Annotation of OpenXM/doc/ascm2001p/ohp-ja.tex, Revision 1.1
1.1 ! takayama 1: %% $OpenXM$
! 2: \documentclass{slides}
! 3: %%\documentclass[12pt]{article}
! 4: \usepackage{color}
! 5: \usepackage{epsfig}
! 6: \newcommand{\htmladdnormallink}[2]{#1}
! 7: \begin{document}
! 8: \noindent
! 9: {\color{green} OpenXM-RFC 100 and 101 $B$N@_7W$H<BAu(B}
! 10:
! 11: \noindent
! 12: M.Maekawa ($BA0(B $B@n(B $B!!(B $B>-(B $B=((B), \\ M.Noro ($BLn(B $BO$(B $B!!(B $B@5(B $B9T(B), \\
! 13: K.Ohara ($B>.(B $B86(B $B!!(B $B8y(B $BG$(B), \\ N.Takayama ($B9b(B $B;3(B $B!!(B $B?.(B $B5#(B), \\
! 14: Y.Tamura ($BED(B $BB<(B $B!!(B $B63(B $B;N(B)\\
! 15: \htmladdnormallink{{\color{red}http://www.openxm.org}}{{\color{red}http://www.openxm.org}}
! 16:
! 17:
! 18: \newpage
! 19: \noindent
! 20: {\color{red} 1. Architecture} \\
! 21: ($B8=:_$"$k(B)$B?t3X%=%U%H%&%(%"%7%9%F%`$NE}9g2=(B.
! 22:
! 23: $B$3$N%W%m%8%'%/%H$NFs$D$N<g$?$k1~MQ(B \\
! 24: \begin{enumerate}
! 25: \item $BBPOCE*$KMxMQ2DG=$JJ,;6JBNs7W;;4D6-$N9=C[(B
! 26: {\color{blue} Risa/Asir}
! 27: (computer algebra system for general purpose,
! 28: open source (c) Fujitsu, \\
! 29: http://www.openxm.org, \\
! 30: http://risa.cs.ehime-u.ac.jp, \\
! 31: http://www.math.kobe-u.ac.jp/Asir/asir.html)
! 32: \item e-Bateman $B7W2h(B
! 33: (21 $B@$5*$NEE;RG^BN$K$h$kD61[4X?tO@=8(B)\\
! 34: $BBh0lCJ3,(B: $BD64v2?4X?t$N8x<0$N@8@.$H8!>Z(B.
! 35: \end{enumerate}
! 36: \newpage
! 37:
! 38: \noindent
! 39: OpenXM-RFC 100 \\
! 40: {\color{green} Control}: \\
! 41: \begin{enumerate}
! 42: \item $B%/%i%$%"%s%H%5!<%P%b%G%k(B. $BLZ9=B$$N%W%m%;%9(B.
! 43: \item $B8=:_$"$k?t3X%=%U%H%&%(%"$r(B OpenXM {\color{red} $B%9%?%C%/%^%7%s(B}
! 44: $B$GJq$`(B.
! 45: \item execute\_string
! 46: \begin{verbatim}
! 47: Pid = ox_launch(0,"ox_asir");
! 48: ox_execute_string(Pid," poly_factor(x^10-1);");
! 49: \end{verbatim}
! 50: \end{enumerate}
! 51: \newpage
! 52:
! 53: \noindent
! 54: {\color{green} Data}: \\
! 55: \begin{tabular}{|c|c|}
! 56: \hline
! 57: {\color{red} TAG}& {\color{blue} BODY} \\
! 58: \hline
! 59: \end{tabular} \\
! 60: $BFs$D$NAX(B: {\color{green} OX message} $BAX(B.
! 61: $B%3%^%s%I(B, CMO, $B$=$NB>$N7A<0$K$h$k%G!<%?$NAX(B.
! 62:
! 63: \noindent
! 64: {\color{blue} $BNc(B 1}: \\
! 65: \begin{verbatim}
! 66: P = ox_launch(0,"ox_sm1");
! 67: ox_push_cmo(P,1);
! 68: ox_push_cmo(P,1);
! 69: ox_execute_string(P,"add");
! 70: ox_pop_cmo(P);
! 71: \end{verbatim}
! 72:
! 73: {\color{green} CMO} $B$O(B OpenMath $B$H$*$J$8$h$&$K(B XML $B$rMQ$$$?(B
! 74: $B?t3X%G!<%?$N%(%s%3!<%G%#%s%0K!(B.
