Annotation of OpenXM/doc/calc2000p/reliable.tex, Revision 1.2
1.2 ! noro 1: % $OpenXM: OpenXM/doc/calc2000p/reliable.tex,v 1.1 2000/07/22 08:11:09 noro Exp $
1.1 noro 2: \documentclass{slides}
3: \usepackage{color}
4: \usepackage{rgb}
5: %{\color{red} Asir}
6: \begin{document}
7: \parskip 5pt
1.2 ! noro 8: \fbox{{\large \color{blue} Reliable Computation with OpenXM}}
! 9: \vskip 3pt
1.1 noro 10: {\color{red} Compute GB on a client $\Rightarrow$ Verify it on a server}
11:
12: {\color{red} $\{g_i\}$ is a GB of $\{f_j\}$}
13: $\Leftrightarrow$ $\{g_i\}$ is a GB (trivial)\\
14: and {\color{green} $\{g_i\}$ is generated by $\{f_j\}$ (non trivial)}.
15:
16: \vskip 10pt
17:
18: {\color{red} Check of the generation}\\
19: Find {\color{turquoise} polynomials} $c_j$ s.t.$g_i = \sum c_jf_j$ : {\color{red} hard}.
20:
21: {\color{orange} Alternatively}
22:
23: $\{h_k\}$ : intermediate bases ($\{f_j\}, \{g_i\}\subset \{h_k\}$)\\
24: Find {\color{turquoise} monomials} $m_l$ s.t. $h_k = \displaystyle{\sum_{l<k} m_l h_l}$ : {\color{SeaGreen} trivial}.
25:
26: \medbreak
27:
28: \begin{tabbing}
29: {\color{red} Verification}\\
30: After each normal form computation,\\
31: {\color{green} Client} \=: \= sends a list $\{h,\{l_1,m_1\},\ldots,\{l_s,m_s\}\}$.\\
32: \>\>where $h$ is the normal form.\\
33: {\color{green} Server} \>: \> checks whether $h=\sum m_k h_{l_k}$, then\\
34: \>\> registers $h$ as a new basis element.
35: \end{tabbing}
36:
37: \medbreak
38:
39: {\color{red} Implementation of the verifier} : {\color{SeaGreen}easy}\\
40: \quad It requres only polynomial arithmetics.
41:
42: {\color{red} Reliability} : {\color{SeaGreen} higher than simple double check}
43: \vskip 20pt
44: \rightline{ {\color{red} {\tt http://www.openxm.org} }}
45: \end{document}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>