Annotation of OpenXM/doc/Papers/bfct.tex, Revision 1.2
1.2 ! noro 1: % $OpenXM: OpenXM/doc/Papers/bfct.tex,v 1.1 2001/02/06 07:54:18 noro Exp $
1.1 noro 2: \documentclass{jarticle}
3: \usepackage[theorem,useeps,FVerb]{jssac}
4: \title{Risa/Asir $B$K$*$1$k(B Weyl Algebra $B>e$N%0%l%V%J4pDl7W;;$*$h$S$=$N1~MQ(B}
5: \author{$BLnO$(B $B@59T(B\affil{$B?@8MBg3X(B}\mail{noro@math.kobe-u.ac.jp}}
6: \art{$BO@J8(B}
7:
8: \begin{document}
9: \maketitle
10:
11: \section{Weyl Algebra}
12:
13: \subsection{Leibnitz rule}
14:
15: $BBN(B $K$ $B>e$N(B $n$ $B<!85(B Weyl Algebra
16: $$D_n = K\langle x_1,\cdots,x_n,\partial_1,\cdots,\partial_n \rangle$$
17: $B$K$*$1$k@Q$N7W;;$O(B, $B$h$/CN$i$l$F$$$k$h$&$K(B Leibnitz rule $B$G7W;;$G$-$k(B.
18: $B$9$J$o$A(B, $2n$ $BJQ?tB?9`<04D(B
19: $K[x,\xi]=K[x_1,\cdots,x_n,\xi_1,\cdots,\xi_n]$ $B$+$i(B
20: $D_n$ $B$X$N(B $K$ $B@~7A<LA|(B $\Psi$ $B$r(B
21: $\Psi(x^\alpha \xi^\beta) = x^\alpha \partial^\beta$
22: $B$GDj5A$9$k$H$-(B,
23: $$\Psi(f)\Psi(g) = \Psi(\sum_{k_1,\ldots,k_n \ge 0} {1 \over {k_1!\cdots k_n!}}
24: {{\partial^k f} \over {\partial \xi^k}} {{\partial^k g} \over {\partial x^k}})$$
25: ($f,g\in K[x,\xi]$) $B$H$J$k(B. Weyl Algebra $B$K$*$1$k7W;;$N8zN(2=$N$?$a$K$O(B
26: $B@Q$N8zN(2=$,=EMW$G$"$j(B, $B$=$N$?$a$K$O(B Leibnitz rule $B$r$I$&;H$&$+$,80$H$J$k(B.
27: $BFC$K(B, $B%0%l%V%J4pDl7W;;$r9M$($k>l9g(B, monomial $\times$ polynomial $B$N9bB.(B
28: $B2=$,I,MW$G$"$k(B.
29:
30: \subsection{Asir $B$K$*$1$k<BAu(B}
31:
32: Asir $B$K$*$1$k=i4|$N<BAu$G$O(B, $B$3$l$r(B
33:
34: $m$ : monomial, $f= \sum f_j$ ($f_j$ : monomial) $B$KBP$7(B
35: $mf = \sum mf_j$
36:
37: $B$H$7$F7W;;$7$F$$$?(B. $B$3$3$G(B monomial $B$I$&$7$N@Q$O(B
38: $$x^k D^l\cdot x^a D^b = (x_1^{k_1}(D_1^{l_1}x_1^{a_1})D_1^{b_1})\cdots
39: (x_n^{k_n}(D_n^{l_n}x_n^{a_n})D_n^{b_n})$$
40: $B$H$7$F(B, $B1&JU$N(B $D_i^{k_i}x_i^{a_i}$ $B$r(B Leibnitz rule $B$K$h$j(B
41: $$D_i^{l_i}x_i^{a_i} = \sum_{j=0}^{Min(l_i,a_i)}j!{l_i\choose j}
42: {a_i\choose j}x_i^{a_i-j}D_i^{l_i-j}$$
43: $B$H$7(B, $B$3$l$i$N@Q$r(B, $BDL>o$N2D49$JB?9`<0$H$7$FE83+$9$k(B, $B$H$$$&J}K!(B
44: $B$r:N$C$F$$$?(B. $B$7$+$7(B, $B$3$N(B monomial $B$N@Q<+BN$,B?9`<0$H$J$k$?$a(B,
45: $B$3$l$i$rB-$79g$o$;$k:]$K$K9`$NHf3S$*$h$S%j%9%H$N$D$J$.49$($,B??t(B
46: $B@8$8(B, $BFC$K(B $f$ $B$N9`?t$,B?$$>l9g$K8zN($,0-$$$3$H$,J,$+$C$?(B.
