[BACK]Return to factor.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / compalg

Diff for /OpenXM/doc/compalg/factor.tex between version 1.2 and 1.4

version 1.2, 2000/03/28 01:59:21 version 1.4, 2000/10/03 01:23:58
Line 1 
Line 1 
   %$OpenXM: OpenXM/doc/compalg/factor.tex,v 1.3 2000/03/28 02:02:29 noro Exp $
 \chapter{$BB?9`<0$N0x?tJ,2r(B}  \chapter{$BB?9`<0$N0x?tJ,2r(B}
   
 \section{$BM-8BBN(B}  \section{$BM-8BBN(B}
Line 410  $\GCD(\Tr(e),f) = 1 \Leftrightarrow$ $B$9$Y$F$N(B $i
Line 411  $\GCD(\Tr(e),f) = 1 \Leftrightarrow$ $B$9$Y$F$N(B $i
 \end{center}  \end{center}
 $s \in GF(q)$ $B$H$9$k;~(B, $\Tr(s) \equiv 0, 1$ $B$J$k85$O$=$l$>$l(B $q/2$ $B8D(B.  $s \in GF(q)$ $B$H$9$k;~(B, $\Tr(s) \equiv 0, 1$ $B$J$k85$O$=$l$>$l(B $q/2$ $B8D(B.
 $B$h$C$F(B, $\GCD(\Tr(e),f) = f$, $\GCD(\Tr(e),f) = 1$ $B$J$k3NN((B  $B$h$C$F(B, $\GCD(\Tr(e),f) = f$, $\GCD(\Tr(e),f) = 1$ $B$J$k3NN((B
 $B$O$=$l$>$l(B $1/2^k$ $B8D$H$J$k(B. \qed\\  $B$O$=$l$>$l(B $1/2^k$ $B$H$J$k(B. \qed\\
 $B$3$l$i$r$b$H$K(B, $B<!$N$h$&$J%"%k%4%j%:%`$rF@$k(B.  $B$3$l$i$r$b$H$K(B, $B<!$N$h$&$J%"%k%4%j%:%`$rF@$k(B.
   
 \begin{al}(Cantor-Zassenhaus{\rm\cite{CZ}})  \begin{al}(Cantor-Zassenhaus{\rm\cite{CZ}})
Line 492  $q=p^n$ $B$G(B $p$ $B$,4qAG?t$H$9$k(B. $f=f_1f_2$ 
Line 493  $q=p^n$ $B$G(B $p$ $B$,4qAG?t$H$9$k(B. $f=f_1f_2$ 
 $B$D$N(B $d$ $B<!4{Ls0x;R$H$9$k(B. $GF(q)$ $B>e$N(B $B9b!9(B $2d-1$ $B<!<0(B $g$ $B$r%i%s%@%`$KA*(B  $B$D$N(B $d$ $B<!4{Ls0x;R$H$9$k(B. $GF(q)$ $B>e$N(B $B9b!9(B $2d-1$ $B<!<0(B $g$ $B$r%i%s%@%`$KA*(B
 $B$V$H$-(B,  $B$V$H$-(B,
 $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$  $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$
 $B$H$J$k3NN($O(B $1-1/(2q^d)$.  $B$H$J$k3NN($O(B $1/2-1/(2q^d)$.
 \end{pr}  \end{pr}
 \proof  \proof
 $f_1$, $f_2$ $B$,(B $d$ $B<!4{Ls$h$j(B,  $f_1$, $f_2$ $B$,(B $d$ $B<!4{Ls$h$j(B,
Line 512  GF(q^d)\bigoplus GF(q^d)$ $B$N85$KBP$7(B, $BB?9`<0$
Line 513  GF(q^d)\bigoplus GF(q^d)$ $B$N85$KBP$7(B, $BB?9`<0$
 $B$h$C$F(B, $2d-1$ $B0J2<$NB?9`<0(B $q^{2d}$ $B8D$N$&$A(B,  $B$h$C$F(B, $2d-1$ $B0J2<$NB?9`<0(B $q^{2d}$ $B8D$N$&$A(B,
 $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ $B$H$J$k$N$O(B,  $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ $B$H$J$k$N$O(B,
 $$2(q^d-1)/2\cdot (q^d+1)/2 = (q^{2d}-1)/2$$  $$2(q^d-1)/2\cdot (q^d+1)/2 = (q^{2d}-1)/2$$
 $B8D$G$"$j(B, $B3NN($O(B $1-1/(2q^{2d}).$ \qed  $B8D$G$"$j(B, $B3NN($O(B $1/2-1/(2q^{2d}).$ \qed
   
 \begin{pr}  \begin{pr}
 $q=2^n$ $B$H$9$k(B. $f=f_1f_2$ $B$G(B$f_1$, $f_2$ $B$,(B $f$ $B$N(B 2  $q=2^n$ $B$H$9$k(B. $f=f_1f_2$ $B$G(B$f_1$, $f_2$ $B$,(B $f$ $B$N(B 2

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.4

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>