=================================================================== RCS file: /home/cvs/OpenXM/doc/ascm2001p/ohp.tex,v retrieving revision 1.1 retrieving revision 1.5 diff -u -p -r1.1 -r1.5 --- OpenXM/doc/ascm2001p/ohp.tex 2001/09/20 09:27:56 1.1 +++ OpenXM/doc/ascm2001p/ohp.tex 2001/09/29 08:33:41 1.5 @@ -1,4 +1,4 @@ -%% $OpenXM$ +%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.4 2001/09/25 02:28:27 takayama Exp $ \documentclass{slides} %%\documentclass[12pt]{article} \usepackage{color} @@ -9,9 +9,12 @@ {\color{green} Design and Implementation of OpenXM-RFC 100 and 101} \noindent -M.Maekawa, M.Noro, K.Ohara, N.Takayama, Y.Tamura \\ -\htmladdnormallink{http://www.openxm.org}{http://www.openxm.org} +M.Maekawa (前 川   将 秀), \\ M.Noro (野 呂   正 行), \\ +K.Ohara (小 原   功 任), \\ N.Takayama (高 山   信 毅), \\ +Y.Tamura (田 村   恭 士)\\ +\htmladdnormallink{{\color{red}http://www.openxm.org}}{{\color{red}http://www.openxm.org}} + \newpage \noindent {\color{red} 1. Architecture} \\ @@ -21,6 +24,11 @@ Two main applications of the project \\ \begin{enumerate} \item Providing an environment for interactive distributed computation. {\color{blue} Risa/Asir} +(computer algebra system for general purpose, + open source (c) Fujitsu, \\ + http://www.openxm.org, \\ + http://risa.cs.ehime-u.ac.jp, \\ + http://www.math.kobe-u.ac.jp/Asir/asir.html) \item e-Bateman project (Electronic version of higher transcendental functions of the 21st century)\\ 1st step: Generate and verify hypergeometric function identities. @@ -36,7 +44,7 @@ OpenXM-RFC 100 \\ OpenXM {\color{red} stackmachine}. \item execute\_string \begin{verbatim} - P = ox_launch(0,"ox_asir"); + Pid = ox_launch(0,"ox_asir"); ox_execute_string(Pid," poly_factor(x^10-1);"); \end{verbatim} \end{enumerate} @@ -128,11 +136,75 @@ ox_reset(P); \end{picture} \newpage -\noindent{\color{red} 4. Easy to try and evaluate distributed algorithms} \\ +\noindent +{\color{red} 4. e-Bateman project} (Electronic mathematical formula book)\\ +First Step: \\ +Gauss Hypergeometric function: +$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty + \frac{(a)_n (b)_n}{(1)_n (c)_n} x^n +$$ +where +$$ (a)_n = a(a+1) \cdots (a+n-1). $$ +{\color{green} +$$ \log (1+x) = x F(1,1,2;-x) $$ +$$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ +} \noindent +Appell's $F_1$: +$$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty + \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. +$$ +\newpage +Mathematical formula book, e.g., +Erdelyi: {\color{green} Higher Transcendental Functions} \\ +{\color{blue} Formula (type A)}\\ +The solution space of the ordinary differential equation +$$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ +is spanned by +$$ F(a,b,c;x) = {\color{red}1} + O(x), \ + x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ + +when $c \not\in {\bf Z}$. \\ +{\color{blue} Formula (type B)}\\ +\begin{eqnarray*} +&\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ +&+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ +&-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ +&-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, + F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ +&=& 1 +\end{eqnarray*} +where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ +(generalization of $\sin^2 x + \cos^2 x =1$.) + +\noindent +Project in progress: \\ +We are trying to generate or verify type A formulas and type B formulas +for {\color{blue} GKZ hypergeometric systems}. + +\begin{tabular}{|c|c|c|} +\hline + & type A & type B \\ \hline +Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline +Implementation & partially done & NO \\ \hline +\end{tabular} + +\noindent +Our ox servers +{\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, +{\tt ox\_mathematica}, {\tt OpenMathproxy} (JavaClasses), {\tt ox\_m2} +are used to generate, verify and present formulas of type A +for GKZ hypergeometric systems. + +\newpage + +\noindent{\color{red} 5. Easy to try and evaluate distributed algorithms} \\ + +\noindent +{\color{green} Example 1} \\ Theorem (Cantor-Zassenhaus) \\ -Let $f_1$ and $f_2$ be