47:
48: \subsection{$B2~NI(B}
49:
50: Leibnitz rule $B$K8=$l$kHyJ,$r(B $f\in K[x,\xi]$$B$K:nMQ$5$;$F$b(B monomial
51: $B$N=g=x$OJQ$o$i$J$$$3$H$KCm0U$9$l$P(B, $B:8$+$i$+$1$k(B monomial $m$ $B$r8GDj(B
52: $B$7$?$H$-(B, $BA09`$N(B monomial $B$I$&$7$N@Q$K$*$$$F(B
53:
54: \begin{enumerate}
55: \item $D_i^{l_i}x_i^{a_i}$ $B$rJQ7A$7$FF@$i$l$kOB$r>o$K(B $\sum_{j=0}^{l_i}$
56: $B$H$9$k(B. $l_i>Min(l_i,a_i)$ $B$N>l9g(B, $B78?t$O(B 0 $B$H$7$F$*$/(B.
57:
58: \item $BE,Ev$J=g=x$rDj$a$F(B, $B@Q$r9=@.$9$k(B monomial $B$r@0Ns$7(B, $BBP1~$9$k0LCV$N(B
59: monomial $B$I$&$7$NOB$r$^$::n$k(B. $B$3$l$O4{$K@0Ns$5$l$F$$$k(B $f_j$ $B$HF1=g$G$h$$(B.
60:
61: \item $B:G8e$K$=$l$i$rB-$79g$o$;$k(B.
62: \end{enumerate}
63: $BMW$9$k$K(B, Leibnitz rule $B$K$*$$$F(B, $BHyJ,$K4X$9$kOB$r@h$K7W;;$9$k$H$$$&$3(B
64: $B$H$@$,(B, $B$3$l$G(B $m$ $B$N(B $\partial$ $B$K4X$9$k<!?t$,$h$[$I9b$/$J$$8B$j8zN((B
65: $B2=$9$k(B. ($B$3$l$O(B, Kan/sm1 $B$G4{$K9T$o$l$F$$$?(B. ) $B$5$i$K(B, $B<!$N2~NI$,9M$((B
66: $B$i$l$k(B.
67:
68: \begin{itemize}
69: \item
70: $(x_1^{k_1}(D_1^{l_1}x_1^{a_1})D_1^{b_1})\cdots
71: (x_n^{k_n}(D_n^{l_n}x_n^{a_n})D_n^{b_n})$
72: $B$N(B $B7W;;$r(B incremental $B$K9T$&(B.
73:
74: $B$3$l$O(B ${1 \over {k_1!\cdots k_n!}}$ $B$K8=$l$k6&DL$NItJ,@Q$r=EJ#$7$F7W(B
75: $B;;$7$J$$$H$$$&$3$H$G$"$j(B, $B<!?t$,9b$$>l9g$KM-8z$+$b$7$l$J$$(B.
76:
77: \item $l_i, a_i$ $B$,(B 0 $B$N>l9g$N(B shortcut.
78:
79: $B0lHL$K<!?t$,(B 0 $B$K$J$kItJ,$,B?$$$G$3$l$O=EMW$G$"$k(B.
80:
81: \item exponent vector, monomial $B$J$I$rI=$99=B$BN$N%a%b%j4IM}$r<+A0$G9T$&(B.
82:
83: $B$3$l$O(B, Weyl $B$K8B$i$:(B, $BM-8BBN>e$N>l9g$K$O0lHL$KMQ$$$F$$$k(B. $B$3$l$b(B
84: $B8zN($KBg$-$/1F6A$9$k(B.
85: \end{itemize}
86: $B0J>e$N2~NI$r2C$($k$3$H$G(B, $B=i4|<BAu$KHf3S$7$F==J,8zN(2=$9$k$3$H$,$G$-$?(B.
