Annotation of OpenXM/doc/compalg/prdec.tex, Revision 1.3
1.3 ! noro 1: %$OpenXM$
1.1 noro 2: \chapter{$B%$%G%"%k$NJ,2r(B}
3: $B%$%G%"%k(B $I \subset R=K[X]$ $B$KBP$7(B, $I=I_1\cap I_2$ $B$H=q$1$k;~(B,
4: $V(I) = V(I_1) \cup V(I_2)$ $B$,@.$jN)$D(B. $B$9$J$o$A(B, $B%$%G%"%k$NJ,2r(B
5: $B$ONmE@$NJ,2r$rM?$($k(B. $B$h$j>\$7$/8@$($P(B, $BNmE@$NJ,2r$O(B radical $B$N(B
6: $BJ,2r$KBP1~$9$k(B. $BNmE@$r2DG=$J8B$jJ,2r$9$k$3$H$O(B, $BBe?tE*=89g$r(B
7: $B4{LsJ,2r$9$k$3$H$KBP1~$9$k(B. $BJ}Dx<0$K$D$$$F8@$($P(B, $B0lHL$K2r$N(B
8: $BJ,2r$K$h$j(B, $B$h$j07$$$d$9$$2r$NI=8=$rM?$($k$3$H$,$G$-$k(B.
9:
10: \section{$BAG%$%G%"%k(B, $B=`AG%$%G%"%k(B, $B=`AG%$%G%"%kJ,2r(B}
11:
12: $B0J2<(B, $R=K[X]$ $B$r8GDj$7$F9M$($k(B.
13:
14: \begin{df}
15: $B%$%G%"%k(B $I \subset R$ $B$,AG%$%G%"%k(B (prime ideal)$B$H$O(B,
16: \begin{center}
17: $ab \in I$ $B$+$D(B $a\notin I$ $B$J$i$P(B $b \in I$
18: \end{center}
19: $B$J$k$3$H(B. $B$3$l$O(B $R/I$ $B$,@00h$H$J$k$3$H$HF1CM(B.
20: \end{df}
21:
22: \begin{df}
23: $B%$%G%"%k(B $I \subset R$ $B$,=`AG%$%G%"%k(B (primary ideal)$B$H$O(B,
24: \begin{center}
25: $ab \in I$ $B$+$D(B $a\notin I$ $B$J$i$P(B $b \in \sqrt{I}$
26: \end{center}
27: $B$J$k$3$H(B.
28: \end{df}
29:
30: \begin{df}
31: $B%$%G%"%k(B $I \subset R$ $B$,(B $I=\sqrt{I}$ $B$rK~$?$9$H$-(B $I$ $B$O(B radical $B%$%G%"%k(B
32: $B$G$"$k$H$$$&(B. $\sqrt{I}$ $B$O(B radical $B%$%G%"%k$G$"$k(B.
33: \end{df}
34:
35: \begin{lm}
36: $\sqrt{I} = \cap_{I\subset P:prime}P$
37: \end{lm}
38: \proof $I \subset P$ $B$J$i$P(B $\sqrt{I} \subset \sqrt{P}=P$ $B$h$j(B
1.2 noro 39: $B:8JU(B $\subset$ $B1&JU(B. $B1&JU$,:8JU$r??$K4^$`$H$9$l$P(B, $B$"$k(B
1.1 noro 40: $f \in \cap_{I\subset P:prime}P \setminus \sqrt{I}$ $B$,B8:_$9$k(B. $B$3$N$H$-(B,
41: $S=\{f,f^2,\cdots,\}$ $B$H$*$1$P(B,
42: $S \cap \sqrt{I} = \emptyset$.
43: $F = \{J:$ $B%$%G%"%k(B $\mid \sqrt{I} \subset J$ $B$+$D(B $S \cap J = \emptyset \}$ $B$H(B
44: $B$*$/$H(B, $F \neq \emptyset$ $B$G(B, $BJq4^4X78$K4X$7$F5"G<E*(B. $B$h$C$F6KBg85(B $J_0$
45: $B$,B8:_$9$k(B.
46:
47: \noi
48: \underline{$B<gD%(B\,} $J_0$ $B$OAG(B.
49:
50: \noi
51: \proof $ab\in J_0$ $B$+$D(B $a, b\notin J_0$ $B$H$9$k(B. $J_0$ $B$N6KBg@-$h$j(B,
52: $S \cap (J_0+Id(a)) \neq \emptyset$ $B$+$D(B $S \cap (J_0+Id(b)) \neq \emptyset$.
