version 1.2, 2000/03/28 01:59:21 |
version 1.4, 2000/10/03 01:23:58 |
|
|
|
%$OpenXM: OpenXM/doc/compalg/factor.tex,v 1.3 2000/03/28 02:02:29 noro Exp $ |
\chapter{$BB?9`<0$N0x?tJ,2r(B} |
\chapter{$BB?9`<0$N0x?tJ,2r(B} |
|
|
\section{$BM-8BBN(B} |
\section{$BM-8BBN(B} |
Line 410 $\GCD(\Tr(e),f) = 1 \Leftrightarrow$ $B$9$Y$F$N(B $i |
|
Line 411 $\GCD(\Tr(e),f) = 1 \Leftrightarrow$ $B$9$Y$F$N(B $i |
|
\end{center} |
\end{center} |
$s \in GF(q)$ $B$H$9$k;~(B, $\Tr(s) \equiv 0, 1$ $B$J$k85$O$=$l$>$l(B $q/2$ $B8D(B. |
$s \in GF(q)$ $B$H$9$k;~(B, $\Tr(s) \equiv 0, 1$ $B$J$k85$O$=$l$>$l(B $q/2$ $B8D(B. |
$B$h$C$F(B, $\GCD(\Tr(e),f) = f$, $\GCD(\Tr(e),f) = 1$ $B$J$k3NN((B |
$B$h$C$F(B, $\GCD(\Tr(e),f) = f$, $\GCD(\Tr(e),f) = 1$ $B$J$k3NN((B |
$B$O$=$l$>$l(B $1/2^k$ $B8D$H$J$k(B. \qed\\ |
$B$O$=$l$>$l(B $1/2^k$ $B$H$J$k(B. \qed\\ |
$B$3$l$i$r$b$H$K(B, $B<!$N$h$&$J%"%k%4%j%:%`$rF@$k(B. |
$B$3$l$i$r$b$H$K(B, $B<!$N$h$&$J%"%k%4%j%:%`$rF@$k(B. |
|
|
\begin{al}(Cantor-Zassenhaus{\rm\cite{CZ}}) |
\begin{al}(Cantor-Zassenhaus{\rm\cite{CZ}}) |
Line 492 $q=p^n$ $B$G(B $p$ $B$,4qAG?t$H$9$k(B. $f=f_1f_2$ |
|
Line 493 $q=p^n$ $B$G(B $p$ $B$,4qAG?t$H$9$k(B. $f=f_1f_2$ |
|
$B$D$N(B $d$ $B<!4{Ls0x;R$H$9$k(B. $GF(q)$ $B>e$N(B $B9b!9(B $2d-1$ $B<!<0(B $g$ $B$r%i%s%@%`$KA*(B |
$B$D$N(B $d$ $B<!4{Ls0x;R$H$9$k(B. $GF(q)$ $B>e$N(B $B9b!9(B $2d-1$ $B<!<0(B $g$ $B$r%i%s%@%`$KA*(B |
$B$V$H$-(B, |
$B$V$H$-(B, |
$\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ |
$\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ |
$B$H$J$k3NN($O(B $1-1/(2q^d)$. |
$B$H$J$k3NN($O(B $1/2-1/(2q^d)$. |
\end{pr} |
\end{pr} |
\proof |
\proof |
$f_1$, $f_2$ $B$,(B $d$ $B<!4{Ls$h$j(B, |
$f_1$, $f_2$ $B$,(B $d$ $B<!4{Ls$h$j(B, |
Line 512 GF(q^d)\bigoplus GF(q^d)$ $B$N85$KBP$7(B, $BB?9`<0$ |
|
Line 513 GF(q^d)\bigoplus GF(q^d)$ $B$N85$KBP$7(B, $BB?9`<0$ |
|
$B$h$C$F(B, $2d-1$ $B0J2<$NB?9`<0(B $q^{2d}$ $B8D$N$&$A(B, |
$B$h$C$F(B, $2d-1$ $B0J2<$NB?9`<0(B $q^{2d}$ $B8D$N$&$A(B, |
$\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ $B$H$J$k$N$O(B, |
$\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ $B$H$J$k$N$O(B, |
$$2(q^d-1)/2\cdot (q^d+1)/2 = (q^{2d}-1)/2$$ |
$$2(q^d-1)/2\cdot (q^d+1)/2 = (q^{2d}-1)/2$$ |
$B8D$G$"$j(B, $B3NN($O(B $1-1/(2q^{2d}).$ \qed |
$B8D$G$"$j(B, $B3NN($O(B $1/2-1/(2q^{2d}).$ \qed |
|
|
\begin{pr} |
\begin{pr} |
$q=2^n$ $B$H$9$k(B. $f=f_1f_2$ $B$G(B$f_1$, $f_2$ $B$,(B $f$ $B$N(B 2 |
$q=2^n$ $B$H$9$k(B. $f=f_1f_2$ $B$G(B$f_1$, $f_2$ $B$,(B $f$ $B$N(B 2 |