Annotation of OpenXM/doc/Papers/jsiamb-noro.tex, Revision 1.2
1.2 ! noro 1: % $OpenXM: OpenXM/doc/Papers/jsiamb-noro.tex,v 1.1 2001/10/04 08:16:27 noro Exp $
1.1 noro 2: \setlength{\parskip}{10pt}
3:
4: \begin{slide}{}
5: \fbox{$B7W;;5!Be?t%7%9%F%`(B Risa/Asir}
6:
7: \begin{itemize}
8: \item $BB?9`<04D$K$*$1$kBg5,LO9bB.7W;;$rL\;X$7$F3+H/(B
9:
10: \begin{itemize}
11: \item C $B$G5-=R(B
12: \item $B%a%b%j4IM}$O(B Boehm's conservative GC $B$K$h$k(B
13: \end{itemize}
14:
15: \item C $B8@8l$K;w$?%f!<%68@8l%$%s%?%U%'!<%9$r$b$D(B.
16:
17: \begin{itemize}
18: \item $B7?@k8@$J$7(B
19: \item $B%f!<%68@8l%G%P%C%,$,AH$_9~$_(B
20: \end{itemize}
21:
22: \item $B%*!<%W%s%=!<%9(B
23:
24: \begin{itemize}
25: \item 2000 $BG/$^$GIY;NDL8&$G3+H/(B $\Rightarrow$ $B?@8M(B branch [Risa/Asir]
26: $B$,%9%?!<%H(B
27:
28: CVS $B$G:G?7HG$,F~<j2DG=(B ($BF~<jJ}K!$O8e=R(B)
29: \end{itemize}
30:
31: \item OpenXM ((Open message eXchange protocol for Mathematics) $B%$%s%?%U%'!<%9(B
32: \end{itemize}
33: \end{slide}
34:
35: \begin{slide}{}
36: \fbox{$B<g$J5!G=(B}
37:
38: \begin{itemize}
39: \item $BB?9`<0$N4pK\1i;;(B
40:
41: \begin{itemize}
42: \item $B2C8:>h=|(B, GCD, $B=*7k<0(B etc.
43: representation
44: \end{itemize}
45:
46: \item $BB?9`<00x?tJ,2r(B
47:
48: \begin{itemize}
49: \item $B0lJQ?tB?9`<0(B : $B78?tBN$OM-M}?tBN(B, $BBe?tBN(B, $B<o!9$NM-8BBN(B
50:
51: \item $BB?JQ?tB?9`<0(B : $B78?tBN$OM-M}?tBN(B
52: \end{itemize}
53:
54: \item $B%0%l%V%J4pDl7W;;(B
55:
56: \begin{itemize}
57: \item Buchberger $B%"%k%4%j%:%`(B, Fag\`ere $F_4$ [Faug\`ere] $B%"%k%4%j%:%`(B
58:
59: $BB?9`<04D$*$h$S(B Weyl $BBe?t(B
60:
61: \item 0 $B<!85%$%G%"%k$N(B change of ordering/RUR [Rouillier]
62:
63: \item $B=`AG%$%G%"%kJ,2r(B
64:
65: $BB?JQ?tBe?tJ}Dx<07O$N2r$NJ,2r$rM?$($k(B
66:
67: \item $BB?9`<0$N(B $b$-$B4X?t$N7W;;(B [Oaku]
68:
69: $b$-$B4X?t(B : $BB?9`<0$NNmE@$G$"$kD66JLL$NITJQNL(B
70:
71: $D$-$B2C72$K$*$1$k7W;;$N(B, $BM-8B<!85$N@~7ABe?t$X$N5"Ce$KI,MW(B
72: \end{itemize}
73: \end{itemize}
74: \end{slide}
75:
76: \begin{slide}{}
77: \fbox{$B<g$J5!G=(B ($B$D$E$-(B)}
78:
79: \begin{itemize}
80:
81: \item PARI [PARI] $B%i%$%V%i%j%$%s%?%U%'!<%9(B
82:
83: $B?tO@%i%$%V%i%j(B PARI $B$r%j%s%/$7$F$$$F<g$J4X?t$,8F$Y$k(B
84:
85: bigfloat $B7W;;(B, $BD61[4X?t$NI>2A$K$bMQ$$$i$l$k(B
86:
87: \item OpenXM $B$N85$G$NJ,;6JBNs7W;;(B
88:
89: OpenXM $B$K$h$kF1<o$^$?$O0[<o$N?t3X%=%U%H%&%'%"$N7k9g(B
90:
91: client-server $B7?J,;6JBNs7W;;$,MF0W$K<B83$G$-$k(B
92:
93: \item 2 $BJQ?t4X?t$NNmE@$N@:L)IA2h(B
94:
95: $BCf4VCM$NDjM}(B, Sturm $BNs$NMxMQ$K$h$k(B, 2 $BJQ?t4X?t$NNmE@$N@:L)IA2h(B
96:
