[BACK]Return to homogeneous-network.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / ascm2001p

Diff for /OpenXM/doc/ascm2001p/homogeneous-network.tex between version 1.3 and 1.4

version 1.3, 2001/06/20 02:39:25 version 1.4, 2001/06/20 02:50:16
Line 1 
Line 1 
 % $OpenXM: OpenXM/doc/ascm2001p/homogeneous-network.tex,v 1.2 2001/06/20 01:43:12 noro Exp $  % $OpenXM: OpenXM/doc/ascm2001p/homogeneous-network.tex,v 1.3 2001/06/20 02:39:25 noro Exp $
   
 \subsection{Distributed computation with homogeneous servers}  \subsection{Distributed computation with homogeneous servers}
 \label{section:homog}  \label{section:homog}
Line 50  def dgr(G,V,Mod,O)
Line 50  def dgr(G,V,Mod,O)
 }  }
 \end{verbatim}  \end{verbatim}
   
 %\subsubsection{Nesting of client-server communication}  \subsubsection{Nesting of client-server communication}
 %  
 %Under OpenXM-RFC 100 an OpenXM server can be a client of other servers.  Under OpenXM-RFC 100 an OpenXM server can be a client of other servers.
 %Figure \ref{tree} illustrates a tree-like structure of an OpenXM  Figure \ref{tree} illustrates a tree-like structure of an OpenXM
 %client-server communication.  client-server communication.
 %\begin{figure}  \begin{figure}
 %\label{tree}  \label{tree}
 %\begin{center}  \begin{center}
 %\begin{picture}(200,70)(0,0)  \begin{picture}(200,70)(0,0)
 %\put(70,70){\framebox(40,15){client}}  \put(70,70){\framebox(40,15){client}}
 %\put(20,30){\framebox(40,15){server}}  \put(20,30){\framebox(40,15){server}}
 %\put(70,30){\framebox(40,15){server}}  \put(70,30){\framebox(40,15){server}}
 %\put(120,30){\framebox(40,15){server}}  \put(120,30){\framebox(40,15){server}}
 %\put(0,0){\framebox(40,15){server}}  \put(0,0){\framebox(40,15){server}}
 %\put(50,0){\framebox(40,15){server}}  \put(50,0){\framebox(40,15){server}}
 %\put(150,0){\framebox(40,15){server}}  \put(150,0){\framebox(40,15){server}}
 %  
 %\put(90,70){\vector(-2,-1){43}}  \put(90,70){\vector(-2,-1){43}}
 %\put(90,70){\vector(0,-1){21}}  \put(90,70){\vector(0,-1){21}}
 %\put(90,70){\vector(2,-1){43}}  \put(90,70){\vector(2,-1){43}}
 %\put(40,30){\vector(-2,-1){22}}  \put(40,30){\vector(-2,-1){22}}
 %\put(40,30){\vector(2,-1){22}}  \put(40,30){\vector(2,-1){22}}
 %\put(140,30){\vector(2,-1){22}}  \put(140,30){\vector(2,-1){22}}
 %\end{picture}  \end{picture}
 %\caption{Tree-like structure of client-server communication}  \caption{Tree-like structure of client-server communication}
 %\end{center}  \end{center}
 %\end{figure}  \end{figure}
 %Such a computational model is useful for parallel implementation of  Such a computational model is useful for parallel implementation of
 %algorithms whose task can be divided into subtasks recursively.  algorithms whose task can be divided into subtasks recursively.
 %  
 %A typical example is {\it quicksort}, where an array to be sorted is  %A typical example is {\it quicksort}, where an array to be sorted is
 %partitioned into two sub-arrays and the algorithm is applied to each  %partitioned into two sub-arrays and the algorithm is applied to each
 %sub-array. In each level of recursion, two subtasks are generated  %sub-array. In each level of recursion, two subtasks are generated
Line 132  def dgr(G,V,Mod,O)
Line 132  def dgr(G,V,Mod,O)
 %}  %}
 %\end{verbatim}  %\end{verbatim}
 %  %
 %A typical example is a parallelization of the Cantor-Zassenhaus  A typical example is a parallelization of the Cantor-Zassenhaus
 %algorithm for polynomial factorization over finite fields.  algorithm for polynomial factorization over finite fields.
 %which is a recursive algorithm.  which is a recursive algorithm.
 %At each level of the recursion, a given polynomial can be  At each level of the recursion, a given polynomial can be
 %divided into two non-trivial factors with some probability by using  divided into two non-trivial factors with some probability by using
 %a randomly generated polynomial as a {\it separator}.  a randomly generated polynomial as a {\it separator}.
 %We can apply the following simple parallelization:  We can apply the following simple parallelization:
 %When two non-trivial factors are generated on a server,  When two non-trivial factors are generated on a server,
 %one is sent to another server and the other factor is factorized on the server  one is sent to another server and the other factor is factorized on the server
 %itself.  itself.
 %\begin{verbatim}  %\begin{verbatim}
 %/* factorization of F */  %/* factorization of F */
 %/* E = degree of irreducible factors in F */  %/* E = degree of irreducible factors in F */

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.4

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>