87:
88: \subsection{Weyl Algebra $B$K$*$1$k(B Buchberger $B%"%k%4%j%:%`(B}
89:
90: $BB?9`<04D>e$N(B Buchberger $B%"%k%4%j%:%`<BAu$K$*$$$F$O(B, $B<o!9$N(B criteria $B$*(B
91: $B$h$S(Bselection strategy $B$,9M0F$5$l<BMQ2=$5$l$F$$$k$,(B, Weyl Algebra $B$K$*(B
92: $B$$$F$b(BBuchberger's criterion (S-polynomial $B$r9=@.$9$kB?9`<0$NF,9`$N(B
93: GCD $B$,(B 1 $B$N>l9g$K$O$=$N(B S-polynomial $B$O(B 0 $B$K@55,2=$5$l$k(B) $B0J30$O$=$N$^$^(B
94: $B;H$($k(B. $B$h$C$F(B, $B$"$H$O@Q$rA0@a$N$b$N$K49$($l$P(B, $BB?9`<04DMQ$N%I%i%$%P(B,
95: $B%5%V%k!<%A%s$,;H$((B, $BMF0W$K(B Weyl Algebra $B>e$N(B Buchberger $B%"%k%4%j%:%`$N(B
96: $B<BAu$,F@$i$l$k(B.
97:
98: \section{b-function $B$N7W;;(B}
99: \label{orig}
100:
101: \subsection{b-function}
102: $D=D_n=K\langle x_1,\cdots,x_n,\partial_1,\cdots,\partial_n\rangle$
103: ($\partial_i = \partial/\partial x_i$), $f \in K[x_1,\cdots,x_n]$ $B$H$9(B
104: $B$k$H$-(B$P(s)f^{s+1}=b_f(s)f^s$ $B$J$k(B $P(s) \in D[s]$ $B$,B8:_$9$k$h$&$J:G>.(B
105: $B<!?t$N(B $b_f(s) \in K[s]$ $B$r(B $f$ $B$N(B (global) $b$-function $B$H8F$V(B
106: \footnote{$BK\Mh$O(B $\tilde b(s)$ $B$H=q$/$Y$-$@$,(B, $BK\9F$G$O(B $b(s)$ $B$H(B
107: $B=q$/$3$H$K$9$k(B.}.
108: $BBg0$5W(B\cite{oaku-bfct} $B$K$h$j(B $b$-function $B$O0J2<$N$h$&$K7W;;$G$-$k(B. $B$^$:(B,
109: $n+1$ $B<!85$N(B Weyl Algebra $D_{n+1}=K\langle
110: t,x_1,\cdots,x_n,\partial_t,\partial_1,\cdots,\partial_n\rangle$ $B$r9M(B
111: $B$($k(B.
112:
113: \begin{Def}
114: $D_{n+1}$ $B$N85(B
115: $P = \sum c_{\mu\nu\alpha\beta}t^\mu x^\alpha \partial_t^\nu \partial^\beta$
116: $B$KBP$7(B, $${\rm ord}_F(P) := \max\{\nu-\mu | $B$"$k(B \alpha, \beta $B$KBP$7(B
117: c_{\mu\nu\alpha\beta} \neq 0 \}$$
118: $$\hat{\sigma}(P) :=
119: \sum_{\nu-\mu={\rm ord}_F(P)} c_{\mu\nu\alpha\beta}t^\mu x^\alpha \partial_t^\nu \partial^\beta$$
120: \end{Def}
121:
122: \begin{Def}
123: ${\rm ord}_F(P) = m$ $B$J$k(B $P \in D_{n+1}$ $B$KBP$7(B, $\psi(P) \in D[s]$ $B$r(B
124: $$
125: \psi(P)(t\partial_t) =
126: \left\{
127: \parbox[c]{2in}{
128: $\hat{\sigma}(t^mP)$ \quad\quad $(m\ge 0)$\\
129: $\hat{\sigma}(\partial_t^{-m}P)$ \quad $(m< 0)$
130: }
131: \right.
132: $$
133: $B$GDj5A$9$k(B.
