[BACK]Return to homogeneous-network.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / ascm2001p

Annotation of OpenXM/doc/ascm2001p/homogeneous-network.tex, Revision 1.2

1.2     ! noro        1: % $OpenXM: OpenXM/doc/ascm2001p/homogeneous-network.tex,v 1.1 2001/06/19 07:32:58 noro Exp $
1.1       noro        2:
                      3: \subsection{Distributed computation with homogeneous servers}
                      4: \label{section:homog}
                      5:
                      6: One of the aims of OpenXM is a parallel speedup by a distributed computation
                      7: with homogeneous servers. As the current specification of OpenXM does
                      8: not include communication between servers, one cannot expect
                      9: the maximal parallel speedup. However it is possible to execute
                     10: several types of distributed computation as follows.
                     11:
                     12: \subsubsection{Nesting of client-server communication}
                     13:
                     14: Under OpenXM-RFC 100 an OpenXM server can be a client of other servers.
                     15: Figure \ref{tree} illustrates a tree-like structure of an OpenXM
                     16: client-server communication.
                     17: \begin{figure}
                     18: \label{tree}
                     19: \begin{center}
1.2     ! noro       20: \begin{picture}(200,70)(0,0)
        !            21: \put(70,70){\framebox(40,15){client}}
        !            22: \put(20,30){\framebox(40,15){server}}
        !            23: \put(70,30){\framebox(40,15){server}}
        !            24: \put(120,30){\framebox(40,15){server}}
1.1       noro       25: \put(0,0){\framebox(40,15){server}}
                     26: \put(50,0){\framebox(40,15){server}}
1.2     ! noro       27: \put(150,0){\framebox(40,15){server}}
1.1       noro       28:
1.2     ! noro       29: \put(90,70){\vector(-2,-1){43}}
        !            30: \put(90,70){\vector(0,-1){21}}
        !            31: \put(90,70){\vector(2,-1){43}}
        !            32: \put(40,30){\vector(-2,-1){22}}
        !            33: \put(40,30){\vector(2,-1){22}}
        !            34: \put(140,30){\vector(2,-1){22}}
1.1       noro       35: \end{picture}
                     36: \caption{Tree-like structure of client-server communication}
                     37: \end{center}
                     38: \end{figure}
                     39: Such a computational model is useful for parallel implementation of
                     40: algorithms whose task can be divided into subtasks recursively.
                     41:
                     42: %A typical example is {\it quicksort}, where an array to be sorted is
                     43: %partitioned into two sub-arrays and the algorithm is applied to each
                     44: %sub-array. In each level of recursion, two subtasks are generated
                     45: %and one can ask other OpenXM servers to execute them.
                     46: %Though it makes little contribution to the efficiency in the case of
                     47: %quicksort, we present an Asir program of this distributed quicksort
                     48: %to demonstrate that OpenXM gives an easy way to test this algorithm.
                     49: %In the program, a predefined constant {\tt LevelMax} determines
                     50: %whether new servers are launched or whole subtasks are done on the server.
                     51: %
                     52: %\begin{verbatim}
                     53: %#define LevelMax 2
                     54: %extern Proc1, Proc2;
                     55: %Proc1 = -1$ Proc2 = -1$
                     56: %
                     57: %/* sort [A[P],...,A[Q]] by quicksort */
                     58: %def quickSort(A,P,Q,Level) {
                     59: %  if (Q-P < 1) return A;
                     60: %  Mp = idiv(P+Q,2); M = A[Mp]; B = P; E = Q;
                     61: %  while (1) {
                     62: %    while (A[B] < M) B++;
                     63: %    while (A[E] > M && B <= E) E--;
                     64: %    if (B >= E) break;
                     65: %    else { T = A[B]; A[B] = A[E]; A[E] = T; E--; }
                     66: %  }
                     67: %  if (E < P) E = P;
                     68: %  if (Level < LevelMax) {
                     69: %   /* launch new servers if necessary */
                     70: %   if (Proc1 == -1) Proc1 = ox_launch(0);
                     71: %   if (Proc2 == -1) Proc2 = ox_launch(0);
                     72: %   /* send the requests to the servers */
                     73: %   ox_rpc(Proc1,"quickSort",A,P,E,Level+1);
                     74: %   ox_rpc(Proc2,"quickSort",A,E+1,Q,Level+1);
                     75: %   if (E-P < Q-E) {
                     76: %     A1 = ox_pop_local(Proc1);
                     77: %     A2 = ox_pop_local(Proc2);
                     78: %   }else{
                     79: %     A2 = ox_pop_local(Proc2);
                     80: %     A1 = ox_pop_local(Proc1);
                     81: %   }
                     82: %   for (I=P; I<=E; I++) A[I] = A1[I];
                     83: %   for (I=E+1; I<=Q; I++) A[I] = A2[I];
                     84: %   return(A);
                     85: %  }else{
                     86: %   /* everything is done on this server */
                     87: %   quickSort(A,P,E,Level+1);
                     88: %   quickSort(A,E+1,Q,Level+1);
                     89: %   return(A);
                     90: %  }
                     91: %}
                     92: %\end{verbatim}
                     93:
                     94: A typical example is a parallelization of the Cantor-Zassenhaus
                     95: algorithm for polynomial factorization over finite fields.
