[BACK]Return to ohp.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / ascm2001p

Annotation of OpenXM/doc/ascm2001p/ohp.tex, Revision 1.2

1.2     ! takayama    1: %% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.1 2001/09/20 09:27:56 takayama Exp $
1.1       takayama    2: \documentclass{slides}
                      3: %%\documentclass[12pt]{article}
                      4: \usepackage{color}
                      5: \usepackage{epsfig}
                      6: \newcommand{\htmladdnormallink}[2]{#1}
                      7: \begin{document}
                      8: \noindent
                      9: {\color{green} Design and Implementation of OpenXM-RFC 100 and 101}
                     10:
                     11: \noindent
                     12: M.Maekawa, M.Noro, K.Ohara, N.Takayama, Y.Tamura \\
                     13: \htmladdnormallink{http://www.openxm.org}{http://www.openxm.org}
                     14:
                     15: \newpage
                     16: \noindent
                     17: {\color{red} 1. Architecture} \\
                     18: Integrating (existing) mathematical software systems.
                     19:
                     20: Two main applications of the project \\
                     21: \begin{enumerate}
                     22: \item Providing an environment for interactive distributed computation.
                     23: {\color{blue} Risa/Asir}
                     24: \item e-Bateman project
                     25: (Electronic version of higher transcendental functions of the 21st century)\\
                     26: 1st step: Generate and verify hypergeometric function identities.
                     27: \end{enumerate}
                     28: \newpage
                     29:
                     30: \noindent
                     31: OpenXM-RFC 100 \\
                     32: {\color{green} Control}: \\
                     33: \begin{enumerate}
                     34: \item Client-server model. Tree structure of processes.
                     35: \item Wrap (existing) mathematical software systems by the
                     36: OpenXM {\color{red} stackmachine}.
                     37: \item execute\_string
                     38: \begin{verbatim}
                     39:   P = ox_launch(0,"ox_asir");
                     40:   ox_execute_string(Pid," poly_factor(x^10-1);");
                     41: \end{verbatim}
                     42: \end{enumerate}
                     43: \newpage
                     44:
                     45: \noindent
                     46: {\color{green} Data}: \\
                     47: \begin{tabular}{|c|c|}
                     48: \hline
                     49: {\color{red} TAG}& {\color{blue} BODY} \\
                     50: \hline
                     51: \end{tabular} \\
                     52: Two layers: {\color{green} OX message} layer.
                     53: Layer of Command, CMO, and other data encodings.
                     54:
                     55: \noindent
                     56: {\color{blue} Example 1}: \\
                     57: \begin{verbatim}
                     58: P = ox_launch(0,"ox_sm1");
                     59: ox_push_cmo(P,1);
                     60: ox_push_cmo(P,1);
                     61: ox_execute_string(P,"add");
                     62: ox_pop_cmo(P);
                     63: \end{verbatim}
                     64:
                     65: {\color{green} CMO} is an encoding method based on XML like OpenMath.
                     66:
                     67: \begin{tabular}{|c|c|c|}
                     68: \hline
                     69: {\tt OX\_DATA} & {\it CMO\_ZZ} & 1 \\
                     70: \hline
                     71: \end{tabular} \\
                     72: \begin{tabular}{|c|c|c|}
                     73: \hline
                     74: {\tt OX\_DATA} & {\it CMO\_ZZ} & 1 \\
                     75: \hline
                     76: \end{tabular} \\
                     77: \begin{tabular}{|c|c|c|}
                     78: \hline
                     79: {\tt OX\_DATA} & {\it CMO\_STRING} & add \\
                     80: \hline
                     81: \end{tabular} \\
                     82: \begin{tabular}{|c|c|}
                     83: \hline
                     84: {\tt OX\_COMMAND} & {\it SM\_executeString} \\
                     85: \hline
                     86: \end{tabular} \\
                     87: \begin{tabular}{|c|c|}
                     88: \hline
                     89: {\tt OX\_COMMAND} & {\it SM\_popCMO} \\
                     90: \hline
                     91: \end{tabular} \\
                     92: \htmladdnormallink{http://www.openxm.org}{http://www.openxm.org}
                     93: \newpage
                     94:
                     95: \noindent
                     96: {\color{red} 2. Error Handling and Resetting} \\
                     97: \begin{verbatim}
                     98: P = ox_launch(0,"ox_asir");
                     99: ox_rpc(P,"fctr",1.2*x^2-1.21);
                    100: ox_dup_errors(P);
                    101: ox_pop_cmo(P);
                    102: \end{verbatim}
                    103: {\color{green}
                    104: \verb# [error([8,fctr: invalid argument])] #
                    105: }\\
                    106: {\color{blue}
                    107: Servers say nothing unless is is asked.