97: OpenXM server $B$H$7$F<B8=(B
98: \end{itemize}
99: \end{slide}
100:
101: \begin{slide}{}
102: \fbox{$B3+H/$NNr;K(B : ---1994}
103:
104: \begin{itemize}
105: \item --1989
106:
107: Prolog $B$N%5%V%k!<%A%s$H$7$F(B, $B$$$/$D$+$N5!G=$r3+H/(B
108:
109: \item 1989--1992
110:
111: \begin{itemize}
112: \item parser $B$*$h$S(B Boehm $B$N(B GC [Boehm] $B$H$H$b$K(B Risa/Asir $B$,%9%?!<%H(B
113:
114: \item $BM-M}?tBN>e0lJQ?t(B, $BB?JQ?tB?9`<0$N0x?tJ,2r$r3+H/(B
115: \end{itemize}
116:
117: \item 1992--1994
118:
119: \begin{itemize}
120: \item Buchberger $B%"%k%4%j%:%`$N<BAu3+;O(B
121:
122: $B%f!<%68@8l$G5-=R(B $\Rightarrow$ C $B$G=q$-D>$7(B (by $BB<Hx(B@$B8=:_EEDLBg(B)
123:
124: $\Rightarrow$ trace lifting [Traverso] $B$N<BAu(B
125:
126: \item $BBe?tBN>e$N0lJQ?tB?9`<0$N0x?tJ,2r(B
127:
128: $BC`<!3HBg$*$h$S(B, $B=EJ#0x;R$r$b$D%N%k%`$NAH?%E*MxMQ(B
129: \end{itemize}
130: \end{itemize}
131:
132: \end{slide}
133:
134: \begin{slide}{}
135: \fbox{$B3+H/$NNr;K(B : 1994-1996}
136:
137: \begin{itemize}
138: \item $B%P%$%J%jHG$rIY;NDL$h$j8x3+(B
139:
140: \item $B=`AG%$%G%"%kJ,2r$N<BAu(B
141:
142: \begin{itemize}
143: \item $B2<;3(B-$B2#;3%"%k%4%j%:%`(B [SY]
144: \end{itemize}
145:
146: \item Buchberger $B%"%k%4%j%:%`$N2~NI(B
147:
148: \begin{itemize}
149: \item Trace lifting+$B@F<!2=(B
150:
151: \item compatible prime $B$K$h$k%0%l%V%J4pDl%A%'%C%/$N>JN,(B
152:
153: \item Modular change of ordering, Modular RUR
154:
155: $B2#;3$H$N6&F18&5f(B [NY]
156: \end{itemize}
157: \end{itemize}
158:
159: \end{slide}
160:
161: \begin{slide}{}
162: \fbox{$B3+H/$NNr;K(B : 1996-1998}
163:
164: \begin{itemize}
165: \item $BJ,;67W;;5!G=$N<BAu(B
166:
167: \begin{itemize}
168: \item OpenXM $B$N%W%m%H%?%$%W(B
169: \end{itemize}
170:
171: \item Buchberger $B%"%k%4%j%:%`$N2~NI(B
172:
173: \begin{itemize}
174: \item $B@55,7A7W;;Cf$K$*$1$k78?t$N6&DL0x;R$N8zN(E*=|5n(B
175:
176: \item $B$=$NJBNs2=(B
177:
178: \item odd order replicable functions $B$N7W;;(B [Noro]
179:
180: Risa/Asir : DRL basis $B7W;;(B({\it McKay}) $B$K(B 5 $BF|$+$+$C$?(B
181:
182: Faug\`ere $B$N(B FGb : $B$3$N7W;;$r(B 53 $BIC$G<B9T(B
183: \end{itemize}
184:
185:
186: \item $BBg$-$JM-8BBN>e$N0lJQ?tB?9`<0$N0x?tJ,2r(B
187:
188: \begin{itemize}
189: \item Schoof-Elkies-Atkin $B%"%k%4%j%:%`$N<BAu$N$?$a(B
190:
191: $BM-8BBN>e$NBJ1_6J@~$NM-M}E@8D?t7W;;MQ(B
192:
1.2 ! noro 193: --- $B$3$N%W%m%0%i%`$O%U%j!<$G$O$J$$$,(B, $B4X78$9$k4X?t$O%U%j!<(B
1.1 noro 194: \end{itemize}
195: \end{itemize}
196:
197: \end{slide}
198:
199: \begin{slide}{}
200: \fbox{$B3+H/$NNr;K(B : 1998-2000}
201: \begin{itemize}
202: \item OpenXM