! 75:
! 76: \begin{tabular}{|c|c|c|}
! 77: \hline
! 78: {\tt OX\_DATA} & {\it CMO\_ZZ} & 1 \\
! 79: \hline
! 80: \end{tabular} \\
! 81: \begin{tabular}{|c|c|c|}
! 82: \hline
! 83: {\tt OX\_DATA} & {\it CMO\_ZZ} & 1 \\
! 84: \hline
! 85: \end{tabular} \\
! 86: \begin{tabular}{|c|c|c|}
! 87: \hline
! 88: {\tt OX\_DATA} & {\it CMO\_STRING} & add \\
! 89: \hline
! 90: \end{tabular} \\
! 91: \begin{tabular}{|c|c|}
! 92: \hline
! 93: {\tt OX\_COMMAND} & {\it SM\_executeString} \\
! 94: \hline
! 95: \end{tabular} \\
! 96: \begin{tabular}{|c|c|}
! 97: \hline
! 98: {\tt OX\_COMMAND} & {\it SM\_popCMO} \\
! 99: \hline
! 100: \end{tabular} \\
! 101: \htmladdnormallink{http://www.openxm.org}{http://www.openxm.org}
! 102: \newpage
! 103:
! 104: \noindent
! 105: {\color{red} 2. $B%(%i!<$N07$$$H7W;;$NCfCG(B} \\
! 106: \begin{verbatim}
! 107: P = ox_launch(0,"ox_asir");
! 108: ox_rpc(P,"fctr",1.2*x^2-1.21);
! 109: ox_dup_errors(P);
! 110: ox_pop_cmo(P);
! 111: \end{verbatim}
! 112: {\color{green}
! 113: \verb# [error([8,fctr: invalid argument])] #
! 114: }\\
! 115: {\color{blue}
! 116: $B%5!<%P$OJ9$+$l$J$$$+$.$j2?$b8@$o$J$$(B.
! 117: }
! 118: \newpage
! 119:
! 120: \begin{verbatim}
! 121: P=ox_launch(0,"ox_asir");
! 122: ox_rpc(P,"fctr",x^1000-y^1000);
! 123: ox_reset(P);
! 124: \end{verbatim}
! 125:
! 126: \setlength{\unitlength}{1cm}
! 127: \begin{picture}(20,7)(0,0)
! 128: \thicklines
! 129: \put(5,1.7){\line(1,0){7}}
! 130: \put(5,4.7){\line(3,-1){7}}
! 131: \put(12,1){\framebox(5,2.5){client}}
! 132: \put(1,4){\framebox(4,1.5){\color{blue} controller}}
! 133: \put(1,1){\framebox(4,1.5){\color{red} engine}}
! 134: \thinlines
! 135: \put(0,0.3){\framebox(6,6){}}
! 136: \put(1.5,-0.7){server}
! 137: \end{picture}
! 138: \newpage
! 139:
! 140: \noindent
! 141: {\color{red} 4. e-Bateman $B7W2h(B} ($BEE;RE*$J?t3X8x<0=8(B)\\
! 142: $BBh0lCJ3,(B: \\
! 143: $B%,%&%9$ND64v2?5i?t(B
! 144: $$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty
! 145: \frac{(a)_n (b)_n}{(1)_n (c)_n} x^n
! 146: $$
! 147: $B$3$3$G(B
! 148: $$ (a)_n = a(a+1) \cdots (a+n-1). $$
! 149: {\color{green}
! 150: $$ \log (1+x) = x F(1,1,2;-x) $$
! 151: $$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$
! 152: }
! 153:
! 154: \noindent
! 155: Appell's $F_1$:
! 156: $$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty
! 157: \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n.
! 158: $$
! 159: \newpage
! 160: $B?t3X8x<0=8(B, $B$?$H$($P(B
! 161: Erdelyi: {\color{green} Higher Transcendental Functions} \\
! 162: {\color{blue} $B8x<0(B (type A)}\\
! 163: $B<!$N>oHyJ,J}Dx<0$N2r6u4V$O(B
! 164: $$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$
! 165: $B<!$N4X?t$GD%$i$l$k(B
! 166: $$ F(a,b,c;x) = {\color{red}1} + O(x), \
! 167: x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$
! 168:
! 169: $B$3$3$G(B $c \not\in {\bf Z}$. \\
! 170: {\color{blue} $B8x<0(B (type B)}\\
! 171: \begin{eqnarray*}
! 172: &\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\
! 173: &+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\
! 174: &-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\
! 175: &-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\,
! 176: F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\
! 177: &=& 1
! 178: \end{eqnarray*}
! 179: $B$3$3$G(B $e_2 = b_2-1$, $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\
! 180: ($B$3$N8x<0$O(B $\sin^2 x + \cos^2 x =1$ $B$N0lHL2=(B.)