                    108: }
                    109: \newpage
                    110:
                    111: \begin{verbatim}
                    112: P=ox_launch(0,"ox_asir");
                    113: ox_rpc(P,"fctr",x^1000-y^1000);
                    114: ox_reset(P);
                    115: \end{verbatim}
                    116:
                    117: \setlength{\unitlength}{1cm}
                    118: \begin{picture}(20,7)(0,0)
                    119: \thicklines
                    120: \put(5,1.7){\line(1,0){7}}
                    121: \put(5,4.7){\line(3,-1){7}}
                    122: \put(12,1){\framebox(5,2.5){client}}
                    123: \put(1,4){\framebox(4,1.5){\color{blue} controller}}
                    124: \put(1,1){\framebox(4,1.5){\color{red} engine}}
                    125: \thinlines
                    126: \put(0,0.3){\framebox(6,6){}}
                    127: \put(1.5,-0.7){server}
                    128: \end{picture}
                    129: \newpage
                    130:
                    131: \noindent{\color{red} 4. Easy to try and evaluate distributed algorithms} \\
                    132:
                    133: \noindent
                    134: Theorem (Cantor-Zassenhaus) \\
                    135: Let $f_1$ and $f_2$ be degree $d$ polynomials in $F_q[x]$.
                    136: For a random degree $2d-1$ polynomial $g \in F_q[x]$,
                    137: the chance of
                    138: $$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$
                    139: is
                    140: $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$
                    141:
                    142: \begin{picture}(20,14)(0,0)
                    143: \put(7,12){\framebox(4,1.5){client}}
                    144: \put(2,6){\framebox(4,1.5){server}}
                    145: \put(7,6){\framebox(4,1.5){server}}
                    146: \put(12,6){\framebox(4,1.5){server}}
                    147: \put(0,0){\framebox(4,1.5){server}}
                    148: \put(5,0){\framebox(4,1.5){server}}
                    149: \put(13.5,0){\framebox(4,1.5){server}}
                    150:
                    151: \put(9,12){\vector(-1,-1){4.3}}
                    152: \put(9,12){\vector(0,-1){4.3}}
                    153: \put(9,12){\vector(1,-1){4.3}}
                    154: \put(4,6){\vector(-1,-2){2.2}}
                    155: \put(4,6){\vector(1,-2){2.2}}
                    156: \put(14,6){\vector(1,-3){1.4}}
                    157: \end{picture}
                    158:
                    159: \begin{verbatim}
                    160: /* factorization of F */
                    161: /* E = degree of irreducible factors in F */
                    162: def c_z(F,E,Level)
                    163: {
                    164:   V = var(F); N = deg(F,V);
                    165:   if ( N == E ) return [F];
                    166:   M = field_order_ff(); K = idiv(N,E); L = [F];
                    167:   while ( 1 ) {
                    168:     /* gererate a random polynomial */
                    169:     W = monic_randpoly_ff(2*E,V);
                    170:     /* compute a power of the random polynomial */
                    171:     T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    172:     if ( !(W = T-1) ) continue;
                    173:     /* G = GCD(F,W^((M^E-1)/2)) mod F) */
                    174:     G = ugcd(F,W);
                    175:     if ( deg(G,V) && deg(G,V) < N ) {
                    176:       /* G is a non-trivial factor of F */
                    177:       if ( Level >= LevelMax ) {
                    178:         /* everything is done on this server */
                    179:         L1 = c_z(G,E,Level+1);
                    180:         L2 = c_z(sdiv(F,G),E,Level+1);
                    181:       } else {
                    182:         /* launch a server if necessary */
                    183:         if ( Proc1 < 0 ) Proc1 = ox_launch();
                    184:         /* send a request with Level = Level+1 */
                    185:         /* ox_c_z is a wrapper of c_z on the server */
                    186:         ox_cmo_rpc(Proc1,"ox_c_z",lmptop(G),E,
                    187:             setmod_ff(),Level+1);
                    188:         /* the rest is done on this server */
                    189:         L2 = c_z(sdiv(F,G),E,Level+1);
                    190:         L1 = map(simp_ff,ox_pop_cmo(Proc1));
                    191:       }
                    192:       return append(L1,L2);
                    193:     }
                    194:   }
                    195: }
                    196: \end{verbatim}
                    197: \newpage
                    198: \noindent
                    199: {\color{red} 5. e-Bateman project} \\
                    200: First Step: \\
                    201: Gauss Hypergeometric function:
                    202: $$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty
                    203:   \frac{(a)_n (b)_n}{(1)_n}{(c)_n} x^n
                    204: $$
                    205: where
                    206: $$ (a)_n = a(a+1) \cdots (a+n-1). $$
1.2     ! takayama  207: $$ \log (1+x) = x F(1,1,2;-x) $$
        !           208: $$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$
1.1       takayama  209:
                    210: \noindent
                    211: Appell's $F_1$:
                    212: $$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty
                    213:   \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n.
