Annotation of OpenXM/doc/Papers/rims2004-noro-ohp.tex, Revision 1.1
1.1 ! noro 1: \documentclass{slides}
! 2: %\documentclass[pdf,distiller,slideColor,colorBG,azure]{prosper}
! 3: \usepackage{color}
! 4: \usepackage{rgb}
! 5: \usepackage{graphicx}
! 6: \usepackage{epsfig}
! 7: \newcommand{\qed}{$\Box$}
! 8: \newcommand{\mred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}}}
! 9: \newcommand{\tmred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}\limits^{\scriptstyle *}}}
! 10: \newtheorem{prop}{\redc $BL?Bj(B}
! 11: \def\gr{Gr\"obner basis }
! 12: \def\st{\, s.t. \,}
! 13: \def\ni{\noindent}
! 14: \def\init{{\rm in}}
! 15: \def\Q{{\bf Q}}
! 16: \def\Z{{\bf Z}}
! 17: \def\Spoly{{\rm Spoly}}
! 18: \def\Span{{\rm Span}}
! 19: \def\Supp{{\rm Supp}}
! 20: \def\StdMono{{\rm StdMono}}
! 21: \def\Im{{\rm Im}}
! 22: \def\Ker{{\rm Ker}}
! 23: \def\NF{{\rm NF}}
! 24: \def\HT{{\rm HT}}
! 25: \def\LT{{\rm LT}}
! 26: \def\ini{{\rm in}}
! 27: \def\rem{{\rm rem}}
! 28: \def\Id#1{\langle #1 \rangle}
! 29: \def\ve{\vfill\eject}
! 30: \textwidth 9.2in
! 31: \textheight 7.2in
! 32: \columnsep 0.33in
! 33: \topmargin -1in
! 34: \def\tc{\color{orange}}
! 35: \def\fbc{\bf\color{orange}}
! 36: %\def\itc{\color{LimeGreen}}
! 37: \def\itc{\color{DarkGreen}}
! 38: %\def\urlc{\bf\color{DarkGreen}}
! 39: \def\urlc{\bf\color{LimeGreen}}
! 40: \def\goldc{\color{goldenrod3}}
! 41: \def\redc{\color{orange}}
! 42: \def\vs{\vskip 1cm}
! 43: \def\vsh{\vskip 0.5cm}
! 44: \def\ns{\itc\LARGE}
! 45: \title{\tc\bf\ns $BBe?tBN>e$N%$%G%"%k$N%0%l%V%J!<4pDl7W;;$K$D$$$F(B}
! 46:
! 47: %\slideCaption{$BBe?tBN>e$N%$%G%"%k$N%0%l%V%J!<4pDl7W;;$K$D$$$F(B}
! 48: \author{{\bf\Large $BLnO$(B $B@59T(B\\ $B?@8MBg3XM}3XIt(B}}
! 49: \date{\bf\Large Dec. 16, 2004}
! 50: \begin{document}
! 51: \setlength{\parskip}{20pt}
! 52: \maketitle
! 53:
! 54: %\itc: item color
! 55: %\fbc: fbox color
! 56: %\urlc: URL color
! 57: %\goldc: bold color a
! 58: %\redc: bold color b
! 59:
! 60: \large
! 61: \bf
! 62: \setlength{\parskip}{0pt}
! 63:
! 64: \begin{slide}{\ns $BBe?tBN$N85$NI=8=J}K!(B}
! 65:
! 66: $B86;O85$K$h$kI=8=$O2DG=(B : $F=\Q[t]/(m(t))$
! 67: $\Rightarrow$ $B78?t$NA}Bg$r>7$/(B
! 68: $\Rightarrow$ $BC`<!3HBg$,8=<BE*(B
! 69: $$F_0=\Q,\quad F_i = F_{i-1}(\alpha_i)\quad (i=1,\ldots,n),\quad F=F_m$$
! 70: $m_i(t,\alpha_1,\ldots,\alpha_{i-1})$ : $\alpha_i$ $B$N:G>.B?9`<0(B $/F_{i-1}$
! 71:
! 72: $m_i$ $B$N4{Ls@-%A%'%C%/$O$+$D$F:$Fq(B
! 73: $\Rightarrow$ knapsack factorization $B$K$h$j$=$&$G$b$J$/$J$C$?(B. $B0J2<(B,
! 74: $$I=\langle m_1(x_1),m_2(x_1,x_2),\ldots,m_n(x_1,\ldots,x_n)\rangle$$
! 75: $B$G(B, $I$ $B$,(B $\Q[X]=\Q[x_1,\ldots,x_n]$ $B$N6KBg%$%G%"%k$H$9$k(B.