! 181:
! 182: \noindent
! 183: $B8=:_$d$C$F$k%W%m%8%'%/%H(B: \\
! 184: type A $B$*$h$S(B type B $B$N8x<0$r(B
! 185: {\color{blue} GKZ hypergeometric systems}
! 186: $B$KBP$7$F@8@.(B, $B8!>Z$7$h$&$H$7$F$$$k(B.
! 187:
! 188: \begin{tabular}{|c|c|c|}
! 189: \hline
! 190: & type A & type B \\ \hline
! 191: $B%"%k%4%j%:%`(B & {\color{red} OK} (SST book) & $B$d$C$F$k(B \\ \hline
! 192: $B<BAu(B & $BItJ,E*$K$G$-$?(B & $B$^$@(B \\ \hline
! 193: \end{tabular}
! 194:
! 195: \noindent
! 196: $B8=:_$"$k(B ox $B%5!<%P(B
! 197: {\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot},
! 198: {\tt ox\_mathematica}, {\tt OpenMathproxy} (JavaClasses), {\tt ox\_m2}
! 199: $B$O(B, GKZ $BD64v2?7O$KBP$7$F(B type A $B$N8x<0$r@8@.(B, $B8!>Z(B, $B%W%l%<%s$9$k$?$a$K(B
! 200: $B=8$a$F$"$k(B.
! 201:
! 202: \newpage
! 203:
! 204: \noindent{\color{red} 5. $BJ,;6%"%k%4%j%:%`$r4JC1$K$?$a$7$?$jI>2A$7$?$j$9$k(B.} \\
! 205:
! 206: \noindent
! 207: {\color{green} $BNc(B 1} \\
! 208: $BDjM}(B (Cantor-Zassenhaus) \\
! 209: $f_1$ $B$H(B $f_2$ $B$r<!?t$,(B $d$ $B$G$"$k$h$&$J(B $F_q[x]$ $B$N4{LsB?9`<0$H$9$k(B.
! 210: $B<!?t(B $2d-1$ $B$N%i%s%@%`$J78?t$r$b$DB?9`<0(B $g \in F_q[x]$
! 211: $B$KBP$7$F(B
! 212: $$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$
! 213: $B$H$J$k3NN($O(B
! 214: $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$
! 215:
! 216: \begin{picture}(20,14)(0,0)
! 217: \put(7,12){\framebox(4,1.5){client}}
! 218: \put(2,6){\framebox(4,1.5){server}}
! 219: %%\put(7,6){\framebox(4,1.5){server}}
! 220: \put(12,6){\framebox(4,1.5){server}}
! 221: \put(0,0){\framebox(4,1.5){server}}
! 222: \put(5,0){\framebox(4,1.5){server}}
! 223: \put(13.5,0){\framebox(4,1.5){server}}
! 224:
! 225: \put(9,12){\vector(-1,-1){4.3}}
! 226: %%\put(9,12){\vector(0,-1){4.3}}
! 227: \put(9,12){\vector(1,-1){4.3}}
! 228: \put(4,6){\vector(-1,-2){2.2}}
! 229: \put(4,6){\vector(1,-2){2.2}}
! 230: \put(14,6){\vector(1,-3){1.4}}
! 231: \end{picture}
! 232:
! 233: \begin{verbatim}
! 234: /* F $B$N0x?tJ,2r$r$9$k(B. */
! 235: /* E = F $B$N4{Ls0x;R$N<!?t(B */
! 236: def c_z(F,E,Level)
! 237: {
! 238: V = var(F); N = deg(F,V);
! 239: if ( N == E ) return [F];
! 240: M = field_order_ff(); K = idiv(N,E); L = [F];
! 241: while ( 1 ) {
! 242: /* $B%i%s%@%`$J78?t$NB?9`<0$r:n$k(B */
! 243: W = monic_randpoly_ff(2*E,V);
! 244: /* $B%i%s%@%`$J78?t$NB?9`<0$N6R$r7W;;(B */
! 245: T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
! 246: if ( !(W = T-1) ) continue;
! 247: /* G = GCD(F,W^((M^E-1)/2)) mod F) */
! 248: G = ugcd(F,W);
