[BACK]Return to factor.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / compalg

Diff for /OpenXM/doc/compalg/factor.tex between version 1.2 and 1.6

version 1.2, 2000/03/28 01:59:21 version 1.6, 2001/02/27 08:07:24
Line 1 
Line 1 
   %$OpenXM: OpenXM/doc/compalg/factor.tex,v 1.5 2001/02/07 07:17:46 noro Exp $
 \chapter{$BB?9`<0$N0x?tJ,2r(B}  \chapter{$BB?9`<0$N0x?tJ,2r(B}
   
 \section{$BM-8BBN(B}  \section{$BM-8BBN(B}
Line 194  $$\GCD(\prod_k g_k,\sum_i n_i g'_i \prod_{k\neq i}g_k)
Line 195  $$\GCD(\prod_k g_k,\sum_i n_i g'_i \prod_{k\neq i}g_k)
 \begin{al}($BL5J?J}J,2r(B)  \begin{al}($BL5J?J}J,2r(B)
 \label{sqfrmod}  \label{sqfrmod}
 \begin{tabbing}  \begin{tabbing}
 Input : $f(x) \in K[x]$ ($K$ $B$OI8?t(B $p>0$ $B$NBN(B)\\  Input : $f(x) \in K[x]$ ($K$ $B$OI8?t(B $p>0$ $B$NM-8BBN(B)\\
 Output : $f$ $B$NL5J?J}J,2r(B $f= g_1^{n_1}g_2^{n_2}\cdots$\\  Output : $f$ $B$NL5J?J}J,2r(B $f= g_1^{n_1}g_2^{n_2}\cdots$\\
 $F \leftarrow 1$\\  $F \leftarrow 1$\\
 if \= $f'\neq 0$ \{\\  if \= $f'\neq 0$ \{\\
Line 410  $\GCD(\Tr(e),f) = 1 \Leftrightarrow$ $B$9$Y$F$N(B $i
Line 411  $\GCD(\Tr(e),f) = 1 \Leftrightarrow$ $B$9$Y$F$N(B $i
 \end{center}  \end{center}
 $s \in GF(q)$ $B$H$9$k;~(B, $\Tr(s) \equiv 0, 1$ $B$J$k85$O$=$l$>$l(B $q/2$ $B8D(B.  $s \in GF(q)$ $B$H$9$k;~(B, $\Tr(s) \equiv 0, 1$ $B$J$k85$O$=$l$>$l(B $q/2$ $B8D(B.
 $B$h$C$F(B, $\GCD(\Tr(e),f) = f$, $\GCD(\Tr(e),f) = 1$ $B$J$k3NN((B  $B$h$C$F(B, $\GCD(\Tr(e),f) = f$, $\GCD(\Tr(e),f) = 1$ $B$J$k3NN((B
 $B$O$=$l$>$l(B $1/2^k$ $B8D$H$J$k(B. \qed\\  $B$O$=$l$>$l(B $1/2^k$ $B$H$J$k(B. \qed\\
 $B$3$l$i$r$b$H$K(B, $B<!$N$h$&$J%"%k%4%j%:%`$rF@$k(B.  $B$3$l$i$r$b$H$K(B, $B<!$N$h$&$J%"%k%4%j%:%`$rF@$k(B.
   