! 76: \end{slide}
! 77:
! 78: \begin{slide}{\ns $BBe?tE*?t$N4JLs(B}
! 79:
! 80: $m_i$ : $B<gJQ?t(B $x_i$ $B$K4X$9$k<g78?t$OM-M}?t$H$7$F$h$$(B.
! 81: $\Rightarrow$
! 82: $G=\{m_1,\ldots,m_n\}$ $B$O(B,
! 83: $x_n > x_{n-1} > \cdots > x_1$ $B$J$k<-=q<0=g=x$K4X$9$k(B $I$ $B$N%0%l%V%J!<4pDl(B.
! 84:
! 85: $h(x) \bmod I \in Q[X]/I$ $B$KBP$7(B,
! 86:
! 87: $h_0 \equiv h \bmod I$, $\deg_{x_i}(h_0) < d_i$
! 88: $\Rightarrow$ $h=h\NF_G(h)$
! 89:
! 90: $h_0=\rem_{x_1}(\rem_{x_2}(\cdots \rem_{x_n}(h,m_n)\cdots),m_2),m_1)$
! 91:
! 92: $B$G$b$"$k$,(B, \underline{$B$3$N=g$G7W;;$7$F$O$$$1$J$$(B!!}
! 93:
! 94: ($f(a) \bmod b$ $B$r(B $c=f(a)$ $\Rightarrow$ $c \bmod b$ $B$H7W;;$9$k$h$&$J$b$N(B)
! 95: \end{slide}
! 96:
! 97: \begin{slide}{\ns $BC19`4JLs$K$h$kBe?tE*?t$N4JLs(B}
! 98:
! 99: $B$+$H$$$C$F(B, $B=g=x$rJQ$($l$P$h$$(B, $B$H$$$&$o$1$G$b$J$$(B
! 100:
! 101: \underline{$BB?9`<0>jM><+BN$,4m81(B} : $BB>$NJQ?t$N<!?t$,5^$K>e$,$k(B
! 102:
! 103: $\Rightarrow$ $G$ $B$K$h$kC19`4JLs$rMQ$$$k(B
! 104:
! 105: $B3F4JLs%9%F%C%W$KMQ$$$k(B $m_i$ : $i$ $B$N>.$5$$$b$NM%@h(B
! 106: \end{slide}
! 107:
! 108: \begin{slide}{\ns $B4JLs$NNc(B}
! 109:
! 110: $m_1(x_1)=x_1^7-7x_1+3$,\\
! 111: $m_2(x_1,x_2)=x_2^6+x_1x_2^5+x_1^2x_2^4+x_1^3x_2^3+x_1^4x_2^2+\cdots$\\
! 112: $m_3(x_1,x_2,x_3)=63x_3^4+\cdots$
! 113:
! 114: $B$GDj5A$5$l$k(B $F=\Q(\alpha_1,\alpha_2,\alpha_3)$ $B$O(B $m_1(x_1)$ $B$N(B
! 115: $B:G>.J,2rBN(B.