degree $d$ polynomials in $F_q[x]$. +Let $f_1$ and $f_2$ be degree $d$ irreducible polynomials in $F_q[x]$. For a random degree $2d-1$ polynomial $g \in F_q[x]$, the chance of $$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$ @@ -142,14 +214,14 @@ $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$ \begin{picture}(20,14)(0,0) \put(7,12){\framebox(4,1.5){client}} \put(2,6){\framebox(4,1.5){server}} -\put(7,6){\framebox(4,1.5){server}} +%%\put(7,6){\framebox(4,1.5){server}} \put(12,6){\framebox(4,1.5){server}} \put(0,0){\framebox(4,1.5){server}} \put(5,0){\framebox(4,1.5){server}} \put(13.5,0){\framebox(4,1.5){server}} \put(9,12){\vector(-1,-1){4.3}} -\put(9,12){\vector(0,-1){4.3}} +%%\put(9,12){\vector(0,-1){4.3}} \put(9,12){\vector(1,-1){4.3}} \put(4,6){\vector(-1,-2){2.2}} \put(4,6){\vector(1,-2){2.2}} @@ -195,60 +267,50 @@ def c_z(F,E,Level) } \end{verbatim} \newpage -\noindent -{\color{red} 5. e-Bateman project} \\ -First Step: \\ -Gauss Hypergeometric function: -$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty - \frac{(a)_n (b)_n}{(1)_n}{(c)_n} x^n -$$ -where -$$ (a)_n = a(a+1) \cdots (a+n-1). $$ -$$ F(?,?,?;x) = \log (1+x). $$ -\noindent -Appell's $F_1$: -$$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty - \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. -$$ -\newpage -Mathematical formula book, e.g., -Erdelyi: {\color{green} Higher Transcendental Functions} \\ -{\color{blue} Formula (type A)}\\ -The solution space of the ordinary differential equation -$$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ -is spanned by -$$ F(a,b,c;x) , \ x^{1-c} F(a,b,c;x) $$ -when $c \not\in {\bf Z}$. \\ -{\color{blue} Formula (type B)}\\ -\begin{eqnarray*} -&\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ -&+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ -&-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ -&-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, - F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ -&=& 1 -\end{eqnarray*} -where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ -(generalization of $\sin^2 x + \cos^2 x =1$.) +\epsfxsize=17cm +\epsffile{cz.ps} \noindent -Project in progress: \\ -We are trying to generate or verify type A formulas and type B formulas -for {\color{blue} GKZ hypergeometric systems}. +{\color{blue} Performance of parallel CZ algorithm} \\ +$d=1$, $k=200$ : product of $200$ linear forms. \\ +$d=2$, $k=50$ : product of $50$ irreducible degree $2$ polynomials. \\ -\begin{tabular}{|c|c|c|} -\hline - & type A & type B \\ \hline -Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline -Implementation & partially done & NO \\ \hline -\end{tabular} +\newpage +{\color{green} Example 2} \\ +Shoup's algorithm to multiply polynomials. \\ +{\color{green} Example 3} \\ +Competitive Gr\"obner basis computation. \\ +\newpage \noindent -Our ox servers -{\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, -{\tt ox\_mathematica}, {\tt OMproxy} {\tt ox\_m2} -are used to generate, verify and present formulas of type A -for GKZ hypergeometric systems. +{\color{green} Example 3. Competitive Gr\"obner Basis Computation} +\begin{verbatim} +extern Proc1,Proc2$ +Proc1 = -1$ Proc2 = -1$ +/* G:set of polys; V:list of variables */ +/* Mod: the Ground field GF(Mod); O:type of order */ +def dgr(G,V,Mod,O) +{ + /* invoke servers if necessary */ + if ( Proc1 == -1 ) Proc1 = ox_launch(); + if ( Proc2 == -1 ) Proc2 = ox_launch(); + P = [Proc1,Proc2]; + map(ox_reset,P); /* reset servers */ + /* P0 executes Buchberger algorithm over GF(Mod) */ + ox_cmo_rpc(P[0],"dp_gr_mod_main",G,V,0,Mod,O); + /* P1 executes F4 algorithm over GF(Mod) */ + ox_cmo_rpc(P[1],"dp_f4_mod_main",G,V,Mod,O); + map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ + F = ox_select(P); /* wait for data */ + /* F[0] is a server's id which is ready */ + R = ox_get(F[0]); + if ( F[0] == P[0] ) { Win = "Buchberger"; Lose = P[1]; } + else { Win = "F4"; Lose = P[0]; } + ox_reset(Lose); /* reset the loser */ + return [Win,R]; +} +\end{verbatim} +\newpage \end{document} \ No newline at end of file