                    214: $$
                    215: \newpage
                    216: Mathematical formula book, e.g.,
                    217: Erdelyi: {\color{green} Higher Transcendental Functions} \\
                    218: {\color{blue} Formula (type A)}\\
                    219: The solution space of the ordinary differential equation
                    220: $$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$
                    221: is spanned by
                    222: $$ F(a,b,c;x) , \  x^{1-c} F(a,b,c;x) $$
                    223: when $c \not\in {\bf Z}$. \\
                    224: {\color{blue} Formula (type B)}\\
                    225: \begin{eqnarray*}
                    226: &\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z)  \\
                    227: &+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z)  \\
                    228: &-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z)  \\
                    229: &-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\,
                    230:   F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\
                    231: &=& 1
                    232: \end{eqnarray*}
                    233: where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$.  \\
                    234: (generalization of $\sin^2 x + \cos^2 x =1$.)
                    235:
                    236: \noindent
                    237: Project in progress: \\
                    238: We are trying to generate or verify type A formulas and type B formulas
                    239: for {\color{blue} GKZ hypergeometric systems}.
                    240:
                    241: \begin{tabular}{|c|c|c|}
                    242: \hline
                    243:   & type A & type B \\ \hline
                    244: Algorithm &  {\color{red} OK} (SST book) &  in progress \\ \hline
                    245: Implementation & partially done & NO \\ \hline
                    246: \end{tabular}
                    247:
                    248: \noindent
                    249: Our ox servers
                    250: {\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot},
1.2     ! takayama  251: {\tt ox\_mathematica}, {\tt OMproxy} (JavaClasses), {\tt ox\_m2}
1.1       takayama  252: are used to generate, verify and present formulas of type A
                    253: for GKZ hypergeometric systems.
1.2     ! takayama  254:
        !           255: \newpage
        !           256: \noindent
        !           257: {\color{green} Competitive Gr\"obner Basis Computation}
        !           258: \begin{verbatim}
        !           259: extern Proc1,Proc2$
        !           260: Proc1 = -1$ Proc2 = -1$
        !           261: /* G:set of polys; V:list of variables */
        !           262: /* Mod: the Ground field GF(Mod); O:type of order */
        !           263: def dgr(G,V,Mod,O)
        !           264: {
        !           265:   /* invoke servers if necessary */
        !           266:   if ( Proc1 == -1 ) Proc1 = ox_launch();
        !           267:   if ( Proc2 == -1 ) Proc2 = ox_launch();
        !           268:   P = [Proc1,Proc2];
        !           269:   map(ox_reset,P); /* reset servers */
        !           270:   /* P0 executes Buchberger algorithm over GF(Mod) */
        !           271:   ox_cmo_rpc(P[0],"dp_gr_mod_main",G,V,0,Mod,O);
        !           272:   /* P1 executes F4 algorithm over GF(Mod) */
        !           273:   ox_cmo_rpc(P[1],"dp_f4_mod_main",G,V,Mod,O);
        !           274:   map(ox_push_cmd,P,262); /* 262 = OX_popCMO */
        !           275:   F = ox_select(P); /* wait for data */
        !           276:   /* F[0] is a server's id which is ready */
        !           277:   R = ox_get(F[0]);
        !           278:   if ( F[0] == P[0] ) { Win = "Buchberger"; Lose = P[1]; }
        !           279:   else { Win = "F4"; Lose = P[0]; }
        !           280:   ox_reset(Lose); /* reset the loser */
        !           281:   return [Win,R];
        !           282: }
        !           283: \end{verbatim}
        !           284: \newpage
1.1       takayama  285:
                    286: \end{document}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>