53: $B$9$J$o$A(B, $B$"$k<+A3?t(B $s,t > 0$, $c,d \in J_0$, $e,f \in R$ $B$,B8:_$7$F(B,
54: $f^s=c+ae$, $f^t=d+bf$ $B$H=q$1$k(B. $B$9$k$H(B $f^{s+t}=abef+cd+aed+cbf \in J_0$
55: $B$H$J$jL7=b(B. $B$h$C$F(B $J_0$ $B$OAG(B. \qed
56:
57: \noi
58: $B$3$N<gD%$K$h$j(B, $f \notin J_0$ $B$+$D(B $I \subset J_0$ $B$J$kAG%$%G%"%k(B $J_0$ $B$,(B
59: $BB8:_$9$k(B. $B$3$l$OL7=b(B. \qed
60:
61: \begin{lm}
62: $B%$%G%"%k(B $I \subset R$ $B$,=`AG$J$i$P(B, $\sqrt{I}$ $B$OAG%$%G%"%k(B.
63: \end{lm}
64:
65: \begin{df}
66: $B%$%G%"%k(B $I \subset R$ $B$,=`AG$G(B $\sqrt{I}=P$ $B$N$H$-(B, $I$ $B$O(B $P$-$B=`AG$H$$$&(B.
67: $B$^$?(B $P$ $B$rIUB0AG%$%G%"%k(B (associated prime ideal)$B$H8F$V(B.
68: \end{df}
69:
70: \begin{df}
71: $B%$%G%"%k(B $I \subset R$ $B$,(B
72: \begin{center}
73: $I = I_1 \cap I_2 \Rightarrow I = I_1$ $B$^$?$O(B $I = I_2$
74: \end{center}
75: $B$rK~$?$9$H$-(B, $I$ $B$O4{Ls$H$$$&(B.
76: \end{df}
77:
78: \begin{lm}
79: $B4{Ls%$%G%"%k$O=`AG(B.
80: \end{lm}
81: \proof $I$ $B$,4{Ls$H$7(B, $fg \in I$ $B$+$D(B $f\notin I$ $B$H$9$k(B.
82: $I:g^\infty = I:g^s$ $B$J$k(B $s$ $B$r$H$k$H(B,
83: $$I = (I+Id(g^s)) \cap (I+Id(f)).$$
84: $B$3$l$O(B, $h = a+bg^s = c+df$ ( $a,c \in I$ ) $B$J$k(B $h$ $B$r$H$k$H(B,
85: $$ bg^{s+1} = (c-a)g+dfg \in I \Rightarrow b \in I:g^{s+1}=I:g^s \Rightarrow
86: bg^s \in I \Rightarrow h \in I$$
87: $B$+$i$o$+$k(B. $I \neq I+Id(f)$ $B$@$+$i(B $I=I+Id(g^s)$. $B$9$J$o$A(B $g \in \sqrt{I}$.
88: \qed
89:
90: \begin{th}
91: $BG$0U$N%$%G%"%k(B $I \subset R$ $B$OM-8B8D$N=`AG%$%G%"%k$N8r$o$j$H$7$F=q$1$k(B.
92: \end{th}
93: \proof $I$ $B$,M-8B8D$N4{Ls%$%G%"%k$NM-8B8D$N8r$o$j$G=q$1$k$3$H$r(B
94: $B$$$($P$h$$(B. $I$ $B$,4{Ls$G$J$1$l$P(B, $I = I_1 \cap I_2$ $B$H(B, $I$ $B$r??$K(B
95: $B4^$`%$%G%"%k$N8r$o$j$G=q$1$k(B. $I_1$ $B$,4{Ls$G$J$1$l$P(B, $I_1$ $B$OF1MM$N(B
96: $B8r$o$j$G=q$1$k(B. $B$b$7(B, $B$3$NA`:n$,M-8B2s$G=*$i$J$1$l$P(B, $B%$%G%"%k$N??$N(B
97: $BL58BA}BgNs$,B8:_$9$k$3$H$K$J$j(B, $R$ $B$N(B Noether $B@-$KH?$9$k(B. \qed
98:
99: \begin{df}
100: $B%$%G%"%k(B $I$ $B$N=`AGJ,2r$H$O(B, $I=\cap_{i=1}^r Q_i$ ($Q_i$:$B=`AG(B) $B$J$kI=(B
101: $B<($N$3$H(B. $B3F(B $Q_i$ $B$r=`AG@.J,$H8F$V(B. $B=`AGJ,2r$,(B minimal $B$H$O(B, $BA4$F$N(B
102: $\sqrt{Q_i}$ $B$,Aj0[$J$j(B, $\cap_{j\neq i} Q_j {\not \subset} Q_i$ $B$J$k(B
103: $B$3$H(B.
