[BACK]Return to heterotic-network.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / ascm2001p

Annotation of OpenXM/doc/ascm2001p/heterotic-network.tex, Revision 1.1

1.1     ! noro        1: % $OpenXM$
        !             2: \section{Applications}
        !             3:
        !             4: \subsection{Heterogeneous Servers}
        !             5:
        !             6: \def\pd#1{ \partial_{#1} }
        !             7:
        !             8: By using OpenXM, we can treat OpenXM servers essentially
        !             9: like a subroutine.
        !            10: Since OpenXM provides a universal stack machine which does not
        !            11: depend each servers,
        !            12: it is relatively easy to install new servers.
        !            13: We can build a new computer math system by assembling
        !            14: different OpenXM servers.
        !            15: It is similar to building a toy house by LEGO blocks.
        !            16:
        !            17: We will see two examples of custom-made systems
        !            18: built by OpenXM servers.
        !            19:
        !            20: \subsubsection{Computation of annihilating ideals by kan/sm1 and ox\_asir}
        !            21:
        !            22: Let $D = {\bf Q} \langle x_1, \ldots, x_n , \pd{1}, \ldots, \pd{n} \rangle$
        !            23: be the ring of differential operators.
        !            24: For a given polynomial
        !            25: $ f \in {\bf Q}[x_1, \ldots, x_n] $,
        !            26: the annihilating ideal of $f^{-1}$ is defined as
        !            27: $$ {\rm Ann}\, f^{-1} = \{ \ell \in D \,|\,
        !            28:   \ell \bullet f^{-1} = 0 \}.
        !            29: $$
        !            30: Here, $\bullet$ denotes the action of $D$ to functions.
        !            31: The annihilating ideal can be regarded as the maximal differential
        !            32: equations for the function $f^{-1}$.
        !            33: An algorithm to determine generators of the annihilating ideal
        !            34: was given by Oaku (see, e.g., \cite[5.3]{sst-book}).
        !            35: His algorithm reduces the problem to computations of Gr\"obner bases
        !            36: in $D$ and to find the minimal integral root of a polynomial.
        !            37: This algorithm (the function {\tt annfs}) is implemented by
        !            38: kan/sm1 \cite{kan}, for Gr\"obner basis computation in $D$, and
        !            39: {\tt ox\_asir}, to factorize polynomials to find the integral
        !            40: roots.
        !            41: These two OpenXM compliant systems are integrated by
        !            42: the OpenXM protocol.
        !            43:
        !            44: %For example, the following is a sm1 session to find the annihilating
        !            45: %ideal for $f = x^3 - y^2 z^2$.
        !            46: %\begin{verbatim}
        !            47: %sm1>[(x^3-y^2 z^2) (x,y,z)] annfs ::
        !            48: %Starting ox_asir server.
        !            49: %Byte order for control process is network byte order.
        !            50: %Byte order for engine process is network byte order.
        !            51: %[[-y*Dy+z*Dz, 2*x*Dx+3*y*Dy+6, -2*y*z^2*Dx-3*x^2*Dy,
        !            52: %-2*y^2*z*Dx-3*x^2*Dz, -2*z^3*Dx*Dz-3*x^2*Dy^2-2*z^2*Dx],
        !            53: % [-1,-139968*s^7-1119744*s^6-3802464*s^5-7107264*s^4
        !            54: %     -7898796*s^3-5220720*s^2-1900500*s-294000]]
        !            55: %\end{verbatim}
        !            56: %The last polynomial is factored as
        !            57: %$-12(s+1)(3s+5)(3s+4)(6s+5)(6s+7)$
        !            58: %and the minimal integral root is $-1$
        !            59: %as shown in the output.
        !            60: %
        !            61: %Similarly,
        !            62: %an algorithm to stratify singularity
        !            63: %\cite{oaku-advance}
        !            64: %is implemented by
        !            65: %kan/sm1 \cite{kan}, for Gr\"obner basis computation in $D$, and
        !            66: %{\tt ox\_asir}, for primary ideal decompositions.
        !            67:
        !            68: %\subsubsection{A Course on Solving Algebraic Equations}
        !            69: %
        !            70: %Risa/Asir \cite{asir} is a general computer algebra system
        !            71: %which can be used for Gr\"obner basis computations for zero dimensional ideal
        !            72: %with ${\bf Q}$ coefficients.
        !            73: %However, it is not good at graphical presentations and
        !            74: %numerical methods.
        !            75: %We integrated Risa/Asir, ox\_phc (based on PHC pack by Verschelde \cite{phc}
        !            76: %for the polyhedral homotopy method) and
        !            77: %ox\_gnuplot (GNUPLOT) servers
        !            78: %to teach a course on solving algebraic equations.
        !            79: %This course was presented with the text book \cite{CLO},
        !            80: %which discusses
        !            81: %on the Gr\"obner basis method and the polyhedral homotopy method
        !            82: %to solve systems of algebraic equations.
        !            83: %We taught the course
        !            84: %with a unified environment
        !            85: %controlled by the Asir user language, which is similar to C.
        !            86: %The following is an Asir session to solve algebraic equations by calling
        !            87: %the PHC pack (Figure \ref{katsura} is the output of {\tt [292]}):
        !            88: %\begin{verbatim}
        !            89: %[287] phc(katsura(7));
        !            90: %The detailed output is in the file tmp.output.*
        !            91: %The answer is in the variable Phc.