                     96: which is a recursive algorithm.
                     97: At each level of the recursion, a given polynomial can be
                     98: divided into two non-trivial factors with some probability by using
                     99: a randomly generated polynomial as a {\it separator}.
                    100: We can apply the following simple parallelization:
                    101: When two non-trivial factors are generated on a server,
                    102: one is sent to another server and the other factor is factorized on the server
                    103: itself.
                    104: %\begin{verbatim}
                    105: %/* factorization of F */
                    106: %/* E = degree of irreducible factors in F */
                    107: %def c_z(F,E,Level)
                    108: %{
                    109: %  V = var(F); N = deg(F,V);
                    110: %  if ( N == E ) return [F];
                    111: %  M = field_order_ff(); K = idiv(N,E); L = [F];
                    112: %  while ( 1 ) {
                    113: %    /* gererate a random polynomial */
                    114: %    W = monic_randpoly_ff(2*E,V);
                    115: %    /* compute a power of the random polynomial */
                    116: %    T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    117: %    if ( !(W = T-1) ) continue;
                    118: %    /* G = GCD(F,W^((M^E-1)/2)) mod F) */
                    119: %    G = ugcd(F,W);
                    120: %    if ( deg(G,V) && deg(G,V) < N ) {
                    121: %      /* G is a non-trivial factor of F */
                    122: %      if ( Level >= LevelMax ) {
                    123: %        /* everything is done on this server */
                    124: %        L1 = c_z(G,E,Level+1);
                    125: %        L2 = c_z(sdiv(F,G),E,Level+1);
                    126: %      } else {
                    127: %        /* launch a server if necessary */
                    128: %        if ( Proc1 < 0 ) Proc1 = ox_launch();
                    129: %        /* send a request with Level = Level+1 */
                    130: %        /* ox_c_z is a wrapper of c_z on the server */
                    131: %        ox_cmo_rpc(Proc1,"ox_c_z",lmptop(G),E,
                    132: %            setmod_ff(),Level+1);
                    133: %        /* the rest is done on this server */
                    134: %        L2 = c_z(sdiv(F,G),E,Level+1);
                    135: %        L1 = map(simp_ff,ox_pop_cmo(Proc1));
                    136: %      }
                    137: %      return append(L1,L2);
                    138: %    }
                    139: %  }
                    140: %}
                    141: %\end{verbatim}
                    142: %
                    143: %
                    144: %
                    145: %
                    146: %
                    147: %
                    148: %
1.2     ! noro      149:
        !           150: \subsubsection{Product of univariate polynomials}
        !           151:
        !           152: Shoup \cite{Shoup} showed that the product of univariate polynomials
        !           153: with large degrees and large coefficients can be computed efficiently
        !           154: by FFT over small finite fields and Chinese remainder theorem.
        !           155: It can be easily parallelized:
        !           156:
        !           157: \begin{tabbing}
        !           158: Input :\= $f_1, f_2 \in {\bf Z}[x]$ such that $deg(f_1), deg(f_2) < 2^M$\\
        !           159: Output : $f = f_1f_2$ \\
        !           160: $P \leftarrow$ \= $\{m_1,\cdots,m_N\}$ where $m_i$ is an odd prime, \\
        !           161: \> $2^{M+1}|m_i-1$ and $m=\prod m_i $ is sufficiently large. \\
        !           162: Separate $P$ into disjoint subsets $P_1, \cdots, P_L$.\\
        !           163: for \= $j=1$ to $L$ $M_j \leftarrow \prod_{m_i\in P_j} m_i$\\
        !           164: Compute $F_j$ such that $F_j \equiv f_1f_2 \bmod M_j$\\
        !           165: \> and $F_j \equiv 0 \bmod m/M_j$ in parallel.\\
        !           166: \> (The product is computed by FFT.)\\
        !           167: return $\phi_m(\sum F_j)$\\
        !           168: (For $a \in {\bf Z}$, $\phi_m(a) \in (-m/2,m/2)$ and $\phi_m(a)\equiv a \bmod m$)
        !           169: \end{tabbing}
        !           170:
        !           171: Figure \ref{speedup}
        !           172: shows the speedup factor under the above distributed computation
        !           173: on Risa/Asir. For each $n$, two polynomials of degree $n$
        !           174: with 3000bit coefficients are generated and the product is computed.