! 249: if ( deg(G,V) && deg(G,V) < N ) {
! 250: /* G $B$O(B F $B$N0x;R(B */
! 251: if ( Level >= LevelMax ) {
! 252: /* $B$3$3$GA4$F$d$k>l9g(B */
! 253: L1 = c_z(G,E,Level+1);
! 254: L2 = c_z(sdiv(F,G),E,Level+1);
! 255: } else {
! 256: /* $B$^$@N)$A>e$2$$$J$+$C$?$i%5!<%P$rN)$A>e$2$k(B. */
! 257: if ( Proc1 < 0 ) Proc1 = ox_launch();
! 258: /* $B%5!<%P$KMj$`(B. Level = Level+1 */
! 259: /* ox_c_z is a wrapper of c_z on the server */
! 260: ox_cmo_rpc(Proc1,"ox_c_z",lmptop(G),E,
! 261: setmod_ff(),Level+1);
! 262: /* $B$N$3$j$N;E;v$O<+J,$G$d$k(B. */
! 263: L2 = c_z(sdiv(F,G),E,Level+1);
! 264: /* $B%5!<%P$+$i$N7k2L$r$b$i$&(B. */
! 265: L1 = map(simp_ff,ox_pop_cmo(Proc1));
! 266: }
! 267: return append(L1,L2);
! 268: }
! 269: }
! 270: }
! 271: \end{verbatim}
! 272: \newpage
! 273:
! 274: \epsfxsize=17cm
! 275: \epsffile{cz.ps}
! 276:
! 277: \noindent
! 278: {\color{blue} $BJBNs(B CZ $B%"%k%4%j%:%`$NI>2A(B} \\
! 279: $d=1$, $k=200$ : $200$ $B8D$N(B 1 $B<!<0$N@Q(B. \\
! 280: $d=2$, $k=50$ : $50$ $B8D$N4{Ls$J(B $2$ $B<!<0$N@Q(B. \\
! 281:
! 282: \newpage
! 283: {\color{green} $BNc(B 2} \\
! 284: $BB?9`<0$r3]$1$k$?$a$N(B Shoup $B$N%"%k%4%j%:%`(B. \\
! 285: {\color{green} $BNc(B 3} \\
! 286: $B6%AhE*4D6-$K$*$1$k%0%l%V%J4pDl7W;;(B. \\
! 287: \newpage
! 288:
! 289: \noindent
! 290: {\color{green} $BNc(B 3. $B6%AhE*4D6-$K$*$1$k%0%l%V%J4pDl7W;;(B}
! 291: \begin{verbatim}
! 292: extern Proc1,Proc2$
! 293: Proc1 = -1$ Proc2 = -1$
! 294: /* G:set of polys; V:list of variables */
! 295: /* Mod: the Ground field GF(Mod); O:type of order */
! 296: def dgr(G,V,Mod,O)
! 297: {
! 298: /* invoke servers if necessary */
! 299: if ( Proc1 == -1 ) Proc1 = ox_launch();
! 300: if ( Proc2 == -1 ) Proc2 = ox_launch();
! 301: P = [Proc1,Proc2];
! 302: map(ox_reset,P); /* reset servers */
! 303: /* P0 $B$O(B Buchberger algorithm over GF(Mod) $B$G7W;;(B. */
! 304: ox_cmo_rpc(P[0],"dp_gr_mod_main",G,V,0,Mod,O);
! 305: /* P1 $B$O(B F4 algorithm over GF(Mod) $B$G7W;;(B */
! 306: ox_cmo_rpc(P[1],"dp_f4_mod_main",G,V,Mod,O);
! 307: map(ox_push_cmd,P,262); /* 262 = OX_popCMO */
! 308: F = ox_select(P); /* wait for data */
! 309: /* F[0] is a server's id which is ready */
! 310: R = ox_get(F[0]);
! 311: if ( F[0] == P[0] ) { Win = "Buchberger"; Lose = P[1]; }
! 312: else { Win = "F4"; Lose = P[0]; }
! 313: ox_reset(Lose); /* $BCY$$J}$N%5!<%P$O;_$a$k(B. */
! 314: return [Win,R];
! 315: }
! 316: \end{verbatim}
! 317: \newpage
! 318:
! 319: \end{document}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>