        !            92: %0
        !            93: %[290] B=map(first,Phc)$
        !            94: %[291] gnuplot_plotDots([],0)$
        !            95: %[292] gnuplot_plotDots(B,0)$
        !            96: %\end{verbatim}
        !            97: %
        !            98: %\begin{figure}[htbp]
        !            99: %\epsfxsize=8.5cm
        !           100: %\epsffile{katsura7.ps}
        !           101: %\caption{The first components of the solutions to the system of algebraic equations Katsura 7.}
        !           102: %\label{katsura}
        !           103: %\end{figure}
        !           104:
        !           105: \subsubsection{Asir-contrib-HG package to solve GKZ hypergeometric systems}
        !           106:
        !           107: GKZ hypergeometric system is a system of linear partial differential
        !           108: equations associated to $A=(a_{ij})$
        !           109: (an integer $d\times n$-matrix of rank $d$)
        !           110: and $\beta \in {\bf C}^d$.
        !           111: The book by Saito, Sturmfels and Takayama \cite{sst-book}
        !           112: discusses algorithmic methods to construct series solutions of the GKZ
        !           113: system.
        !           114: The current Asir-contrib-HG package is built in order to implement
        !           115: these algorithms.
        !           116: What we need for the implementation are mainly
        !           117: (1) Gr\"obner basis computation both in the ring of polynomials
        !           118: and in the ring of differential operators,
        !           119: and
        !           120: (2) enumeration of all the Gr\"obner bases of toric ideals.
        !           121: Asir and kan/sm1 provide functions for (1) and
        !           122: {\tt TiGERS} provides a function for (2).
        !           123: These components communicate each other by OpenXM-RFC 100 protocol.
        !           124:
        !           125: %Let us see an example how to construct series solution of a GKZ hypergeometric
        !           126: %system.
        !           127: %The function
        !           128: %{\tt dsolv\_starting\_term} finds the leading terms of series solutions
        !           129: %to a given direction.
        !           130: %\begin{enumerate}
        !           131: %\item Generate the GKZ hypergeometric system associated to
        !           132: %                    $\pmatrix{ 1&1&1&1&1 \cr
        !           133: %                              1&1&0&-1&0 \cr
        !           134: %                              0&1&1&-1&0 \cr}$
        !           135: %by the function {\tt sm1\_gkz}.
        !           136: %\begin{verbatim}
        !           137: %[1076] F = sm1_gkz(
        !           138: %      [ [[1,1,1,1,1],
        !           139: %         [1,1,0,-1,0],
        !           140: %         [0,1,1,-1,0]], [1,0,0]]);
        !           141: %[[x5*dx5+x4*dx4+x3*dx3+x2*dx2+x1*dx1-1,
        !           142: %  -x4*dx4+x2*dx2+x1*dx1,
        !           143: %  -x4*dx4+x3*dx3+x2*dx2,
        !           144: %  -dx2*dx5+dx1*dx3,dx5^2-dx2*dx4],
        !           145: % [x1,x2,x3,x4,x5]]
        !           146: %\end{verbatim}
        !           147: %\item Find the leading terms of this system to the direction
        !           148: %$(1,1,1,1,0)$.
        !           149: %\begin{verbatim}
        !           150: %[1077] A= dsolv_starting_term(F[0],F[1],
        !           151: %                            [1,1,1,1,0])$
        !           152: %Computing the initial ideal.
        !           153: %Done.
        !           154: %Computing a primary ideal decomposition.
        !           155: %Primary ideal decomposition of
        !           156: %the initial Frobenius ideal
        !           157: %to the direction [1,1,1,1,0] is
        !           158: %[[[x5+2*x4+x3-1,x5+3*x4-x2-1,
        !           159: %   x5+2*x4+x1-1,3*x5^2+(8*x4-6)*x5-8*x4+3,
        !           160: %   x5^2-2*x5-8*x4^2+1,x5^3-3*x5^2+3*x5-1],
        !           161: % [x5-1,x4,x3,x2,x1]]]
        !           162: %
        !           163: %----------- root is [ 0 0 0 0 1 ]
        !           164: %----------- dual system is
        !           165: %[x5^2+(-3/4*x4-1/2*x3-1/4*x2-1/2*x1)*x5+1/8*x4^2
        !           166: % +(1/4*x3+1/4*x1)*x4+1/4*x2*x3-1/8*x2^2+1/4*x1*x2,
        !           167: % x4-2*x3+3*x2-2*x1,x5-x3+x2-x1,1]
        !           168: %\end{verbatim}
        !           169: %\item From the output, we can see that we have four possible
        !           170: %leading terms.
        !           171: %Factoring these leading terms, we get the following simpler expressions.
        !           172: %The third entry
        !           173: %{\tt [[1,1],[x5,1],[-log(x1)+log(x2)-log(x3)+log(x5),1]], }
        !           174: %means that there exists a series solution which starts with
        !           175: %\[
        !           176: %x_5 (-\log x_1 + \log x_2 - \log x_3 + \log x_5) =
        !           177: %   x_5 \log \frac{x_2 x_5}{x_1 x_3}
        !           178: %\]
        !           179: %\begin{verbatim}
        !           180: %[1078] A[0];
        !           181: %[[ 0 0 0 0 1 ]]
        !           182: %[1079] map(fctr,A[1][0]);
        !           183: %[[[1/8,1],[x5,1],[log(x2)+log(x4)-2*log(x5),1],
        !           184: %   [2*log(x1)-log(x2)+2*log(x3)+log(x4)-4*log(x5)
        !           185: %    ,1]],
        !           186: % [[1,1],[x5,1],
        !           187: %   [-2*log(x1)+3*log(x2)-2*log(x3)+log(x4),1]],
        !           188: % [[1,1],[x5,1],
        !           189: %   [-log(x1)+log(x2)-log(x3)+log(x5),1]],
        !           190: % [[1,1],[x5,1]]]
        !           191: %\end{verbatim}
        !           192: %\end{enumerate}
        !           193:
        !           194:
        !           195:
        !           196:
        !           197:
        !           198:
        !           199:
        !           200:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>