        !           175: The machine is FUJITSU AP3000,
        !           176: a cluster of Sun workstations connected with a high speed network
        !           177: and MPI over the network is used to implement OpenXM.
        !           178: \begin{figure}[htbp]
        !           179: \epsfxsize=8.5cm
        !           180: \epsffile{speedup.ps}
        !           181: \caption{Speedup factor}
        !           182: \label{speedup}
        !           183: \end{figure}
        !           184:
        !           185: If the number of servers is $L$ and the inputs are fixed, then the cost to
        !           186: compute $F_j$ in parallel is $O(1/L)$, whereas the cost
        !           187: to send and receive polynomials is $O(L)$ if {\tt ox\_push\_cmo()} and
        !           188: {\tt ox\_pop\_cmo()} are repeatedly applied on the client.
        !           189: Therefore the speedup is limited and the upper bound of
        !           190: the speedup factor depends on the ratio of
        !           191: the computational cost and the communication cost for each unit operation.
        !           192: Figure \ref{speedup} shows that
        !           193: the speedup is satisfactory if the degree is large and $L$
        !           194: is not large, say, up to 10 under the above environment.
        !           195: If OpenXM provides collective operations for broadcast and reduction
        !           196: such as {\tt MPI\_Bcast} and {\tt MPI\_Reduce} respectively, the cost of
        !           197: sending $f_1$, $f_2$ and gathering $F_j$ may be reduced to $O(\log_2L)$
        !           198: and we can expect better results in such a case. In order to implement
        !           199: such operations we need new specifications for inter-sever communication
        !           200: and the session management, which will be proposed as OpenXM-RFC 102.
        !           201: We note that preliminary experiments show the collective operations
        !           202: work well on OpenXM.
        !           203:
        !           204: %\subsubsection{Competitive distributed computation by various strategies}
        !           205: %
        !           206: %SINGULAR \cite{Singular} implements {\it MP} interface for distributed
        !           207: %computation and a competitive Gr\"obner basis computation is
        !           208: %illustrated as an example of distributed computation.
        !           209: %Such a distributed computation is also possible on OpenXM as follows:
        !           210: %
        !           211: %The client creates two servers and it requests
        !           212: %Gr\"obner basis comutations from the homogenized input and the input itself
        !           213: %to the servers.
        !           214: %The client watches the streams by {\tt ox\_select()}
        !           215: %and the result which is returned first is taken. Then the remaining
        !           216: %server is reset.
        !           217: %
        !           218: %\begin{verbatim}
        !           219: %/* G:set of polys; V:list of variables */
        !           220: %/* O:type of order; P0,P1: id's of servers */
        !           221: %def dgr(G,V,O,P0,P1)
        !           222: %{
        !           223: %  P = [P0,P1]; /* server list */
        !           224: %  map(ox_reset,P); /* reset servers */
        !           225: %  /* P0 executes non-homogenized computation */
        !           226: %  ox_cmo_rpc(P0,"dp_gr_main",G,V,0,1,O);
        !           227: %  /* P1 executes homogenized computation */
        !           228: %  ox_cmo_rpc(P1,"dp_gr_main",G,V,1,1,O);
        !           229: %  map(ox_push_cmd,P,262); /* 262 = OX_popCMO */
        !           230: %  F = ox_select(P); /* wait for data */
        !           231: %  /* F[0] is a server's id which is ready */
        !           232: %  R = ox_get(F[0]);
        !           233: %  if ( F[0] == P0 ) {
        !           234: %    Win = "nonhomo"; Lose = P1;
        !           235: %  } else {
        !           236: %    Win = "homo"; Lose = P0;
        !           237: %  }
        !           238: %  ox_reset(Lose); /* reset the loser */
        !           239: %  return [Win,R];
        !           240: %}
        !           241: %\end{verbatim}
        !           242:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>