134: \end{Def}
135:
136: \begin{Th}
137: $$I=Id(t-y_1f,\partial_1+y_1 (\partial f/\partial x_1) \partial_t, \cdots,
1.2 ! noro 138: \partial_n+ y_1 (\partial f/\partial x_n) \partial_t)$$
1.1 noro 139: $B$KBP$7(B, $G_1$ $B$r(B $I_1 = I \cap D$ $B$N%0%l%V%J4pDl$H$9$k(B. $B$3$N;~(B,
140: $$Id(\psi(G_1)) \cap K[s] = Id(b(-s-1))$$
141: \end{Th}
142: $BBg0$5W(B \cite{oaku-bfct} $B$G$O(B
143: $$(Id(\psi(G_1)) \cap K[x,s]) \cap K[s]$$$B$J$kFsCJ3,$N(B elimination $B$K$h(B
144: $B$k7W;;$rDs0F$7$F$$$k(B. $B$3$l$O(B, local $B$J(B b-function$B$N7W;;$K(B
145: $(Id(\psi(G_1)) \cap K[x,s])$ $B$,I,MW$H$J$k$?$a$H9M$($i$l$k$,(B, global
146: b-function $B$N$_$r5a$a$k>l9g$K$O(B, $BD>@\(B $K[s]$ $B$H$N8r$o$j$r5a$a$F9=$o$J(B
147: $B$$(B. $B$h$C$F(B, $BG$0U$N=g=x$K4X$9$k(B $Id(\psi(G_1))$ $B$N%0%l%V%J4pDl$,5a$^$C$F(B
148: $B$$$l$P(B, $b(s)$ $B$O2D49B?9`<04D$N>l9g$HF1MM$K(B, $BL$Dj78?tK!$h$j5a$a$k(B
149: $B$3$H$,$G$-$k(B.
150:
151: \subsection{\Q $B>e$N(B Weyl Algebra $B$K$*$1$k:G>.B?9`<0$N(B modular $B7W;;(B}
152: \label{mod1}
153:
1.2 ! noro 154: $D$ $B$r(B $\Q$ $B>e$N(B Weyl Algebra, $J$ $B$r(B $D$ $B$N(B ideal, $P \in D$ $B$+$D(B $P$ $B$O@0(B
1.1 noro 155: $B?t78?t$H$7(B, $J\cap \Q[P] \neq \{0\}$ $B$H$9$k(B. $B$3$N;~(B, $J\cap \Q[P] =
156: Id(b(P))$ $B$H$9$l$P(B
157: $b(s)$ $B$O(B$D/J$ $B$K$*$1$k(B $P$ $B$N(B \Q $B>e$N:G>.B?9`<0$H$J$k(B.
158: $B$3$3$G(B, $b(s) \in \Z[s]$ $B$+$D(B \Z $B>e86;OE*$H<h$l$k(B.
159:
160: $J$ $B$N(B, $B=g=x(B $<$ $B$K4X$9$k%0%l%V%J4pDl$G(B, $B3F85$NF,78?t$,(B 1 $B$G$"$k$b$N$r(B $G$
1.2 ! noro 161: $B$H$7(B, $G$ $B$N3F85$N78?t$,(B $\Z_{(p)} = \{a/b | a\in \Z, b \notin
1.1 noro 162: p\Z\}$ $B$KB0$9$k$h$&$J(B $p$$B$rA*$V(B. $\phi_p$ $B$r(B $\Z_{(p)}$ $B$+$i(B $GF(p)$
163: $B$X$NI8=`E*<M1F(B ($B$*$h$S$=$N(B $D$ $B$X$N3HD%(B) $B$H$9$k(B.
164:
165: \begin{Lem}
166: $\phi_p(G)$ $B$O(B $Id(\phi_p(G))$ $B$N(B $<$ $B$K4X$9$k%0%l%V%J4pDl$G(B, $\phi_p(b(P)) \in
167: Id(\phi_p(G))$.
168: \end{Lem}
169: \begin{Proof}
170: $G$ $B$+$i:n$i$l$k(B S-polynomial $B$N(B $G$ $B$K$h$k(B 0 $B$X$N(B reduction $B$,(B $Z_{(p)}$ $B>e(B
171: $B$G9T$($k(B. $B$h$C$F(B, $B$=$N(B $\phi_p$ $B$K$h$kA|$,$=$N$^$^(B $\phi_p(G)$ $B$K$h$k(B
172: reduction $B$K$J$k$+$i(B, $\phi_p(G)$ $B$O(B $Id(\phi_p(G))$ $B$N%0%l%V%J4pDl$H(B
173: $B$J$k(B. $B8eH>$bF1MM$G$"$k(B.