203:
204: \begin{itemize}
205: \item OpenXM $B;EMM=q(B : $BLnO$(B, $B9b;3(B [OpenXM]
206:
207: enconding, phrasebook $B$K4X$9$k%"%$%G%#%"$O(B OpenMath [OpenMath] $B$+$i<ZMQ(B
208:
209: \item $BJ,;67W;;4X?t$O(B, OpenXM $B;EMM$K=q$-D>$7(B
210: \end{itemize}
211:
212: \item Risa/Asir on Windows
213:
214: \begin{itemize}
215: \item $B;E;v>eI,MW$K$J$C$?(B
216:
217: Visual C++ $B$G5-=R(B
218: \end{itemize}
219:
220: \item $F_4$ $B$N;n83<BAu(B
221:
222: \begin{itemize}
223: \item [Faug\`ere]$B$K=`5r$7$F5-=R(B
224:
225: \item $GF(p)$ $B>e(B : $B$J$+$J$+$h$$(B
226:
227: \item $BM-M}?tBN>e(B :{\it McKay} $B$r=|$$$F$@$a(B
228: \end{itemize}
229: \end{itemize}
230: \end{slide}
231:
232: \begin{slide}{}
233: \fbox{$B3+H/$NNr;K(B : 2000-current}
234: \begin{itemize}
235: \item $B%*!<%W%s%=!<%92=(B
236:
237: \begin{itemize}
238: \item $BLnO$$,IY;NDL8&$h$j?@8MBg$K0\@R(B
239:
240: Started Kobe branch $B$N%9%?!<%H(B
241: \end{itemize}
242:
243: \item OpenXM
244:
245: \begin{itemize}
246: \item $B;EMM=q(B : OX-RFC100, 101, (102)
247:
248: \item OX-RFC102 ($BL$40@.(B) : MPI $B$rMQ$$$?%5!<%P4VDL?.(B
249: \end{itemize}
250:
251: \item Weyl $BBe?t(B
252:
253: \begin{itemize}
254: \item Buchberger $B%"%k%4%j%:%`(B [Takayama]
255:
256: \item $b$-$B4X?t(B
257:
258: $b$-$B4X?t$r:G>.B?9`<0$H$7$F%b%8%e%i7W;;(B
259: \end{itemize}
260: \end{itemize}
261:
262: \end{slide}
263:
264: \begin{slide}{}
265: \fbox{$B@-G=(B --- $B0x?tJ,2r(B}
266:
267: \begin{itemize}
268: \item 10 $BG/A0(B
269:
270: REDUCE, Mathematica $B$KHf$Y$F9b@-G=$@$C$?(B
271:
272: \item 4 $BG/A0(B
273:
274: $B%N%k%`$+$i@8$8$kB?9`<0$N0x?tJ,2r$KBP$9$k%H%j%C%/$K(B
275: $B$h$j(B, $BBe?tBN>e$NJ,2r$O0MA3$H$7$FM%0L$@$C$?(B
276:
277: \item $B8=:_(B
278:
279: $BB?JQ?t(B : $B$^$:$^$:(B
280:
281: $BM-M}?tBN>e0lJQ?t(B : M. van Hoeij $B$N?7%"%k%4%j%:%`$K$h$j40A4$KIi$1(B
282: \end{itemize}
283:
284: \end{slide}
285:
286: \begin{slide}{}
287: \fbox{$B@-G=(B --- $B%0%l%V%J4pDl4XO"5!G=(B}
288:
289: \begin{itemize}
290: \item 8 $BG/A0(B
291:
292: $B$H$j$"$($:F0$/DxEY$N@-G=(B
293:
294: \item 7 $BG/A0(B
295:
296: Rather trace lifting $B$K$h$j9b@-G=$@$C$?$,(B, Faug\`ere' $B$N(B Gb $B$K$O(B
297: $BIi$1$F$$$?(B
298:
299: $B$7$+$7(B, $B@F<!2=$H$NAH9g$;$K$h$j(B, $B$h$j9-$$HO0O$NF~NO$KBP$7$F%0%l%V%J(B
300: $B4pDl$,7W;;$G$-$k$h$&$K$J$C$?(B
301:
302: \item 4 $BG/A0(B
303:
304: Modular RUR $B7W;;$O(B Rouillier $B$N<BAu$HHf3S$7$FF1Ey$"$k$$$OM%0L$@$C$?(B
305:
306: \item $B8=:_(B
307:
308: FGb $B$O(B Risa/Asir $B$N(B $F_4$ $B<BAu$h$j$:$$$V$s9bB.$N$h$&(B
309:
310: Singular [Singular] $B$OB?9`<0$N8zN($h$$I=8=$K$h$j(B, Risa/Asir $B$N?tG\9bB.(B