! 116:
! 117: $(\alpha_1+\alpha_2+\alpha_3)^{20}$ $B$N4JLs(B
! 118:
! 119: $i$ $B$,>.$5$$(B $m_i$ $BM%@h$G4JLs(B : 0.1 $BIC(B
! 120:
! 121: $i$ $B$,Bg$-$$(B $m_i$ $BM%@h$G4JLs(B : 260 $BIC(B
! 122: \end{slide}
! 123:
! 124: \begin{slide}{\ns $B5U857W;;(B}
! 125:
! 126: $B5U857W;;$O%\%H%k%M%C%/$N0l$D(B
! 127:
! 128: $B3HBg<!?t$r(B $d$ $B$H$9$k(B.
! 129:
! 130: $BC13HBg(B $\Rightarrow$ $O(d^2)$ ($B3HD%(B Euclid $B8_=|K!(B)
! 131:
! 132: $BC`<!3HBg$K$b:F5"E*$KE,MQ2DG=(B
! 133:
! 134: $h(x_1,\ldots,x_n) \bmod I$ $B$N5U85$r7W;;(B
! 135:
! 136: $x_n$ $B$K4X$7(B $h$, $m_n$ $B$K3HD%(B Euclid $B8_=|K!$rE,MQ$9$k(B
! 137:
! 138: $\Rightarrow$ $\exists a,\exists b, \exists r$, $ah+bm_n=r(x_1,\ldots,x_{n-1})$
! 139:
! 140: $\Rightarrow$ $r$ $B$N5U85$r7W;;$9$l$P(B, $h$ $B$N5U85$,5a$^$k(B
! 141: \end{slide}
! 142:
! 143: \begin{slide}{\ns $B$3$NJ}K!$NLdBjE@(B}
! 144:
! 145: \begin{itemize}
! 146: \item $BCf4V<0KDD%(B
! 147:
! 148: $B:G=*7k2L$KHf3S$7$F(B, $r$ $B$N5U85$,5pBg$K$J$k>l9g$,$"$k(B.
! 149: ($B7W;;J}K!$K0MB8(B)
! 150:
! 151: \item $B4JLs2=$H$N4X78(B ($BItJ,=*7k<0;;K!$r;H$&>l9g(B)
! 152:
! 153: \begin{itemize}
! 154: \item $h \in (\Q[x_1,\ldots,x_{n-1}])[x_n]$ $B$H8+$J$9(B
! 155:
! 156: $B78?t$N=|;;$OB?9`<0$N@0=|$H$J$k$,(B, $B$3$l$i$K(B
! 157: $B8=$o$l$kJQ?t$KBP$9$k4JLs2=$,9T$o$l$J$$$N$G(B, $B0lHL$KBg$-$JB?9`<0(B
! 158: $B$,78?t$K8=$o$l$k(B.
! 159:
! 160: \item $h\in (\Q(\alpha_1,\ldots,\alpha_{n-1})[x_n]$ $B$H8+$J$9(B
! 161:
! 162: $B78?t=|;;$,BN1i;;$H$J$j(B, $B5U857W;;$,I,MW$H$J$k(B.
! 163: \end{itemize}
! 164: \end{itemize}
! 165: \end{slide}
! 166:
! 167: \begin{slide}{\ns $B%b%8%e%i!<7W;;$K$h$k5U857W;;(B}
! 168:
! 169: $BBe?tE*?t$N7W;;$K$O%b%8%e%i!<7W;;$,M-8z(B
! 170:
! 171: [NORO96], [HOEIJ02]).
! 172:
! 173: \begin{itemize}
! 174: \item $BCf9q>jM>DjM}(B
! 175:
! 176: $B==J,B?$/$NK!(B $p$ $B$KBP$7(B, $BK!(B $p$ $B$G$N5U85$r7W;;(B
! 177:
! 178: $BCf9q>jM>DjM}(B, $B@0?t(B-$BM-M}?tJQ49$K$h$j5U85$rF@$k(B
! 179:
! 180: $BM-8B8D$N(B $p$ $B$r=|$$$FK!(B $p$ $B$G$N5U85$O7W;;$G$-$k(B.