174: \end{Proof}
175:
176: $B2>Dj$K$h$j(B $\phi_p(b(s))$ $B$O(B 0$B$G$J$$$+$i(B, $\phi_p(P)$
177: $B$N(B $\phi_p(D)/Id(\phi_p(G))$ $B$K$*$1$k:G>.B?9`<0(B $b_p(s)$ $B$,B8:_$7$F(B
178: $b_p(s) | \phi_p(b(s))$ $B$,@.$jN)$D(B. $BFC$K(B $\deg(b_p(s)) \le \deg(b(s))$.
179:
180: \begin{Th}
181: \label{invimg}
182: $b_p(s)$ $B$r(B $\phi_p(D)/Id(\phi_p(G))$ $B$K$*$1$k(B $\phi_p(P)$ $B$N:G>.B?9`(B
183: $B<0$H$9$k$H$-(B, $\deg(f(s)) = \deg(b_p(s))$, $f(P)
184: \in Id(G)$$B$J$k(B $f \in \Z[s]$ $B$,B8:_$9$l$P(B, $f(s) = b(s)$.
185: \end{Th}
186: \begin{Proof}
187: $B2>Dj$h$j(B $b(s)|f(s)$. $B0lJ}$G(B $\deg(f(s)) = \deg(b_p(s)) \le \deg(b(s))$ $B$@$+$i(B
188: $b(s)=f(s)$.
189: \end{Proof}
190:
191: \begin{Alg}
192: \label{modbfct}
193: \begin{tabbing}
194: Input: \= $B9`=g=x(B $<$, $<$ $B$K4X$9$k%0%l%V%J4pDl(B $G \subset D$ ($BF,78?t$,(B 1),\\
195: \> $Id(G) \cap \Q[P] \neq \{0\}$ $B$J$k(B $P\in D$ ($B@0?t78?t(B)\\
196: Output: $Id(G) \cap \Q[P] = Id(b(P))$ $B$J$k(B $b(s) \in \Q[s]$\\
197: do \= \{\\
198: \> $p \leftarrow G \in \Z_{(p)}$ $B$J$kL$;HMQ$NAG?t(B\\
199: \> $b_p \leftarrow$ $\phi_p(P)$ $B$N(B $\phi_p(D)/Id(\phi_p(G))$ $B$K$*$1$k:G>.B?9`<0(B\\
200: \> $d \leftarrow deg(b_p)$\\
201: \> $c \leftarrow NF(P^d,G)+\sum_{i=0}^{d-1}c_i NF(P^i,G)$ ($c_i$ $B$OL$Dj78?t(B)\\
202: \> $C \leftarrow \{C_t(c_0,\cdots,c_{d-1})=0 | C_t$ $B$O(B $c$ $B$N3F(B {\rm monomial} $B$N78?t(B\}\\
203: \> if \= $C$ $B$,2r(B $\{c_0=a_0,\cdots,c_{d-1}=a_{d-1}\}$ $B$r;}$D(B \{\\
204: \> \> return $s^d+\sum_{i=0}^{d-1}a_is^i$\\
205: \> \}\\
206: \}
207: \end{tabbing}
208: \end{Alg}
209: $BK!(B $p$ $B$G$N:G>.B?9`<0$O(B, $NF(\phi_p(P^k),Id(\phi_p(G)))$ $B$r=g$K7W;;$7$F(B
210: $B@~7A4X78$rC5$9$3$H$GF@$i$l$k(B.
211: $b(s) \in \Z[s]$ $B$H$7$?;~$N<g78?t$r3d$i$J$$(B $p$ $B$KBP$7$F$ODjM}(B \ref{invimg}
212: $B$N(B $f$$B$OB8:_$9$k$+$i(B, $B%"%k%4%j%:%`(B \ref{modbfct} $B$ODd;_$9$k(B. $B$^$?(B, $C$ $B$,(B
213: $B2r$r;}$D$J$i(B, $BK!(B $p$ $B$G$N0l0U@-$h$j$=$l$O0l0UE*$K7h$^$k(B.