311: $B$N>l9g$b$"$k(B. ($B78?t$,Bg$-$/$J$k>l9g$O$^$@(B Risa/Asir $B$,M%0L(B)
312:
313: \end{itemize}
314: \end{slide}
315:
316: \begin{slide}{}
317: \fbox{$BBg5,LO7W;;$X$NBP1~(B}
318:
319: \begin{itemize}
320: \item $B%0%l%V%J4pDl7W;;Cf$K@8@.$5$l$?4pDl$r%G%#%9%/$KJ]B8(B
321:
322: \begin{itemize}
323: \item $B<g5-21$NM-8zMxMQ(B
324:
325: \item $BESCf$+$i7W;;$r:F3+$G$-$k(B
326: \end{itemize}
327:
328: \item OpenXM $B$K$h$kJ,;67W;;(B
329:
330: \begin{itemize}
331: \item $BJBNs2=$K$h$kBf?t8z2L(B
332:
333: \item $BJ#?t$N%"%k%4%j%:%`$N6%AhE*<B9T$,MF0W(B
334: \end{itemize}
335:
336: \end{itemize}
337: \end{slide}
338:
339: \begin{slide}{}
340: \fbox{$B1~MQ;vNc(B}
341:
342: \begin{itemize}
1.2 ! noro 343: \item $BBJ1_6J@~0E9f%Q%i%a%?@8@.(B [IKNY]
1.1 noro 344:
345: $BM-8BBN>e$NB?9`<00x?tJ,2r$N1~MQ(B
346:
347: \item $D$-$B2C72$K$*$1$k<o!9$N7W;;(B
348:
349: de Rham $B%3%[%b%m%8(B, $BBe?tE*6I=j%3%[%b%m%8(B, $D$-$B2C72$N@)8B(B, $B%F%s%=%k@Q(B
350: $B7W;;$K$*$$$F(B, $BB?9`<00x?tJ,2r(B, $B=`AGJ,2r(B, $b$-$B4X?t7W;;$rC4Ev(B (OpenXM $B7PM3(B)
351:
352: \item $BBe?tJ}Dx<07O$N5a2r(B
353:
354: $B;;K!(B, $B<BAuN>LL$+$iBg5,LO7W;;$KBP1~(B
355:
356: $BL$Dj78?tK!$K$h$k2D@QJ,7O$N7hDj(B
357:
358: $BBPOCE*%7%9%F%`$N%P%C%/%(%s%I$GBe?tJ}Dx<05a2r(B
359:
360: \item $B%"%k%4%j%:%`<BAu<B83%D!<%k(B
361:
362: $BIbF0>.?t78?t%0%l%V%J4pDl7W;;(B, Wu $B$NJ}K!(B, $B6h4V1i;;(B
363: $B$J$I$N%"%k%4%j%:%`$N<BAu<B83(B. $B%=!<%9%l%Y%k$G$N(B
364: $B2~JQ$b2DG=(B
365:
366: \end{itemize}
367:
368: \begin{slide}{}
369: \fbox{$B8=:_3+H/Cf$N5!G=(B}
370:
371: \begin{itemize}
372: \item $BM-8BBN>e$NB?JQ?tB?9`<0$N0x?tJ,2r(B, $BM-8BBN>e$N=`AGJ,2r(B
373:
374: \begin{itemize}
375: \item $BBe?t4v2?Id9f$X$N1~MQ$r8+9~$s$@M-8BBN>e$N=`AGJ,2r<BAu(B
376:
377: \item $BI8?t$,>.$5$$>l9gFCM-$N:$Fq$,$"$k(B
378:
379: \item $B4pAC$H$J$kM-8BBN>e$NB?JQ?tB?9`<0$N0x?tJ,2r$r<BAuCf(B
380: \end{itemize}
381:
382: \item $B$h$j9-HO$J%G!<%?$NJ];}J}K!(B, $B5-=RG=NO$N8~>e(B
383:
384: \begin{itemize}
385: \item $B8=>u$G$O(B, $B2D49B?9`<04D0J30$N%G!<%?$N<+A3$J<h$j07$$$,:$Fq(B
386:
387: \item $B0[<o%7%9%F%`$H$N%G!<%?8r49(B, $B%f!<%6$K$h$k%G!<%?=hM}$,2DG=$J$h$&$K(B
388: $BFbItI=8=$r3HD%Cf(B
389: \end{itemize}
390:
391: \end{itemize}
392: \end{slide}
393:
394: \end{slide}
395:
396: \begin{slide}{}
397: \fbox{$BJ,;67W;;$NNc(B --- $F_4$ vs. $Buchberger$ }
398:
399: \begin{verbatim}
400: /* competitive Gbase computation over GF(M) */
401: /* Cf. A.28 in SINGULAR Manual */
402: /* Process list is specified as an option : grvsf4(...|proc=P) */
403: def grvsf4(G,V,M,O)
404: {