! 181:
! 182: \item $BL$Dj78?tK!(B
! 183: $$M=\{x_1^{e_1}\cdots x_n^{e_n} \bmod I \,|\, 0 \le e_i \le d_i-1
! 184: (i=1,\ldots,n)\}$$ $B$K$h$j5U85$r(B $u = \sum_{t \in M} a_t t$ $B$HI=$7(B, $hu
! 185: \equiv 1 \bmod I$ $B$+$i(B $a_t$ $B$N@~7AJ}Dx<07O$r:n$C$F2r$/(B
! 186: \end{itemize}
! 187: \end{slide}
! 188:
! 189: \begin{slide}{\ns $BL$Dj78?tK!(B + Hensel lifting}
! 190:
! 191: $BL$Dj78?tK!(B $B$O(B $O(d^3)$ $B$@$,(B, $B@~7AJ}Dx<07O$r(B Hensel lifting+$B@0?t(B-$BM-M}?tJQ49(B
! 192: $B$G2r$1$k(B
! 193:
! 194: $\Rightarrow$
! 195:
! 196: \begin{itemize}
! 197: \item $O(d^3)$ $B$OM-8BBN>e$N(B LU $BJ,2r$N$_(B
! 198:
! 199: $B7k2L$,Bg$-$$78?t$r$b$D$J$i$P(B, $B7W;;;~4V$O(B
! 200: Hensel lifting (1 step $B$"$?$j(B $O(d^2)$) $B$,(B dominant
! 201:
! 202: \item $\NF_G(th)$ ($t \in M$) $B$N7W;;$N$_$G@~7AJ}Dx<0$,$G$-$k(B
! 203:
! 204: $BCf4V<0KDD%$dBN=|;;$K$h$kLdBj$O8=$o$l$J$$(B.
! 205: \end{itemize}
! 206: \end{slide}
! 207:
! 208: \begin{slide}{\ns $BBe?tBN>e$N%0%l%V%J!<4pDl7W;;(B}
! 209:
! 210: \underline{$BDjM}(B}
! 211:
! 212: $F = \Q[\alpha_1,\ldots,\alpha_l] = \Q[T]/I$
! 213:
! 214: $I=\langle m_1(t_1),\ldots,m_l(t_1,\ldots,t_l)\rangle$
! 215:
! 216: $J =\langle B \rangle \subset R = F[x_1,\ldots,x_n]$ : $R$ $B$N??$N%$%G%"%k(B
! 217:
! 218: $<$ : $R$ $B$N9`=g=x(B
! 219:
! 220: $<_F$ : $\Q[X]$ $B>e$G(B $<$ $B$KEy$7$/(B, $X >> T$ $B$G$"$k%V%m%C%/=g=x(B
! 221:
! 222: $B_F = B \cup \{m_1,\ldots,m_l\}$
! 223:
! 224: $G_F = \langle B_F\rangle$ $B$N(B $<_F$ $B$K4X$9$k%0%l%V%J!<4pDl(B
! 225:
! 226: $\Rightarrow$ $G=(G_F \setminus \Q[T]) \bmod I$ $B$O(B $J$ $B$N(B $<$ $B$K4X$9$k%0%l%V%J!<4pDl(B
! 227: \end{slide}
! 228:
! 229: \begin{slide}{\ns monic $B2=$N$?$a$K(B S-$BB?9`<0$,A}$($k(B}
! 230:
! 231: $BDjM}$K$h$j(B, $F$ $B>e$N%0%l%V%J!<4pDl7W;;$O(B $\Q$ $B>e$N$=$l$K5"Ce(B
! 232:
! 233: $B<B9T$r4Q;!$9$k$H(B $\cdots$ $B@8@.$5$l$kCf4V4pDl$NF,9`$N(B $t$ $BJQ?t$,$@$s$@$s>CLG(B
! 234: = $BF,78?t$N5U857W;;$r(B S-$BB?9`<0$HC19`4JLs$G<B9T(B
! 235:
! 236: $\Rightarrow$ S-$BB?9`<0$N?t$,A}Bg$7$F$$$k(B
! 237:
! 238: $BJ@32(B : $BITE,@Z$J=g=x$G(B S-$BB?9`<0$,=hM}$5$l$k2DG=@-$bA}$($k(B.
