Annotation of OpenXM/doc/calc2000p/func2.tex, Revision 1.6
1.6 ! takayama 1: % $OpenXM: OpenXM/doc/calc2000p/func2.tex,v 1.5 2000/07/22 00:31:06 takayama Exp $
1.1 takayama 2: \documentclass[twocolumn]{article}
1.4 takayama 3: \pagestyle{empty}
4: %\markright{ {\tt http://www.openxm.org} }
1.1 takayama 5: \usepackage{color}
1.2 takayama 6: \usepackage{epsfig}
1.6 ! takayama 7: \title{\huge \color{blue} 1077 functions are available
! 8: on our servers and libraries }
1.1 takayama 9: \author{} \date{}
10: \begin{document}
11: \maketitle
1.6 ! takayama 12: %% The number of functions:
! 13: %% 264 + 36 (lib/asir/help-jp)
! 14: %% 84 + 133 + 61 (sm1)
! 15: %% About 45*11 (pari)
! 16: %% 1 + 1 + 2(tigers, phc, OMproxy)
! 17: %% SUB TOTAL: 1077
1.1 takayama 18:
19: \noindent
20: \fbox{\huge {\color{green} $D$-modules}} ($D$ is the Weyl algebra)
21:
22: \noindent
23: {\color{red} gb } (Gr\"obner basis),
24: {\color{red} syz} (syzygy),
25: {\color{red} annfs} (Annhilating ideal of $f^s$),
26: {\color{red} bfunction},
1.2 takayama 27: {\color{red} schreyer} (free resolution by the Schreyer method),
1.1 takayama 28: {\color{red} vMinRes} (V-minimal free resolution),
1.2 takayama 29: {\color{red} characteristic} (Characteristic variety),
1.1 takayama 30: {\color{red} restriction} in the derived category of $D$-modules,
31: {\color{red} integration} in the derived category,
32: {\color{red} tensor} in the derived category,
1.2 takayama 33: {\color{red} dual} (Dual as a D-module),
1.1 takayama 34: {\color{red} slope}.
35:
36: \medbreak
37: \noindent
38: \fbox{\huge {\color{green} Cohomology groups}}
39:
40: \noindent
41: {\color{red} deRham} (The de Rham cohomology groups of
42: ${\bf C}^n \setminus V(f)$,
43: {\color{red} ext} (Ext modules for a holonomic $D$-module $M$
44: and the ring of formal power series).
45:
46: \medbreak
47: \noindent
48: \fbox{\huge
49: {\color{green} Differential equations}}
50:
51: \noindent
52: Helping to derive and prove {\color{red} combinatorial} and
53: {\color{red} special function identities},
54: {\color{red} gkz} (GKZ hypergeometric differential equations),
1.2 takayama 55: {\color{red} appell} (Appell's hypergeometric differential equations),
1.1 takayama 56: {\color{red} indicial} (indicial equations),
1.2 takayama 57: {\color{red} rank} (Holonomic rank),
58: {\color{red} rrank} (Holonomic rank of regular holonomic systems),
1.1 takayama 59: {\color{red} dsolv} (series solutions of holonomic systems).
60:
1.2 takayama 61: \medbreak
62: \noindent
63: \fbox{\huge
64: {\color{green} OpenMATH support}}
65:
66: \noindent
67: {\color{red} om\_xml} (CMO to OpenMATH XML),
68: {\color{red} om\_xml\_to\_cmo} (OpenMATH XML to CMO).
69:
70: \medbreak
71: \noindent
72: \fbox{\huge
73: {\color{green} Homotopy Method}}
74:
75: \noindent
76: {\color{red} phc} (Solving systems of algebraic equations by
77: numerical and polyhedral homotopy methods).
78:
79: \medbreak
80: \noindent
81: \fbox{\huge
82: {\color{green} Toric ideal}}
83:
84: \noindent
85: {\color{red} tigers} (Enumerate all Gr\"obner basis of a toric ideal.
86: Finding test sets for integer program),
1.4 takayama 87: {\color{red} arithDeg} (Arithmetic degree of a monomial ideal),
1.2 takayama 88: {\color{red} stdPair} (Standard pair decomposition of a monomial ideal).
89:
90: \medbreak
91: \noindent
92: \fbox{\huge {\color{green} Communications}}
93:
94: \noindent
95: {\color{red} ox\_launch} (starting a server),
96: {\color{red} ox\_launch\_nox},
97: {\color{red} ox\_shutdown},
98: {\color{red} ox\_launch\_generic},
99: {\color{red} generate\_port},
100: {\color{red} try\_bind\_listen},
101: {\color{red} try\_connect},
102: {\color{red} try\_accept},
103: {\color{red} register\_server},
104: {\color{red} ox\_rpc},
105: {\color{red} ox\_cmo\_rpc},
106: {\color{red} ox\_execute\_string},
107: {\color{red} ox\_reset} (reset the server),
108: {\color{red} ox\_intr},
109: {\color{red} register\_handler},
110: {\color{red} ox\_push\_cmo},
111: {\color{red} ox\_push\_local},
112: {\color{red} ox\_pop\_cmo},
113: {\color{red} ox\_pop\_local},
114: {\color{red} ox\_push\_cmd},
115: {\color{red} ox\_sync},
116: {\color{red} ox\_get},
117: {\color{red} ox\_pops},
118: {\color{red} ox\_select},
119: {\color{red} ox\_flush},
120: {\color{red} ox\_get\_serverinfo}
121:
122: \medbreak
123: \noindent
1.5 takayama 124: In addition to these functions, {\color{green} Mathematica functions}
125: can be called as server functions.
126: \medbreak
127: \noindent
1.2 takayama 128: \fbox{\huge {\color{green} Examples}}
129: {\footnotesize
130: \begin{verbatim}
131: [345] sm1_deRham([x^3-y^2*z^2,[x,y,z]]);
132: [1,1,0,0]
1.6 ! takayama 133: /* dim H^i = 1 (i=0,1), =0 (i=2,3) */
1.2 takayama 134: \end{verbatim}}
135:
136: \noindent
137: {\footnotesize \begin{verbatim}
1.3 takayama 138: [287] phc(katsura(7)); B=map(first,Phc)$
139: [291] gnuplot_plotDots(B,0)$
1.2 takayama 140: \end{verbatim} }
141:
142: \epsfxsize=3cm
143: \begin{center}
144: \epsffile{../calc2000/katsura7.ps}
145: \end{center}
146: %%The first components of the solutions to the system of algebraic equations Katsura 7.
147:
148: \noindent
149:
150:
151: \medbreak
152: \noindent
153: \fbox{ {\color{green} Authors}}
1.3 takayama 154: Castro-Jim\'enez, Doltman, Hubert, Murao, Noro, Oaku, Okutani,
155: Shimoyama, Sturm, Takayama, Tamura, Verschelde, Yokoyama.
1.4 takayama 156:
157: \medbreak
1.5 takayama 158: \vfill
1.4 takayama 159: \noindent
160: \rightline{ {\color{red} {\tt http://www.openxm.org} }}
1.1 takayama 161:
162: \end{document}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>