214: $C$ $B$N5a2r$O(B, $BK!(B $p$ $B$G$N0l0U@-$rMxMQ$7$F(B, Hensel $B9=@.$K$h$j8zN($h$/5a$a$k(B
215: $B$3$H$,$G$-$k(B. $B>\:Y$O(B \cite{RUR} $B$r;2>H(B.
216:
217: \subsection{$B%[%m%N%_%C%/$J(B ideal $B$KBP$9$k(B $b$-function}
218: \label{mod2}
219:
220: ideal $I \subset D_n$,$w \in \R^n \setminus \{0\}$ $B$KBP$7(B,
221: weight $(-w,w)$ $B$K4X$9$k(B initial ideal $in_{(-w,w)}(I)$ $B$,(B, Weyl Algebra
222: $B$K$*$1$k%0%l%V%J4pDl7W;;$K$h$j5a$^$k(B (\cite{SST} Theorem 1.1.6).
223: $I$ $B$N(B characteristic variety $B$N<!85$,(B $n$ $B$G$"$k(B
224: $B$H$-(B $I$ $B$O%[%m%N%_%C%/$H8F$P$l$k$,(B, $B$3$N$H$-(B \cite{SST} Theorem 5.1.2
225: $B$K$h$j(B
226: $$in_{(-w,w)}(I) \cap K[s] = Id(b(s))$$ ($s =
227: w_1\theta_1+\cdots+w_n\theta_n, \theta_i = x_i\partial_i$) $B$J$k(B 0 $B$G$J(B
228: $B$$B?9`<0(B $b(s)$ $B$,B8:_$9$k(B. $B$3$N(B $b(s)$ $B$r(B, $I$ $B$N(B (global) $b$-function
229: $B$H8F$V(B.
230: $BFC$K(B, $BB?9`<0(B $f$ $B$KBP$7(B,
231: $$I_f=Id(t-f,\partial_1+(\partial f/\partial x_1) \partial_t, \cdots,
232: \partial_n+ (\partial f/\partial x_n) \partial_t)$$$B$H$*$/;~(B, $I_f$
233: $B$O%[%m%N%_%C%/$G(B, $t$ $B$r@hF,$NJQ?t$H$9$k;~(B $I_f$ $B$N(B
234: $w=(1,0,\cdots,0)$ $B$K4X$9$k(B global $b$-function $B$r(B $B(s)$$B$H$9$l$P(B,
235: $b_f(s) = B(-s-1)$ $B$,@.$jN)$D(B. $B$h$C$F(B, $D/in_{(-w,w)}(I_f)$ $B$K$*$1$k(B
236: $t\partial_t$ $B$N:G>.B?9`<0$+$i(B $b_f(s)$ $B$r5a$a$k$3$H$b$G$-$k(B.
237: $B$3$3$G(B, $in_{(-w,w)}(I_f)$ $B$N7W;;$K$O(B non-term order $B$K$h$k%0%l%V%J4pDl(B
238: $B7W;;$,I,MW$H$J$k$,(B, \cite{SST} $B$G=R$Y$i$l$F$$$k@F<!2=$K$h$j(B
239: $B$"$k(B term order $B$N$b$H$G$N%0%l%V%J4pDl7W;;$K5"Ce$G$-$k(B.