405: P = getopt(proc);
406: if ( type(P) == -1 ) return dp_f4_mod_main(G,V,M,O);
407: P0 = P[0]; P1 = P[1]; P = [P0,P1];
408: map(ox_reset,P);
409: ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O);
410: ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O);
411: map(ox_push_cmd,P,262); /* 262 = OX_popCMO */
412: F = ox_select(P); R = ox_get(F[0]);
413: if ( F[0] == P0 ) { Win = "F4"; Lose = P1;}
414: else { Win = "Buchberger"; Lose = P0; }
415: ox_reset(Lose); /* simply resets the loser */
416: return [Win,R];
417: }
418: \end{verbatim}
419: \end{slide}
420:
421: \begin{slide}{}
422: \fbox{$B;29MJ88%(B}
423:
424: [Bernardin] L. Bernardin, On square-free factorization of
425: multivariate polynomials over a finite field, Theoretical
426: Computer Science 187 (1997), 105-116.
427:
428: [Boehm] {\tt http://www.hpl.hp.com/personal/Hans\_Boehm/gc}
429:
430: [Faug\`ere] J.C. Faug\`ere,
431: A new efficient algorithm for computing Groebner bases ($F_4$),
432: Journal of Pure and Applied Algebra (139) 1-3 (1999), 61-88.
433:
434: [Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem,
435: to appear in Journal of Number Theory (2000).
436:
1.2 ! noro 437: [IKNY] Izu et al. Efficient implementation of Schoof's algorithm, LNCS 1514
! 438: (Proc. of ASIACRYPT'98) (1998), 66-79.
! 439:
! 440: [Noro] M. Noro, J. McKay,
! 441: Computation of replicable functions on Risa/Asir.
! 442: Proc. of PASCO'97, ACM Press (1997), 130-138.
! 443:
1.1 noro 444: [NY] M. Noro, K. Yokoyama,
445: A Modular Method to Compute the Rational Univariate
446: Representation of Zero-Dimensional Ideals.
447: J. Symb. Comp. {\bf 28}/1 (1999), 243-263.
448:
1.2 ! noro 449: \end{slide}
! 450:
! 451: \begin{slide}{}
! 452:
1.1 noro 453: [Oaku] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic
454: local cohomology groups of $D$-modules.
455: Advancees in Applied Mathematics, 19 (1997), 61-105.
456:
457: [OpenMath] {\tt http://www.openmath.org}
458:
459: [OpenXM] {\tt http://www.openxm.org}
460:
461: [PARI] {\tt http://www.parigp-home.de}
462:
463: [Risa/Asir] {\tt http://www.math.kobe-u.ac.jp/Asir/asir.html}
464:
465: [Rouillier] F. Rouillier,
466: R\'esolution des syst\`emes z\'ero-dimensionnels.
467: Doctoral Thesis(1996), University of Rennes I, France.
468:
469: [SY] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. {\bf 22} (1996), 247-277.
470:
471: [Singular] {\tt http://www.singular.uni-kl.de}
472:
473: [Traverso] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138.
474:
475: \end{slide}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>