! 239: ($BITI,MW$J78?tKDD%$N2DG=@-(B)
! 240: \end{slide}
! 241:
! 242: \begin{slide}{\ns $B@55,7A$r(B monic $B2=(B}
! 243:
! 244: \begin{itemize}
! 245: \item $BDL>o$N=hM}(B
! 246:
! 247: $S(f,g) \tmred{G} h \neq 0$ $B$J$i$P(B, $G \leftarrow G \cup \{h\}$
! 248:
! 249: \item $BJQ998e$N=hM}(B
! 250:
! 251: $S(f,g) \tmred{G} h(x,t) \neq 0$ $B$J$i$P(B,
! 252: $h(x,\alpha)$ $B$r(B monic $B2=$7$?$b$N(B
! 253: $\tilde{h}(x,\alpha)$ $B$r:n$j(B,
! 254: $G \leftarrow G \cup \{\tilde{h}(x,t)\}$
! 255: \end{itemize}
! 256:
! 257: $B$3$N$h$&$JJQ99$r9T$C$F$b(B $G_F$ $B$,7W;;$G$-$k$3$H$O$"$-$i$+(B
! 258:
! 259: \end{slide}
! 260:
! 261: \begin{slide}{\ns trace $B%"%k%4%j%:%`(B}
! 262:
! 263: $\bmod p$ $B$G$N(Btrace $B%"%k%4%j%:%`$NB39T$KI,MW$J$3$H(B
! 264:
! 265: \begin{itemize}
! 266: \item $\cdots$ $\Q$ $B>e$N4JLs2=$K$"$i$o$l$kJ,Jl$,(B $p$ $B$G3d$j@Z$l$J$$(B
! 267:
! 268: \item $B@55,7A$NF,78?t$,(B $p$ $B$G3d$j@Z$l$J$$(B
! 269: \end{itemize}
! 270:
! 271: $\Rightarrow$ monic $B2=$K(B $p$ $B$G3d$l$kJ,Jl$,$"$i$o$l$J$$(B, $B$H4K$a$i$l$k(B
! 272:
! 273: ($B$"$i$+$8$a%$%G%"%k$N@8@.85$N0l$D$G$"$C$?$H9M$($l$P$h$$(B)
! 274:
! 275: \underline{$BB>$N<B8=J}K!(B}
! 276:
! 277: $\overline{I}=I \bmod p$ $B$,:,4p%$%G%"%k(B
! 278:
! 279: $\Rightarrow$ $GF(p)[t]/\overline{I}$ $B$OM-8BBN$ND>OB(B
! 280:
! 281: $I_p$ : $I$ $B$N78?t$r(B $\Q_{<p>}=\{a/b\,|\, a, b \in Z, p \not{|} b\}$
! 282: $B$K@)8B(B
! 283:
! 284: $\phi$ : $I_p$ $B$+$i$"$kD>OB@.J,$X$N<M1F(B
! 285:
! 286: $B$H$7$F$b$h$$(B
! 287:
! 288: $\Rightarrow$ $BM-8BBN>e$N(B trace $B7W;;$N<j4V$r8:$i$;$k2DG=@-$,$"$k(B.