240:
241: \subsection{$B%?%$%_%s%0%G!<%?(B}
242:
243: Section \ref{orig} $B$G>R2p$7$?(B, $BFsCJ3,$N>C5n$K$h$kJ}K!(B ($BJ}K!(B 1)$B$H(B,
244: $Id(\psi(G_1))\cap K[s]$$B$r(B Section \ref{mod1} $B$G=R$Y$?$h$&$K:G>.B?9`<0(B
245: $B$H$7$F5a$a$kJ}K!(B ($BJ}K!(B 2), $B$*$h$S(B Section \ref{mod2} $B$G=R$Y$?J}K!(B ($BJ}(B
246: $BK!(B 3)$B$K$h$k7W;;;~4V$r$5$^$6$^$JB?9`<0$KBP$7$FHf3S$9$k(B. $B$$$:$l$b(B,
247: $b$-function $B$N7W;;$O(Bmodular $B7W;;$G:G>.B?9`<05a$a$kJ}K!$K$h$j9T$C(B
1.2 ! noro 248: $B$?(B. $BNcBj$O(B\cite{oaku-bfct}, \cite{yano-bfct} $B$+$i:N$C$?(B. $BI=(B 2 $B$N(B
1.1 noro 249: $x^a+xy^{b-1}+y^b$ $B$K4X$7$F$O(B, $BK\9V5fO?Cf$NBg0$5W(B, $B9b;3N>;a$K$h$k9F$r(B
250: $B;2>H(B. $B7W;;$O(B, PentiumIII 1GHz $B>e$G9T$C$?(B. $BC10L$OIC$G%,!<%Y%C%8%3%l%/%7%g(B
251: $B%s;~4V$O=|$$$F$"$k(B. ``--'' $B$O(B, $BB>$NJ}K!$HHf3S$7$F;~4V$,$+$+$j2a$.$k$?(B
252: $B$aCfCG$7$?$3$H$r0UL#$9$k(B. $BI=(B 1$B$G$O7W;;$,Hf3SE*MF0W$J$b$N$,07$o$l$F$*(B
253: $B$j(B, $B3FJ}K!$GBg:9$O$J$$$,(B, $BI=(B 2 $B$G$O(B, $BJ}K!(B 1 $B$G$O7W;;$,:$Fq$J$b$N$,(B, $BJ}(B
254: $BK!(B 2, 3 $B$K$h$j7W;;$G$-$F$$$k(B. $B$^$?(B, $B<!?t$,>e$,$k$K$D$l(B, $BJ}K!(B 3$B$,M%0L$H(B
255: $B$J$k(B. $B$3$l$O(B, $BJ}K!(B 2 $B$K8=$l$k%0%l%V%J4pDl7W;;$,(B, $BJ}K!(B 3 $B$K$*$1$k(B
256: $in_{(-w,w)}(I_f)$ $B$N7W;;$KHf$Y$F:$Fq$H$J$k$?$a$G$"$k(B. $B$3$l$OI=(B 3 $B$K$*(B
257: $B$$$F$5$i$K82Cx$H$J$j(B, $BJ}K!(B 2 $B$G$O7W;;$G$-$J$$Nc$b=P(B
258: $B$FMh$k(B. $B<B:]$K$O(B, $BJ}K!(B 3 $B$G$O(B, $B:G>.B?9`<0$N7W;;$,(B
259: dominant $B$H$J$kNc$b$7$P$7$P8+$i$l$k(B.
260:
261: \begin{table}[hbtp]
262: \begin{tabular}{c|c|c|c|c} \hline
263: & $\deg(b(s))$ & $BJ}K!(B 1 & $BJ}K!(B 2 & $BJ}K!(B 3 \\ \hline
264: $x^5+x^3y^3+y^5$ & 7 &1.4 &2.4 &1.3 \\ \hline
265: $x^3+y^3+z^3+x^2y^2z^2+xyz$ & 5 &3.5 &3.9 & 10\\ \hline
266: $x^6+y^4+z^3$ &18 &0.4 &0.7 & 0.2 \\ \hline
267: $x^4+y^4+z^3+xyz$ &8 &0.3 &0.6 & 0.3\\ \hline
268: $(x^3-y^2z^2)^2$ &14 &0.7 &1.5 & 0.2\\ \hline
269: $y(x^5-y^2z^2)$ &18 &0.8 &0.5 & 0.1 \\ \hline
270: $y((y+1)x^3-y^2z^2)$ &11 &0.6 &1.1 & 0.7 \\ \hline
271: \end{tabular}
272: \caption{\cite{oaku-bfct} $B$+$i$NNcBj(B}
273: \end{table}
274:
275:
276: \begin{table}[hbtp]
277: \begin{tabular}{c|c|c|c|c} \hline
278: & $\deg(b(s))$ & $BJ}K!(B 1 & $BJ}K!(B 2 & $BJ}K!(B 3 \\ \hline
279: $x^4+xy^4+y^5$ &13 &135 &5.0 & 3.4 \\ \hline
280: $x^4+xy^5+y^6$ &13 &15 &2.9 & 2.1 \\ \hline
281: $x^4+xy^6+y^7$ &19 &719 &5.1 & 6.9 \\ \hline
282: $x^4+xy^7+y^8$ &11 &19 &7.3 & 4.0 \\ \hline
283: $x^4+xy^8+y^9$ &25 &-- &14 & 11 \\ \hline
284: $x^4+xy^9+y^{10}$ &23 &-- &22 & 14\\ \hline
