version 1.3, 2001/09/25 01:17:08 |
version 1.5, 2001/09/29 08:33:41 |
|
|
%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.2 2001/09/23 08:31:18 takayama Exp $ |
%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.4 2001/09/25 02:28:27 takayama Exp $ |
\documentclass{slides} |
\documentclass{slides} |
%%\documentclass[12pt]{article} |
%%\documentclass[12pt]{article} |
\usepackage{color} |
\usepackage{color} |
Line 44 OpenXM-RFC 100 \\ |
|
Line 44 OpenXM-RFC 100 \\ |
|
OpenXM {\color{red} stackmachine}. |
OpenXM {\color{red} stackmachine}. |
\item execute\_string |
\item execute\_string |
\begin{verbatim} |
\begin{verbatim} |
P = ox_launch(0,"ox_asir"); |
Pid = ox_launch(0,"ox_asir"); |
ox_execute_string(Pid," poly_factor(x^10-1);"); |
ox_execute_string(Pid," poly_factor(x^10-1);"); |
\end{verbatim} |
\end{verbatim} |
\end{enumerate} |
\end{enumerate} |
|
|
\end{picture} |
\end{picture} |
\newpage |
\newpage |
|
|
\noindent{\color{red} 4. Easy to try and evaluate distributed algorithms} \\ |
\noindent |
|
{\color{red} 4. e-Bateman project} (Electronic mathematical formula book)\\ |
|
First Step: \\ |
|
Gauss Hypergeometric function: |
|
$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty |
|
\frac{(a)_n (b)_n}{(1)_n (c)_n} x^n |
|
$$ |
|
where |
|
$$ (a)_n = a(a+1) \cdots (a+n-1). $$ |
|
{\color{green} |
|
$$ \log (1+x) = x F(1,1,2;-x) $$ |
|
$$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ |
|
} |
|
|
\noindent |
\noindent |
|
Appell's $F_1$: |
|
$$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty |
|
\frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. |
|
$$ |
|
\newpage |
|
Mathematical formula book, e.g., |
|
Erdelyi: {\color{green} Higher Transcendental Functions} \\ |
|
{\color{blue} Formula (type A)}\\ |
|
The solution space of the ordinary differential equation |
|
$$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ |
|
is spanned by |
|
$$ F(a,b,c;x) = {\color{red}1} + O(x), \ |
|
x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ |
|
|
|
when $c \not\in {\bf Z}$. \\ |
|
{\color{blue} Formula (type B)}\\ |
|
\begin{eqnarray*} |
|
&\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
|
&+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
|
&-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ |
|
&-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, |
|
F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ |
|
&=& 1 |
|
\end{eqnarray*} |
|
where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ |
|
(generalization of $\sin^2 x + \cos^2 x =1$.) |
|
|
|
\noindent |
|
Project in progress: \\ |
|
We are trying to generate or verify type A formulas and type B formulas |
|
for {\color{blue} GKZ hypergeometric systems}. |
|
|
|
\begin{tabular}{|c|c|c|} |
|
\hline |
|
& type A & type B \\ \hline |
|
Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline |
|
Implementation & partially done & NO \\ \hline |
|
\end{tabular} |
|
|
|
\noindent |
|
Our ox servers |
|
{\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, |
|
{\tt ox\_mathematica}, {\tt OpenMathproxy} (JavaClasses), {\tt ox\_m2} |
|
are used to generate, verify and present formulas of type A |
|
for GKZ hypergeometric systems. |
|
|
|
\newpage |
|
|
|
\noindent{\color{red} 5. Easy to try and evaluate distributed algorithms} \\ |
|
|
|
\noindent |
{\color{green} Example 1} \\ |
{\color{green} Example 1} \\ |
Theorem (Cantor-Zassenhaus) \\ |
Theorem (Cantor-Zassenhaus) \\ |
Let $f_1$ and $f_2$ be degree $d$ polynomials in $F_q[x]$. |
Let $f_1$ and $f_2$ be degree $d$ irreducible polynomials in $F_q[x]$. |
For a random degree $2d-1$ polynomial $g \in F_q[x]$, |
For a random degree $2d-1$ polynomial $g \in F_q[x]$, |
the chance of |
the chance of |
$$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$ |
$$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$ |
Line 151 $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$ |
|
Line 214 $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$ |