104: \end{df}
105:
106: \begin{lm}
107: $B=`AG%$%G%"%k(B $I$, $J$ $B$K$D$$$F(B, $\sqrt{I} = \sqrt{J}$ $B$J$i$P(B $I\cap J$ $B$b=`AG(B.
108: \end{lm}
109: \proof $ab \in I\cap J$ $B$+$D(B $a\notin I\cap J$ $B$H$9$k(B. $a\notin I$
110: $B$N$H$-(B, $b \in \sqrt{I}$, $a\notin J$ $B$N$H$-(B $b\in \sqrt{J}$ $B$,@.$jN)$D(B.
111: $\sqrt{I\cap J} = \sqrt{I} \cap \sqrt{J}$ $B$h$j(B, $b \in \sqrt{I\cap J}$. \qed
112:
113: \begin{th}
114: $BG$0U$N%$%G%"%k(B $I \subset R$ $B$O(B minimal $B$J=`AGJ,2r$r;}$D(B.
115: \end{th}
116: \proof $BJdBj$h$j(B, $BIUB0AG%$%G%"%k$,0lCW$9$k=`AG@.J,$O8r$o$j$r$H$k$3$H$K(B
117: $B$h$j0l$D$K$^$H$a$k$3$H$,$G$-$k(B. $B$=$N8e(B, $\cap_{j\neq i} Q_j \subset Q_i$
118: $B$J$k(B $Q_i$ $B$r<h$j=|$$$F$b;D$j$O(B $I$ $B$N=`AGJ,2r$H$J$k$+$i(B, $B$3$l$r(B
119: $B7+$jJV$7$F(B minimal $B$J=`AGJ,2r$rF@$k(B. \qed
120:
121: \noi
122: $B$5$i$K(B, $B<!$,@.$jN)$D(B.
123: \begin{th}
124: minimal $B$J=`AGJ,2r$ND9$5$O0l0UE*$G(B, $BIUB0AG%$%G%"%k$O=89g$H$7$F0lCW$9$k(B.
125: \end{th}
126:
127: \begin{df}
128: $B%$%G%"%k(B $I$ $B$N=`AG@.J,(B $Q$ $B$NIUB0AG%$%G%"%k$,6K>.$N;~8IN)(B (isolated) $B$H(B
129: $B$$$&(B. $B$=$&$G$J$$$H$-KdKW(B (embedded) $B$H$$$&(B.
130: \end{df}
131:
132: \begin{re}
133: $B8IN)(B, $BKdKW$H$$$&L>>N$O(B, $B$=$N(B variety $B$NMM;R$K$h$k(B. $B=`AG@.J,(B $Q$ $B$NIUB0(B
134: $BAG%$%G%"%k$r(B $P$ $B$H$9$k(B. $Q$ $B$,8IN)$N$H$-(B, $P$ $B$OB>$NIUB0AG%$%G%"%k$r(B
135: $B4^$^$J$$$+$i(B, variety $B$G$_$l$P(B, $V(P)$ $B$OB>$N@.J,$,Dj5A$9$k(B variety $B$K(B
136: $B4^$^$l$J$$(B. $B0lJ}(B, $Q$ $B$,KdKW$J$i$P(B, $P$ $B$O$"$kIUB0AG%$%G%"%k(B $P'$ $B$r4^(B
137: $B$`$+$i(B, variety $B$G$_$l$P(B $V(P) \subset V(P')$ $B$9$J$o$AKdKW$7$F$$$k(B.
138: \end{re}
139:
140: \section{$B=`AGJ,2r$N35N,(B}
141:
142: $B=`AGJ,2r$N$?$a$N<g$J<jCJ$O(B, {\bf $B%$%G%"%k>&(B},
143: {\bf extension}, {\bf contraction} $B$*$h$SB?9`<0$N0x?tJ,2r$G$"$k(B.
