=================================================================== RCS file: /home/cvs/OpenXM/doc/ascm2001p/ohp.tex,v retrieving revision 1.4 retrieving revision 1.5 diff -u -p -r1.4 -r1.5 --- OpenXM/doc/ascm2001p/ohp.tex 2001/09/25 02:28:27 1.4 +++ OpenXM/doc/ascm2001p/ohp.tex 2001/09/29 08:33:41 1.5 @@ -1,4 +1,4 @@ -%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.3 2001/09/25 01:17:08 takayama Exp $ +%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.4 2001/09/25 02:28:27 takayama Exp $ \documentclass{slides} %%\documentclass[12pt]{article} \usepackage{color} @@ -44,7 +44,7 @@ OpenXM-RFC 100 \\ OpenXM {\color{red} stackmachine}. \item execute\_string \begin{verbatim} - P = ox_launch(0,"ox_asir"); + Pid = ox_launch(0,"ox_asir"); ox_execute_string(Pid," poly_factor(x^10-1);"); \end{verbatim} \end{enumerate} @@ -136,9 +136,72 @@ ox_reset(P); \end{picture} \newpage -\noindent{\color{red} 4. Easy to try and evaluate distributed algorithms} \\ +\noindent +{\color{red} 4. e-Bateman project} (Electronic mathematical formula book)\\ +First Step: \\ +Gauss Hypergeometric function: +$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty + \frac{(a)_n (b)_n}{(1)_n (c)_n} x^n +$$ +where +$$ (a)_n = a(a+1) \cdots (a+n-1). $$ +{\color{green} +$$ \log (1+x) = x F(1,1,2;-x) $$ +$$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ +} \noindent +Appell's $F_1$: +$$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty + \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. +$$ +\newpage +Mathematical formula book, e.g., +Erdelyi: {\color{green} Higher Transcendental Functions} \\ +{\color{blue} Formula (type A)}\\ +The solution space of the ordinary differential equation +$$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ +is spanned by +$$ F(a,b,c;x) = {\color{red}1} + O(x), \ + x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ + +when $c \not\in {\bf Z}$. \\ +{\color{blue} Formula (type B)}\\ +\begin{eqnarray*} +&\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ +&+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ +&-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ +&-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, + F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ +&=& 1 +\end{eqnarray*} +where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ +(generalization of $\sin^2 x + \cos^2 x =1$.) + +\noindent +Project in progress: \\ +We are trying to generate or verify type A formulas and type B formulas +for {\color{blue} GKZ hypergeometric systems}. + +\begin{tabular}{|c|c|c|} +\hline + & type A & type B \\ \hline +Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline +Implementation & partially done & NO \\ \hline +\end{tabular} + +\noindent +Our ox servers +{\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, +{\tt ox\_mathematica}, {\tt OpenMathproxy} (JavaClasses), {\tt ox\_m2} +are used to generate, verify and present formulas of type A +for GKZ hypergeometric systems. + +\newpage + +\noindent{\color{red} 5. Easy to try and evaluate distributed algorithms} \\ + +\noindent {\color{green} Example 1} \\ Theorem (Cantor-Zassenhaus) \\ Let $f_1$ and $f_2$ be degree $d$ irreducible polynomials in $F_q[x]$. @@ -151,14 +214,14 @@ $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$ \begin{picture}(20,14)(0,0) \put(7,12){\framebox(4,1.5){client}} \put(2,6){\framebox(4,1.5){server}} -\put(7,6){\framebox(4,1.5){server}} +%%\put(7,6){\framebox(4,1.5){server}} \put(12,6){\framebox(4,1.5){server}} \put(0,0){\framebox(4,1.5){server}} \put(5,0){\framebox(4,1.5){server}} \put(13.5,0){\framebox(4,1.5){server}} \put(9,12){\vector(-1,-1){4.3}} -\put(9,12){\vector(0,-1){4.3}} +%%\put(9,12){\vector(0,-1){4.3}} \put(9,12){\vector(1,-1){4.3}} \put(4,6){\vector(-1,-2){2.2}} \put(4,6){\vector(1,-2){2.2}} @@ -220,68 +283,6 @@ Shoup's algorithm to multiply polynomials. \\ Competitive Gr\"obner basis computation. \\ \newpage -\noindent -{\color{red} 5. e-Bateman project} (Electronic mathematical formula book)\\ -First Step: \\ -Gauss Hypergeometric function: -$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty - \frac{(a)_n (b)_n}{(1)_n (c)_n} x^n -$$ -where -$$ (a)_n = a(a+1) \cdots (a+n-1). $$ -{\color{green} -$$ \log (1+x) = x F(1,1,2;-x) $$ -$$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ -} - -\noindent -Appell's $F_1$: -$$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty - \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. -$$ -\newpage -Mathematical formula book, e.g., -Erdelyi: {\color{green} Higher Transcendental Functions} \\ -{\color{blue} Formula (type A)}\\ -The solution space of the ordinary differential equation -$$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ -is spanned by -$$ F(a,b,c;x) = {\color{red}1} + O(x), \ - x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ - -when $c \not\in {\bf Z}$. \\ -{\color{blue} Formula (type B)}\\ -\begin{eqnarray*} -&\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ -&+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ -&-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ -&-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, - F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ -&=& 1 -\end{eqnarray*} -where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ -(generalization of $\sin^2 x + \cos^2 x =1$.) - -\noindent -Project in progress: \\ -We are trying to generate or verify type A formulas and type B formulas -for {\color{blue} GKZ hypergeometric systems}. - -\begin{tabular}{|c|c|c|} -\hline - & type A & type B \\ \hline -Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline -Implementation & partially done & NO \\ \hline -\end{tabular} - -\noindent -Our ox servers -{\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, -{\tt ox\_mathematica}, {\tt OMproxy} (JavaClasses), {\tt ox\_m2} -are used to generate, verify and present formulas of type A -for GKZ hypergeometric systems. - -\newpage \noindent {\color{green} Example 3. Competitive Gr\"obner Basis Computation} \begin{verbatim}