! 289: \end{slide}
! 290:
! 291: \begin{slide}{\ns Risa/Asir $B>e$G$N<BAu(B : $BC`<!Be?t3HBg(B}
! 292:
! 293: {\tt Alg} : $B%\%G%#It$,:F5"I=8=B?9`<0(B ($B4{B8(B)
! 294:
! 295: {\tt DAlg} : $B%\%G%#It$,J,;6I=8=B?9`<0(B ($B?75,(B) -- Alg $B$+$iJQ49(B
! 296: \begin{verbatim}
! 297: typedef struct oDAlg {
! 298: short id;
! 299: char nid;
! 300: char pad;
! 301: struct oDP *nm; /* $B<B:]$K$O@0?t78?t(B */
! 302: struct oQ *dn; /* $B<B:]$K$O@0?t(B */
! 303: } *DAlg;
! 304: \end{verbatim}
! 305: $BBe?tE*?t$H$7$F$O(B {\tt nm/dn} : $BJ,Jl$rDLJ,$7$F(B {\tt dn} $B$H$9$k(B.
! 306:
! 307: $BB>$K(B, $B4JLsMQ$K3HBgBN%G!<%?$r9=B$BN$H$7$FJ];}(B
! 308:
! 309: {\tt set\_field()} $B$G@_Dj$G$-$k(B.
! 310: \end{slide}
! 311:
! 312: \begin{slide}{\ns Risa/Asir $B>e$G$N<BAu(B : $B%0%l%V%J!<4pDl7W;;(B}
! 313:
! 314: \begin{itemize}
! 315: \item {\tt nd\_gr} $B$*$h$S(B {\tt nd\_gr\_trace} $B$r2~B$(B
! 316:
! 317: $BF~NO$K:G>.B?9`<0$rDI2C$7$F<B9T(B + $B@55,7A$N(B monic $B2=(B
! 318: $BF~NO$O(B {\tt Alg} $B7?$r78?t$K4^$`B?9`<0=89g$G$h$$(B.
! 319:
! 320: \item $BFbItI=8=(B
! 321:
! 322: $BBe?tE*?t$O(B, $B85$NB?9`<0JQ?t$HF1Ey(B, $B@55,2=7W;;$OM-M}?tBN>e$G(B
! 323: $\Rightarrow$ $B78?t$N(B content $B=|5n$,<+F0E*$KE,MQ$5$l$k(B.
! 324:
! 325: \item monic $B2=(B
! 326:
! 327: $B$N:]$K$N$_(B, $BK\Mh$N78?t$,Be?tE*?t(B ({\tt DAlg $B7?(B}) $B$H(B
! 328: $B$7$F<h$j=P$5$l(B, $B5U857W;;$J$I$,9T$o$l$k(B.
! 329:
! 330: \item weight
! 331:
! 332: $BBe?tE*?t$KBP1~$9$k(Bweight $B$r(B 0 $B$K@_Dj(B $\Rightarrow$ sugar $B$r(B
! 333: $BE,@5$K$9$k$?$a(B
! 334: \end{itemize}
! 335: \end{slide}
! 336:
! 337: \begin{slide}{\ns $BB>$N<BAuK!(B}
! 338:
! 339: \underline{$BBe?tE*?t$r40A4$K78?t$H$7$F07$&(B}
! 340:
! 341: $B78?t$K4X$7$F4JLs2=$*$h$S5U857W;;$r9T$&(B
! 342:
! 343: $B<+A3$J<BAu$H8@$($k(B.
! 344:
! 345: content $B=|5n$KAjEv$9$kJ}K!$r?7$?$K9M0F$9$kI,MW(B
! 346: $B$,$"$j(B, $B:#8e$N2]Bj(B.