144:
145: \begin{lm}
146: $B%$%G%"%k(B $I$, $f \in R \setminus I$ $B$KBP$7(B, $I:f^m = I:f^\infty$ $B$J$k(B
147: $m$ $B$r$H$l$P(B,
148: $$I = I:f^\infty \cap (I+Id(f^m))$$
149: \end{lm}
150: \proof $h \in$ $B1&JU$H$9$k$H(B, $hf^m \in I$ $B$+$D(B $h=a+bf^m$ ($a \in I$)
151: $B$H$+$1$k(B. $B$h$C$F(B $bf^{2m} = hf^m-af^m \in I$ $B$9$J$o$A(B $b \in I:f^{2m}=I:f^m$
152: $B$3$l$+$i(B $h \in I$. \qed
153:
154: \begin{df}(extension)\\
155: $Y \subset X$ $B$KBP$7(B, $I^e=K(Y)[X\setminus Y]I$ $B$HDj5A$9$k(B.
156: \end{df}
157:
158: \begin{df}
159: $B%$%G%"%k(B $\dim(I)=d$ $B$H$9$k$H(B, $B<!85$NDj5A$K$h$j(B,
160: $|Y|=d$ $B$J$k(B independent set $Y \subset X$ $B$,$H$l$k(B.
161: $B$3$l$r(B maximally independent set $B$H$h$V(B.
162: \end{df}
163:
164: \begin{lm}
165: $Y$ $B$,(B maximally independent set $B$N$H$-(B
166: $I^e$ $B$O(B $K(Y)$ $B>e(B 0 $B<!85%$%G%"%k(B.
167: \end{lm}
168: \proof $BDj5A$K$h$j(B, $BA4$F$N(B $x \in X\setminus Y$ $B$KBP$7(B,
169: $I \cap K[\{x\} \cup Y] \neq 0$ $B$@$+$i(B, $K(Y)$ $B>e$G9M$($l$P(B
170: $x$ $B$N0lJQ?tB?9`<0$,(B $I^e$ $BCf$KB8:_$9$k$3$H$K$J$k(B. $B$h$C$F(B $I^e$ $B$O(B
171: 0 $B<!85(B.\qed
172:
173: \begin{lm}
174: $<$ $B$r(B $Y < (X\setminus Y)$ $B$J$k(B block order $B$H$9$k(B. $G$ $B$,(B $I$ $B$N(B
175: $<$ $B$K4X$9$k%0%l%V%J4pDl$J$i$P(B, $G$ $B$O(B, $I^e$ $B$N(B, $BF1$8(B order $B$K(B
176: $B4X$9$k%0%l%V%J4pDl(B.
177: \end{lm}
178:
179: \begin{df}(contraction)\\
180: $B%$%G%"%k(B $J \subset K(Y)[X\setminus Y]$ $B$KBP$7(B, $J\cap K[X]$ $B$r(B
181: $J$ $B$N(B contraction $B$H$h$S(B, $J^c$ $B$H=q$/(B.
182: \end{df}
183:
184: \begin{pr}
185: $I$ $B$r%$%G%"%k(B, $<$ $B$r(B $Y < (X\setminus Y)$ $B$J$k(B block order $B$H$7(B, $G$
186: $B$r(B $<$ $B$K4X$9$k(B $I$ $B$N%0%l%V%J4pDl$H$9$k(B. $B$3$N$H$-(B,
187: $$f = \LCM\{HC(g) \mid g \in G\}$$
188: ($B$?$@$7(B, $HC(g)$ $B$O(B $K(Y)[X\setminus Y]$ $B$N85$H$7$F$H$k(B) $B$H$9$l$P(B,
189: $I^{ec} = I:f^\infty$
190: \end{pr}
191:
192: $B$3$l$i$H(B, $B8e$G=R$Y$k(B 0 $B<!85%$%G%"%k$N=`AGJ,2r$rMQ$$$F(B, $B<!$N%"%k%4%j%:%`(B
193: $B$,F@$i$l$k(B.
