Annotation of OpenXM/doc/calc2000p/func1.tex, Revision 1.3
1.3 ! noro 1: % $OpenXM: OpenXM/doc/calc2000p/func1.tex,v 1.2 2000/07/22 08:11:09 noro Exp $
1.1 noro 2: \documentclass[twocolumn]{article}
3: \pagestyle{empty}
4: %\markright{ {\tt http://www.openxm.org} }
5: \usepackage{color}
6: \usepackage{epsfig}
7: \title{\huge \color{blue} 4252 functions are available
8: on our servers and libraries}
9: \author{} \date{}
10: \begin{document}
11: \maketitle
12:
13: \noindent
14: \fbox{\huge {\color{green}Operations on Integers}}
15:
16: \noindent
17: {\color{red} idiv},{\color{red} irem} (division with remainder),
18: {\color{red} ishift} (bit shifting),
19: {\color{red} iand},{\color{red} ior},{\color{red} ixor} (logical operations),
20: {\color{red} igcd},(GCD by various methods such as Euclid's algorithm and
21: the accelerated GCD algorithm),
22: {\color{red} fac} (factorial),
23: {\color{red} inv} (inverse modulo an integer),
1.3 ! noro 24: {\color{red} random} (random number generator by the Mersenne twister algorithm).
1.1 noro 25:
26:
27:
28: \medbreak
29:
30: \noindent
31: \fbox{\huge {\color{green}Ground Fields}}
32:
33: \noindent
34: Arithmetics on various fields: the rationals,
1.2 noro 35: ${\bf Q}(\alpha_1,\alpha_2,\ldots,\alpha_n)$
36: ($\alpha_i$ is algebraic over ${\bf Q}(\alpha_1,\ldots,\alpha_{i-1})$),
1.1 noro 37: $GF(p)$ ($p$ is a prime of arbitrary size), $GF(2^n)$.
38:
39: \medbreak
40:
41: \noindent
42: \fbox{\huge {\color{green}Operations on Polynomials}}
43:
44: \noindent
45: {\color{red} sdiv }, {\color{red} srem } (division with remainder),
46: {\color{red} ptozp } (removal of the integer content),
47: {\color{red} diff } (differentiation),
48: {\color{red} gcd } (GCD over the rationals),
49: {\color{red} res } (resultant),
50: {\color{red} subst } (substitution),
51: {\color{red} umul} (fast multiplication of dense univariate polynomials
52: by a hybrid method with Karatsuba and FFT+Chinese remainder),
53: {\color{red} urembymul\_precomp} (fast dense univariate polynomial
54: division with remainder by the fast multiplication and
55: the precomputed inverse of a divisor),
56:
57: \noindent
58: \fbox{\huge {\color{green}Polynomial Factorization}}
59: {\color{red} fctr } (factorization over the rationals),
60: {\color{red} fctr\_ff } (univariate factorization over finite fields),
61: {\color{red} af } (univariate factorization over algebraic number fields),
62: {\color{red} sp} (splitting field computation).
63:
64: \medbreak
65:
66: \noindent
67: \fbox{\huge {\color{green} Groebner basis}}
68:
69: \noindent
70: {\color{red} dp\_gr\_main } (Groebner basis computation of a polynomial ideal
71: over the rationals by the trace lifting),
72: {\color{red} dp\_gr\_mod\_main } (Groebner basis over small finite fields),
73: {\color{red} tolex } (Modular change of ordering for a zero-dimensional ideal),
74: {\color{red} tolex\_gsl } (Modular rational univariate representation
75: for a zero-dimensional ideal),
76: {\color{red} dp\_f4\_main } ($F_4$ over the rationals),
77: {\color{red} dp\_f4\_mod\_main } ($F_4$ over small finite fields).
78:
79: \medbreak
80: \noindent
81: \fbox{\huge {\color{green} Ideal Decomposition}}
82:
83: \noindent
84: {\color{red} primedec} (Prime decomposition of the radical),
85: {\color{red} primadec} (Primary decomposition of ideals by Shimoyama/Yokoyama algorithm).
86:
87: \medbreak
88:
89: \noindent
90: \fbox{\huge {\color{green} Quantifier Elimination}}
91:
92: \noindent
93: {\color{red} qe} (real quantifier elimination in a linear and
94: quadratic first-order formula),
95: {\color{red} simpl} (heuristic simplification of a first-order formula).
96:
1.3 ! noro 97: {\scriptsize
! 98: \begin{verbatim}
! 99: [0] MTP2 = ex([x11,x12,x13,x21,x22,x23,x31,x32,x33],
! 100: x11+x12+x13 @== a1 @&& x21+x22+x23 @== a2 @&& x31+x32+x33 @== a3
! 101: @&& x11+x21+x31 @== b1 @&& x12+x22+x32 @== b2 @&& x13+x23+x33 @== b3
! 102: @&& 0 @<= x11 @&& 0 @<= x12 @&& 0 @<= x13 @&& 0 @<= x21
! 103: @&& 0 @<= x22 @&& 0 @<= x23 @&& 0 @<= x31 @&& 0 @<= x32 @&& 0 @<= x33)$
! 104: [1] TSOL= a1+a2+a3@=b1+b2+b3 @&& a1@>=0 @&& a2@>=0 @&& a3@>=0
! 105: @&& b1@>=0 @&& b2@>=0 @&& b3@>=0$
! 106: [2] QE_MTP2 = qe(MTP2)$
! 107: [3] qe(all([a1,a2,a3,b1,b2,b3],QE_MTP2 @equiv TSOL));
! 108: @true
! 109: \end{verbatim}}
1.1 noro 110: \medbreak
111:
112: \noindent
113: \fbox{\huge {\color{green} Visualization of curves}}
114:
115: \noindent
116: {\color{red} plot} (plotting of a univariate function),
117: {\color{red} ifplot} (plotting zeros of a bivariate polynomial),
118: {\color{red} conplot} (contour plotting of a bivariate polynomial function).
119:
120: \medbreak
121:
122: \noindent
123: \fbox{\huge {\color{green} Miscellaneous functions}}
124:
125: \noindent
126: {\color{red} det} (determinant),
127: {\color{red} qsort} (sorting of an array by the quick sort algorithm),
1.2 noro 128: {\color{red} eval} (evaluation of a formula containing transcendental functions
129: such as
130: {\color{red} sin}, {\color{red} cos}, {\color{red} tan}, {\color{red} exp},
131: {\color{red} log})
1.1 noro 132: {\color{red} roots} (finding all roots of a univariate polynomial),
133: {\color{red} lll} (computation of an LLL-reduced basis of a lattice).
134:
135: \medbreak
136: \vfill
137: \noindent
138: \rightline{ {\color{red} {\tt http://www.openxm.org} }}
139:
140: \end{document}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>