! 347: \end{slide}
! 348:
! 349: \begin{slide}{\ns $B7W;;$NNc(B}
! 350:
! 351: $\langle \sqrt{2}x^2+(\sqrt{2}+\sqrt{3})xy+\sqrt{3}y^2-\sqrt{3},(\sqrt{2}-2\sqrt{3})x^2+2\sqrt{3}xy+2\sqrt{2}x^2+\sqrt{2}+\sqrt{3}\rangle$ $B$N%0%l%V%J!<7W;;(B
! 352: \begin{verbatim}
! 353: [0] S2=newalg(x^2-2);
! 354: (#0)
! 355: [1] S3=newalg(x^2-3);
! 356: (#1)
! 357: [2] F1=S2*x^2+(S2+S3)*x*y+S3*y^2-S3$
! 358: F2=(S2-2*S3)*x^2+2*S3*x*y+2*S2*x^2+S2+S3]$
! 359: [3] nd_gr_trace([F1,F2],[x,y],1,1,2);
! 360: [90*y^4+(-21*#0*#1-246)*y^2+(16*#0*#1+144),
! 361: 20*x+(15*#0*#1-60)*y^3+(-7*#0*#1+83)*y]
! 362: \end{verbatim}
! 363: \end{slide}
! 364:
! 365: \begin{slide}{\ns $B<B83(B : $BC1:,E:2C(B}
! 366:
! 367: {\small
! 368: \begin{eqnarray*}
! 369: Cyc&=&\{f_1,f_2,f_3,f_4,f_5,f_6,f_7\}\\
! 370: f_1&=&\omega c_5c_4c_3c_2c_1c_0-1\\
! 371: f_2&=&(((((c_5+\omega )c_4+\omega c_5)c_3+\omega c_5c_4)c_2+\omega c_5c_4c_3)c_1+\omega c_5c_4c_3c_2)c_0+\omega c_5c_4c_3c_2c_1\\
! 372: f_3&=&((((c_4+\omega )c_3+\omega c_5)c_2+\omega c_5c_4)c_1+\omega c_5c_4c_3)c_0+c_5c_4c_3c_2c_1+\omega c_5c_4c_3c_2\\
! 373: f_4&=&(((c_3+\omega )c_2+\omega c_5)c_1+\omega c_5c_4)c_0+c_4c_3c_2c_1+c_5c_4c_3c_2+\omega c_5c_4c_3\\
! 374: f_5&=&((c_2+\omega )c_1+\omega c_5)c_0+c_3c_2c_1+c_4c_3c_2+c_5c_4c_3+\omega c_5c_4\\
! 375: f_6&=&(c_1+\omega )c_0+c_2c_1+c_3c_2+c_4c_3+c_5c_4+\omega c_5\\
! 376: f_7&=&c_0+c_1+c_2+c_3+c_4+c_5+\omega
! 377: \end{eqnarray*}}
! 378: $Cyc$: cyclic-7 $B$N(B $c_6$ $B$K(B 1 $B$N86;O(B 7 $B>h:,$rBeF~(B
! 379:
! 380: \underline{$\Q(\omega)$ $B>e$G$N(B GB $B7W;;(B}: $B@F<!2=(B trace $B%"%k%4%j%:%`$K$h$j(B 22 $BIC(B
! 381: (monic $B2=$K(B 2.2 $BIC(B ($B5U857W;;(B 0.2$BIC(B))
! 382:
! 383: \underline{$B:G>.B?9`<0$rE:2C$7$F(B $\Q$ $B>e$G7W;;(B} : 220 $BIC(B
! 384:
! 385:
! 386: \end{slide}
! 387:
! 388: \begin{slide}{\ns $B<B83(B : 2 $B:,E:2C(B}
! 389: {\small
! 390: \begin{eqnarray*}
! 391: Cap&=&\{f_1,f_2,f_3,f_4\}\\
! 392: f_1&=&(2ty-2)x-(\alpha+\beta)zy^2-z\\
! 393: f_2&=&2\beta\alpha^4zx^3+(4ty+\beta)x^2+(4zy^2+4z)x+2ty^3-10y^2-10ty+2\alpha^2+\beta^2\\
! 394: f_3&=&(t^2-1)x+(\beta\alpha^4+\beta^3\alpha^3)tzy-2z\\
! 395: f_4&=&(-z^2+4t^2+\beta\alpha+2\beta^3)zx+(4tz^2+2t^3-10t)y+4z^2-10t^2+\beta\alpha^3\\
! 396: m_1&=&u^7-7u+3\\
! 397: m_2&=&u^6+\alpha u^5+\alpha^2u^4+\alpha^3u^3+\alpha^4u^2+\alpha^5u+\alpha^6-7
! 398: \end{eqnarray*}}
! 399: $Cap$ : $Caprasse$ [SYMBDATA] $B$N78?t$r%i%s%@%`$KBe?tE*?t$KCV$-49$($?(B
! 400:
! 401: $\alpha$, $\beta$ : $t^7-7t+3$ $B$N(B 2 $B:,(B
! 402:
! 403: \underline{$\Q(\alpha,\beta)$ $B>e$G$N(B GB $B7W;;(B} : $B@F<!2=(B trace $B%"%k%4%j%:%`$G(B 589 $BIC(B
! 404: (monic $B2=(B 36 $BIC(B)
! 405:
! 406: \underline{$\Q$ $B>e$G$N7W;;(B} : 1 $B;~4VBT$C$F$b=*N;$7$J$$(B.
