=================================================================== RCS file: /home/cvs/OpenXM/doc/ascm2001p/ohp.tex,v retrieving revision 1.2 retrieving revision 1.4 diff -u -p -r1.2 -r1.4 --- OpenXM/doc/ascm2001p/ohp.tex 2001/09/23 08:31:18 1.2 +++ OpenXM/doc/ascm2001p/ohp.tex 2001/09/25 02:28:27 1.4 @@ -1,4 +1,4 @@ -%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.1 2001/09/20 09:27:56 takayama Exp $ +%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.3 2001/09/25 01:17:08 takayama Exp $ \documentclass{slides} %%\documentclass[12pt]{article} \usepackage{color} @@ -9,9 +9,12 @@ {\color{green} Design and Implementation of OpenXM-RFC 100 and 101} \noindent -M.Maekawa, M.Noro, K.Ohara, N.Takayama, Y.Tamura \\ -\htmladdnormallink{http://www.openxm.org}{http://www.openxm.org} +M.Maekawa (前 川   将 秀), \\ M.Noro (野 呂   正 行), \\ +K.Ohara (小 原   功 任), \\ N.Takayama (高 山   信 毅), \\ +Y.Tamura (田 村   恭 士)\\ +\htmladdnormallink{{\color{red}http://www.openxm.org}}{{\color{red}http://www.openxm.org}} + \newpage \noindent {\color{red} 1. Architecture} \\ @@ -21,6 +24,11 @@ Two main applications of the project \\ \begin{enumerate} \item Providing an environment for interactive distributed computation. {\color{blue} Risa/Asir} +(computer algebra system for general purpose, + open source (c) Fujitsu, \\ + http://www.openxm.org, \\ + http://risa.cs.ehime-u.ac.jp, \\ + http://www.math.kobe-u.ac.jp/Asir/asir.html) \item e-Bateman project (Electronic version of higher transcendental functions of the 21st century)\\ 1st step: Generate and verify hypergeometric function identities. @@ -131,8 +139,9 @@ ox_reset(P); \noindent{\color{red} 4. Easy to try and evaluate distributed algorithms} \\ \noindent +{\color{green} Example 1} \\ Theorem (Cantor-Zassenhaus) \\ -Let $f_1$ and $f_2$ be degree $d$ polynomials in $F_q[x]$. +Let $f_1$ and $f_2$ be degree $d$ irreducible polynomials in $F_q[x]$. For a random degree $2d-1$ polynomial $g \in F_q[x]$, the chance of $$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$ @@ -195,17 +204,35 @@ def c_z(F,E,Level) } \end{verbatim} \newpage + +\epsfxsize=17cm +\epsffile{cz.ps} + \noindent -{\color{red} 5. e-Bateman project} \\ +{\color{blue} Performance of parallel CZ algorithm} \\ +$d=1$, $k=200$ : product of $200$ linear forms. \\ +$d=2$, $k=50$ : product of $50$ irreducible degree $2$ polynomials. \\ + +\newpage +{\color{green} Example 2} \\ +Shoup's algorithm to multiply polynomials. \\ +{\color{green} Example 3} \\ +Competitive Gr\"obner basis computation. \\ +\newpage + +\noindent +{\color{red} 5. e-Bateman project} (Electronic mathematical formula book)\\ First Step: \\ Gauss Hypergeometric function: $$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty - \frac{(a)_n (b)_n}{(1)_n}{(c)_n} x^n + \frac{(a)_n (b)_n}{(1)_n (c)_n} x^n $$ where $$ (a)_n = a(a+1) \cdots (a+n-1). $$ +{\color{green} $$ \log (1+x) = x F(1,1,2;-x) $$ $$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ +} \noindent Appell's $F_1$: @@ -219,7 +246,9 @@ Erdelyi: {\color{green} Higher Transcendental Function The solution space of the ordinary differential equation $$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ is spanned by -$$ F(a,b,c;x) , \ x^{1-c} F(a,b,c;x) $$ +$$ F(a,b,c;x) = {\color{red}1} + O(x), \ + x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ + when $c \not\in {\bf Z}$. \\ {\color{blue} Formula (type B)}\\ \begin{eqnarray*} @@ -254,7 +283,7 @@ for GKZ hypergeometric systems. \newpage \noindent -{\color{green} Competitive Gr\"obner Basis Computation} +{\color{green} Example 3. Competitive Gr\"obner Basis Computation} \begin{verbatim} extern Proc1,Proc2$ Proc1 = -1$ Proc2 = -1$