285: $x^5+xy^5+y^6$ &21 &-- &158 & 21\\ \hline
286: $x^5+xy^6+y^7$ &25 &-- &32 & 19\\ \hline
287: \end{tabular}
288:
289: \caption{\cite{yano-bfct} $B$+$i$NNcBj(B}
290: \end{table}
291:
292: \begin{table}[hbtp]
293: \begin{tabular}{c|c|c|c} \hline
294: & $\deg(b(s))$ & $BJ}K!(B 2 & $BJ}K!(B 3 \\ \hline
295: $x^6+y^{12}z^8$ & 50 & 71 & 1.8 \\ \hline
296: $x_1x_2^3+x_3x_4^5+x_5x_6^7$ &106 & 404 & 14 \\ \hline
297: $(x_1x_2)^3+(x_3x_4)^3+(x_5x_6)^3$ &23 & -- & 27 \\ \hline
298: $(x_1x_2)^2+(x_3x_4)^2+(x_5x_6)^2+(x_7x_8)^2$ &16 & -- & 61 \\ \hline
299: \end{tabular}
300:
301: \caption{\cite{yano-bfct} $B$+$i$NNcBj(B (non-isolated singularities)}
302: \end{table}
303:
304: \section{$B$*$o$j$K(B}
305:
306: Risa/Asir $B$K$*$1$k(B, Weyl Algebra $B4XO"5!G=$N<BAu$*$h$S(B, $B$=$N1~MQ$H$7$F(B $b$-function
307: $B$N7W;;J}K!$N2~NI$K$D$$$F=R$Y$?(B. $B$3$3$G=R$Y$?J}K!$K$h$j(B, $B$h$j9-$$HO0O$NB?9`<0$*$h$S(B
308: $B%$%G%"%k$KBP$7$F(B $b$-function $B$,7W;;$G$-$k$h$&$K$J$C$?$3$H$O3N$+$G$"$k(B. $B$7$+$7(B,
309: $B4{$KB>$NJ}K!$G7k2L$,CN$i$l$F$$$k$b$N$G$b7W;;IT2DG=$JLdBj$OB8:_$7(B, $B$^$?(B
310: $B$$$o$f$kB?=E(B $b$-function $B$KBP$7$F$O(B, $B:G>.B?9`<0$K$h$kJ}K!$OL5NO$G$"$k(B.
311: $B$3$l$i$KBP=h$9$k$?$a$K$O$5$i$J$k2~NI(B, $B$"$k$$$O?7$7$$J}K!$,I,MW$G$"$m$&(B.
312:
313: \begin{thebibliography}{99}
314:
315: \bibitem{RUR} Noro, M., Yokoyama, K.:
316: A Modular Method to Compute the Rational Univariate
317: Representation of Zero-Dimensional Ideals.
318: J. Symb. Comp., {\bf 28},1 (1999) 243--263.
319:
320: \bibitem{oaku-bfct} Oaku, T.:
321: Algorithm for the $b$-function and
322: $D$-modules associated to a polynomial. J. Pure Appl. Algebra, {\bf
323: 117} \& {\bf 118} (1997) 495--518.
324:
325: \bibitem{deRham} Oaku, T., Takayama, N.:
326: An algorithm for de Rham cohomology groups of the
327: complement of an affine variety via $D$-module computation.
328: J. Pure Appl. Algebra, {\bf 139} (1999), 201--233.
329:
330: \bibitem{algDmod} Oaku, T., Takayama, N.:
331: Algorithms for $D$-modules ---restriction, tensor product,
332: localization, and local cohomology groups.
333: J. Pure Appl.\ Algebra (in press).
334:
335: \bibitem{SST}
336: Saito, M., Sturmfels, B., Takayama, N.:
337: Gr\"obner Deformations of Hypergeometric Differential Equations.
338: Algorithms and Computation in Mathematics {\bf 6}, Springer (2000).
339:
340: \bibitem{yano-bfct} Yano, T.:
341: On the theory of $b$-functions.
342: Publ. RIMS Kyoto Univ. {\bf 14} (1978), 111--202.
343: \end{thebibliography}
344:
345: \end{document}
346:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>