! 407: \end{slide}
! 408:
! 409: \begin{slide}{\ns $B<B83(B : 3 $B:,E:2C(B}
! 410:
! 411: $f(x)=x^7-7x+3$ $B$N:G>.J,2rBN(B $F$ $B$O(B 3 $B:,E:2C$G<B8=$5$l$k(B ($B4{=P(B).
! 412:
! 413: $f(x)$ $B$N(B $F$ $B>e0x?tJ,2r$K8=$l$k(B, $F$ $B>e$N(B 2 $B$D$N(B 2 $B<!<0$N(B
! 414: GCD $B7W;;(B (GCD $B$O(B 1 $B<!<0(B) $B%0%l%V%J!<4pDl$G7W;;$9$k(B.
! 415:
! 416: \underline{$F$ $B>e$N(B GB $B7W;;(B} : 0.8 $BIC(B ($B5U857W;;(B 1 $B2sJ,$,BgItJ,(B)
! 417:
! 418: \underline{$\Q$ $B>e$G7W;;(B} : 60 $BIC(B
! 419:
! 420: \end{slide}
! 421:
! 422: \begin{slide}{\ns $B$*$o$j$K(B}
! 423:
! 424: \begin{itemize}
! 425: \item DCGB $B$H$N4X78(B
! 426:
! 427: $B:4F#$i(B [SATO01] $B$K$h$k(B DCGB $B$H$NHf3S(B
! 428:
! 429: \item change of ordering, RUR
! 430:
! 431: FGLM $B$d(B RUR $B$N7W;;$NBe?tBN>e$X$N3HD%(B
! 432:
! 433: ($BBe?tBN>e(B? or $BM-M}?tBN>e(B?)
! 434:
! 435: \item $BBe?tBN1i;;$N<BAu$N8zN(2=(B
! 436:
! 437: $BBe?tBN$NI=8=$r(B {\tt DP} $B$+$i(B, $B$h$j8zN($h$$(B
! 438: $B<BAu$KJQ99$9$k(B
! 439: \end{itemize}
! 440:
! 441: \end{slide}
! 442:
! 443: \begin{slide}{\ns $BJ88%(B}
! 444:
! 445: [HOEIJ02] M.v. Hoeij, M. Monagan, A Modular GCD algorithm over Number Fields presented with Multiple Extensions. Proc. ISSAC'02 (2002), 109-116.
! 446:
! 447: [NORO96] $BLnO$(B, $BC`<!Be?t3HBgBN>e$G$N(B 1 $BJQ?tB?9`<0$N(B GCD $B$K$D$$$F(B. $B?tM}8&9V5fO?(B 920 (1996), 1-8.
! 448:
! 449: [SATO01] Y. Sato, A. Suzuki, Discrete Comprehensive Gr\"obner Bases.
! 450: Proc. ISSAC'01 (2001), 292-296.
! 451:
! 452: [SYMBDATA] {\tt http://www.SymbolicData.org}.
! 453: \end{slide}
! 454:
! 455: %\begin{slide}{\ns }
! 456: %\end{slide}
! 457:
! 458: \end{document}
! 459:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>