 \begin{al}(Cantor-Zassenhaus{\rm\cite{CZ}})  \begin{al}(Cantor-Zassenhaus{\rm\cite{CZ}})
Line 422  $Q \leftarrow \pi$ $B$N9TNsI=8=(B\\
Line 423  $Q \leftarrow \pi$ $B$N9TNsI=8=(B\\
 $\{e_1 = 1, e_2, \cdots, e_r\} \leftarrow \Ker(Q-I)$ $B$N(B $K$-$B4pDl(B\\  $\{e_1 = 1, e_2, \cdots, e_r\} \leftarrow \Ker(Q-I)$ $B$N(B $K$-$B4pDl(B\\
 if ($r = 1$) then return $F$\\  if ($r = 1$) then return $F$\\
 while\= ($|F| < r$) do \{\\  while\= ($|F| < r$) do \{\\
 \> $g \leftarrow F$ $B$N85(B, \quad $F \leftarrow F \backslash \{g\}$\\  
 \> $(c_1,\cdots,c_r) \leftarrow$ $BMp?t%Y%/%H%k(B ($c_i \in GF(q)$)\\  \> $(c_1,\cdots,c_r) \leftarrow$ $BMp?t%Y%/%H%k(B ($c_i \in GF(q)$)\\
 \> $e \leftarrow \sum c_ie_i$ \\  \> $e \leftarrow \sum c_ie_i$ \\
 \> if \= $p=2$\\  \> if \= $p=2$\\
 \>\> $E \leftarrow \Tr(e)$\\  \>\> $E \leftarrow \Tr(e) \bmod f$\\
 \>else\\  \>else\\
 \>\> $E \leftarrow e^{(q-1)/2}-1$\\  \>\> $E \leftarrow e^{(q-1)/2}-1 \bmod f$\\
 \> $h \leftarrow \GCD(g,E)$\\  \> $F_1 \leftarrow \emptyset$\\
 \> if $h \neq 1,g$\\  \> while \= ($F \neq \emptyset$) do \{\\
 \>\> $F \leftarrow F \cup \{h,g/h\}$\\  \>        \> $g \leftarrow F$ $B$N85(B, \quad $F \leftarrow F \backslash \{g\}$\\
   \>        \> $h \leftarrow \GCD(g,E)$\\
   \>        \> if \= $h \neq 1,g$\\
   \>        \> \> $F_1 \leftarrow F_1 \cup \{h,g/h\}$\\
   \>        \> else \\
   \>        \> \> $F_1 \leftarrow F_1 \cup \{g\}$\\
   \> \}\\
   \>   $F \leftarrow F_1$ \\
 \}\\  \}\\
 return F  return F
 \end{tabbing}  \end{tabbing}
Line 492  $q=p^n$ $B$G(B $p$ $B$,4qAG?t$H$9$k(B. $f=f_1f_2$ 
Line 499  $q=p^n$ $B$G(B $p$ $B$,4qAG?t$H$9$k(B. $f=f_1f_2$ 
 $B$D$N(B $d$ $B<!4{Ls0x;R$H$9$k(B. $GF(q)$ $B>e$N(B $B9b!9(B $2d-1$ $B<!<0(B $g$ $B$r%i%s%@%`$KA*(B  $B$D$N(B $d$ $B<!4{Ls0x;R$H$9$k(B. $GF(q)$ $B>e$N(B $B9b!9(B $2d-1$ $B<!<0(B $g$ $B$r%i%s%@%`$KA*(B
 $B$V$H$-(B,  $B$V$H$-(B,
 $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$  $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$
 $B$H$J$k3NN($O(B $1-1/(2q^d)$.  $B$H$J$k3NN($O(B $1/2-1/(2q^d)$.
 \end{pr}  \end{pr}
 \proof  \proof
 $f_1$, $f_2$ $B$,(B $d$ $B<!4{Ls$h$j(B,  $f_1$, $f_2$ $B$,(B $d$ $B<!4{Ls$h$j(B,
Line 512  GF(q^d)\bigoplus GF(q^d)$ $B$N85$KBP$7(B, $BB?9`<0$
Line 519  GF(q^d)\bigoplus GF(q^d)$ $B$N85$KBP$7(B, $BB?9`<0$
 $B$h$C$F(B, $2d-1$ $B0J2<$NB?9`<0(B $q^{2d}$ $B8D$N$&$A(B,  $B$h$C$F(B, $2d-1$ $B0J2<$NB?9`<0(B $q^{2d}$ $B8D$N$&$A(B,
 $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ $B$H$J$k$N$O(B,  $\GCD(g^{(q^d-1)/2}-1,f)=f_1$ $B$^$?$O(B $f_2$ $B$H$J$k$N$O(B,
 $$2(q^d-1)/2\cdot (q^d+1)/2 = (q^{2d}-1)/2$$  $$2(q^d-1)/2\cdot (q^d+1)/2 = (q^{2d}-1)/2$$
 $B8D$G$"$j(B, $B3NN($O(B $1-1/(2q^{2d}).$ \qed  $B8D$G$"$j(B, $B3NN($O(B $1/2-1/(2q^{2d}).$ \qed
   
 \begin{pr}  \begin{pr}
 $q=2^n$ $B$H$9$k(B. $f=f_1f_2$ $B$G(B$f_1$, $f_2$ $B$,(B $f$ $B$N(B 2  $q=2^n$ $B$H$9$k(B. $f=f_1f_2$ $B$G(B$f_1$, $f_2$ $B$,(B $f$ $B$N(B 2
Line 553  Input : $f(x) \in GF(q)[x]$, $q=p^n$, $f$ $B$OL5J?J}$
Line 560  Input : $f(x) \in GF(q)[x]$, $q=p^n$, $f$ $B$OL5J?J}$
 Output : $f(x) = \prod f_i$, $f$ $B$N(B $B4{Ls0x;RJ,2r(B\\  Output : $f(x) = \prod f_i$, $f$ $B$N(B $B4{Ls0x;RJ,2r(B\\
 $r \leftarrow \deg(f)/d,\quad F \leftarrow \{f\}$\\  $r \leftarrow \deg(f)/d,\quad F \leftarrow \{f\}$\\
 while\= ($|F| < r$) do \{\\  while\= ($|F| < r$) do \{\\
 \> $h \leftarrow F$ $B$N(B $\deg(h)>d$ $B$J$k85(B,\quad $F \leftarrow F \backslash \{h\}$\\  
 \> $g \leftarrow 2d-1$ $B<!$N%i%s%@%`$JB?9`<0(B\\  \> $g \leftarrow 2d-1$ $B<!$N%i%s%@%`$JB?9`<0(B\\
 \> if \= $p=2$\\  \> if \= $p=2$\\
 \>\>$G \leftarrow \sum_{j=0}^{rd-1}g^{2^i}$\\  \>\>$G \leftarrow \sum_{j=0}^{rd-1}g^{2^i} \bmod f$\\
 \> else\\  \> else\\
 \>\> $G \leftarrow g^{(q^d-1)/2}-1$\\  \>\> $G \leftarrow g^{(q^d-1)/2}-1 \bmod f$\\
 \> $z \leftarrow \GCD(h,G)$\\  \> $F_1 \leftarrow \emptyset$\\
 \> if $z \neq 1,h$ \\  \> while \= ($F \neq \emptyset$) do \{\\
 \>\> $F \leftarrow F \cup \{z,h/z\}$\\  \>        \> $h \leftarrow F$ $B$N(B $\deg(h)>d$ $B$J$k85(B,\quad $F \leftarrow F \backslash \{h\}$\\
   \>        \> $z \leftarrow \GCD(h,G)$\\
   \>        \> if \= $z \neq 1,h$\\
   \>        \> \> $F_1 \leftarrow F_1 \cup \{z,h/z\}$\\
   \>        \> else \\
   \>        \> \> $F_1 \leftarrow F_1 \cup \{h\}$\\
   \> \}\\
   \>   $F \leftarrow F_1$ \\
 \}\\  \}\\
 return $F$\\  return $F$\\
 \end{tabbing}  \end{tabbing}

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.6

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>