|
\begin{picture}(20,14)(0,0) |
\begin{picture}(20,14)(0,0) |
\put(7,12){\framebox(4,1.5){client}} |
\put(7,12){\framebox(4,1.5){client}} |
\put(2,6){\framebox(4,1.5){server}} |
\put(2,6){\framebox(4,1.5){server}} |
\put(7,6){\framebox(4,1.5){server}} |
%%\put(7,6){\framebox(4,1.5){server}} |
\put(12,6){\framebox(4,1.5){server}} |
\put(12,6){\framebox(4,1.5){server}} |
\put(0,0){\framebox(4,1.5){server}} |
\put(0,0){\framebox(4,1.5){server}} |
\put(5,0){\framebox(4,1.5){server}} |
\put(5,0){\framebox(4,1.5){server}} |
\put(13.5,0){\framebox(4,1.5){server}} |
\put(13.5,0){\framebox(4,1.5){server}} |
|
|
\put(9,12){\vector(-1,-1){4.3}} |
\put(9,12){\vector(-1,-1){4.3}} |
\put(9,12){\vector(0,-1){4.3}} |
%%\put(9,12){\vector(0,-1){4.3}} |
\put(9,12){\vector(1,-1){4.3}} |
\put(9,12){\vector(1,-1){4.3}} |
\put(4,6){\vector(-1,-2){2.2}} |
\put(4,6){\vector(-1,-2){2.2}} |
\put(4,6){\vector(1,-2){2.2}} |
\put(4,6){\vector(1,-2){2.2}} |
Line 205 def c_z(F,E,Level) |
|
Line 268 def c_z(F,E,Level) |
|
\end{verbatim} |
\end{verbatim} |
\newpage |
\newpage |
|
|
{\color{green} Example 2} \\ |
\epsfxsize=17cm |
Shoup's algorithm to multyply polynomials. |
\epsffile{cz.ps} |
\newpage |
|
|
|
\noindent |
\noindent |
{\color{red} 5. e-Bateman project} \\ |
{\color{blue} Performance of parallel CZ algorithm} \\ |
First Step: \\ |
$d=1$, $k=200$ : product of $200$ linear forms. \\ |
Gauss Hypergeometric function: |
$d=2$, $k=50$ : product of $50$ irreducible degree $2$ polynomials. \\ |
$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty |
|
\frac{(a)_n (b)_n}{(1)_n}{(c)_n} x^n |
|
$$ |
|
where |
|
$$ (a)_n = a(a+1) \cdots (a+n-1). $$ |
|
$$ \log (1+x) = x F(1,1,2;-x) $$ |
|
$$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ |
|
|
|
\noindent |
|
Appell's $F_1$: |
|
$$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty |
|
\frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. |
|
$$ |
|
\newpage |
\newpage |
Mathematical formula book, e.g., |
{\color{green} Example 2} \\ |
Erdelyi: {\color{green} Higher Transcendental Functions} \\ |
Shoup's algorithm to multiply polynomials. \\ |
{\color{blue} Formula (type A)}\\ |
{\color{green} Example 3} \\ |
The solution space of the ordinary differential equation |
Competitive Gr\"obner basis computation. \\ |
$$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ |
\newpage |
is spanned by |
|
$$ F(a,b,c;x) = {\color{red}1} + O(x), \ |
|
x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ |
|
|
|
when $c \not\in {\bf Z}$. \\ |
|
{\color{blue} Formula (type B)}\\ |
|
\begin{eqnarray*} |
|
&\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
|
&+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
|
&-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ |
|
&-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, |
|
F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ |
|
&=& 1 |
|
\end{eqnarray*} |
|
where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ |
|
(generalization of $\sin^2 x + \cos^2 x =1$.) |
|
|
|
\noindent |
\noindent |
Project in progress: \\ |
{\color{green} Example 3. Competitive Gr\"obner Basis Computation} |
We are trying to generate or verify type A formulas and type B formulas |
|
for {\color{blue} GKZ hypergeometric systems}. |
|
|
|
\begin{tabular}{|c|c|c|} |
|
\hline |
|
& type A & type B \\ \hline |
|
Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline |
|
Implementation & partially done & NO \\ \hline |
|
\end{tabular} |
|
|
|
\noindent |
|
Our ox servers |
|
{\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, |
|
{\tt ox\_mathematica}, {\tt OMproxy} (JavaClasses), {\tt ox\_m2} |
|
are used to generate, verify and present formulas of type A |
|
for GKZ hypergeometric systems. |
|
|
|
\newpage |
|
\noindent |
|
{\color{green} Competitive Gr\"obner Basis Computation} |
|
\begin{verbatim} |
\begin{verbatim} |
extern Proc1,Proc2$ |
extern Proc1,Proc2$ |
Proc1 = -1$ Proc2 = -1$ |
Proc1 = -1$ Proc2 = -1$ |