option : grvsf4(...|proc=P) */ -def grvsf4(G,V,M,O) -{ - P = getopt(proc); - if ( type(P) == -1 ) return dp_f4_mod_main(G,V,M,O); - P0 = P[0]; P1 = P[1]; P = [P0,P1]; - map(ox_reset,P); - ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); - ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); - map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ - F = ox_select(P); R = ox_get(F[0]); - if ( F[0] == P0 ) { Win = "F4"; Lose = P1;} - else { Win = "Buchberger"; Lose = P0; } - ox_reset(Lose); /* simply resets the loser */ - return [Win,R]; -} -\end{verbatim} - -\end{slide} - -\begin{slide}{} -\end{slide} - +%\begin{slide}{} +%\fbox{History of development : ---1994} +% +%\begin{itemize} +%\item --1989 +% +%Several subroutines were developed for a Prolog program. +% +%\item 1989--1992 +% +%\begin{itemize} +%\item Reconfigured as Risa/Asir with a parser and Boehm's conservative GC +% +%\item Developed univariate and multivariate factorizers over the rationals. +%\end{itemize} +% +%\item 1992--1994 +% +%\begin{itemize} +%\item Started implementation of Buchberger algorithm +% +%Written in user language $\Rightarrow$ rewritten in C (by Murao) +% +%$\Rightarrow$ trace lifting [TRAV88] +% +%\item Univariate factorization over algebraic number fields +% +%Intensive use of successive extension, non-squarefree norms +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1994-1996} +% +%\begin{itemize} +%\item Free distribution of binary versions from Fujitsu +% +%\item Primary ideal decomposition +% +%\begin{itemize} +%\item Shimoyama-Yokoyama algorithm [SHYO96] +%\end{itemize} +% +%\item Improvement of Buchberger algorithm +% +%\begin{itemize} +%\item Trace lifting+homogenization +% +%\item Omitting check by compatible prime +% +%\item Modular change of ordering, Modular RUR +% +%These are joint works with Yokoyama [NOYO99] +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1996-1998} +% +%\begin{itemize} +%\item Distributed computation +% +%\begin{itemize} +%\item A prototype of OpenXM +%\end{itemize} +% +%\item Improvement of Buchberger algorithm +% +%\begin{itemize} +%\item Content reduction during normal form computation +% +%\item Its parallelization by the above facility +% +%\item Computation of odd order replicable functions [NORO97] +% +%Risa/Asir : it took 5days to compute a DRL basis ({\it McKay}) +% +%Faug\`ere FGb : computation of the DRL basis 53sec +%\end{itemize} +% +% +%\item Univariate factorization over large finite fields +% +%\begin{itemize} +%\item To implement Schoof-Elkies-Atkin algorithm +% +%Counting rational points on elliptic curves +% +%--- not free But related functions are freely available +%\end{itemize} +%\end{itemize} +% +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 1998-2000} +%\begin{itemize} +%\item OpenXM +% +%\begin{itemize} +%\item OpenXM specification was written by Noro and Takayama +% +%Borrowed idea on encoding, phrase book from OpenMath +% +%\item Functions for distributed computation were rewritten +%\end{itemize} +% +%\item Risa/Asir on Windows +% +%\begin{itemize} +%\item Requirement from a company for which Noro worked +% +%Written in Visual C++ +%\end{itemize} +% +%\item Test implementation of $F_4$ +% +%\begin{itemize} +%\item Implemented according to [FAUG99] +% +%\item Over $GF(p)$ : pretty good +% +%\item Over the rationals : not so good except for {\it McKay} +%\end{itemize} +%\end{itemize} +%\end{slide} +% +%\begin{slide}{} +%\fbox{History of development : 2000-current} +%\begin{itemize} +%\item The source code is freely available +% +%\begin{itemize} +%\item Noro moved from Fujitsu to Kobe university +% +%Started Kobe branch +%\end{itemize} +% +%\item OpenXM +% +%\begin{itemize} +%\item Revising the specification : OX-RFC100, 101, (102) +% +%\item OX-RFC102 : communications between servers via MPI +%\end{itemize} +% +%\item Weyl algebra +% +%\begin{itemize} +%\item Buchberger algorithm [TAKA90] +% +%\item $b$-function computation [OAKU97] +% +%Minimal polynomial computation by modular method +%\end{itemize} +%\end{itemize} +% +%\end{slide} \begin{slide}{} \end{slide}