194:
195: \begin{al} \cite{GTZ}
196: \label{gtz}
197: \begin{tabbing}
198: Input : $B%$%G%"%k(B $I \in R=K[X]$\\
199: Output : \= $I = \cap Q_i$ ($I$ $B$N(B minimal $B$J=`AGJ,2r(B)\\
200: \> $P_i = \sqrt{Q_i}$ ($Q_i$ $B$NIUB0AG%$%G%"%k(B)\\
201:
202: $Y \leftarrow$ maximally independent set modulo $I$\\
203: $\cap \bar{Q_i} \leftarrow I^e$ (0 $B<!85(B) $B$N(B $K(Y)$ $B>e$N=`AGJ,2r(B\\
204: $(f,s) \leftarrow$ $I^{ec} = I:f^\infty = I:f^s$ $B$J$k(B $f$ $B$*$h$S(B $s$\\
205: $\cap R_j \leftarrow I+Id(f^s)$ $B$N=`AGJ,2r(B\\
206: return $\bar{Q_i}^c \cap (\cap R_j)$
207: \end{tabbing}
208: \end{al}
209:
210: \noi
211: $I+Id(f^s)$ $B$O(B $I$ $B$r??$K4^$`$+$i(B, $BDd;_@-$OJ]>Z$5$l$k(B. $B$3$N%"%k%4%j%:%`(B
212: $B$r<B8=$9$k$?$a$K$O(B,
213:
214: \begin{itemize}
215: \item 0 $B<!85%$%G%"%k$N=`AGJ,2r(B
216:
217: \item maximally independent set $B$NA*$SJ}(B
218: \end{itemize}
219:
220: \noi
221: $B$N%"%k%4%j%:%`$rM?$($kI,MW$,$"$k(B. $B$3$NFb(B, maximally independent set
222: $B$K4X$7$F$O(B, $B<!$NL?Bj$,$"$k(B.
223:
224: \begin{pr}
225: $I$ $B$r%$%G%"%k$H$7(B, $MB_<$ $B$r(B, $R/I$ $B$N(B,
226: $BA4<!?t$D$-(B order $<$ $B$K4X$9$k(B monomial $B$K$h$k(B
227: $K$-$B4pDl$H$9$k(B.
228: $B$3$N$H$-(B, $\dim(I) = =max(|U| \mid T(U) \subset MB_<)$.
229: \end{pr}
230:
231: \noi
232: $B$3$NL?Bj$K4p$E$$$F(B, $B0l$D$N%0%l%V%J4pDl$+$i(B, $\dim(I)$ $B$r5a$a$k%"%k%4%j%:%`(B
233: $B$,9=@.$G$-$k(B. $B0J2<$G(B, 0 $B<!85%$%G%"%k$N=`AGJ,2r$K$D$$$F35N,$r=R$Y$k(B.
234:
235: \section{0 $B<!85%$%G%"%k$N=`AGJ,2r(B}
236:
237: $I \subset R=K[X]$ $B$r(B 0 $B<!85%$%G%"%k$H$9$k(B.
238:
239: \begin{df}
240: $f \in K[X]$ $B$,(B $I$ $B$N(B separating element $B$H$O(B,
241: $I$ $B$N(B $\overline{K}$ $B>e$NAj0[$kNmE@(B $a,b$ $B$KBP$7(B, $f(a) \neq f(b)$
242: $B$J$k$3$H(B.
243: \end{df}
244:
245: \begin{df}
246: $f\in K[X]$ $B$H$9$k(B. $t \notin X$ $B$J$kITDj85$r$H$j(B, $R[t]$ $B$N%$%G%"%k(B
247: $J = IR[t]+Id(t-f)$ $B$r9M$($l$P(B, $J$ $B$b(B 0 $B<!85%$%G%"%k$h$j(B,
248: $(I+Id(t-f)) \cap K[t] = Id(g(t))$ $B$J$k%b%K%C%/$J(B $g \in K[t]$ $B$,B8:_$9$k(B.
249: $g$ $B$r(B $f$ $B$N(B $I$ $B$K4X$9$k:G>.B?9`<0$H8F$V(B.
250: \end{df}
251:
252: \begin{pr}
253: $f$ $B$r(B $I$ $B$N(B separating element $B$H$7(B, $g$ $B$r(B $f$ $B$N:G>.B?9`<0$H$9$k(B.
254: $B$3$N$H$-(B,
255: $$g = g_1^{e_1}\cdots g_r^{e_r}$$
256: ($g_i$ $B$O(B$K$ $B>e4{Ls(B) $B$H0x?tJ,2r$9$l$P(B,
257: $$I = (I+g_1^{e_1}) \cap \cdots \cap (I+g_r^{e_r})$$
258: $B$O(B $I$ $B$N=`AGJ,2r$G(B,
259: $$\sqrt{I} = \sqrt{I+g_1} \cap \cdots \cap \sqrt{I+g_r}$$
260: $B$O(B $\sqrt{I}$ $B$NAG%$%G%"%kJ,2r$H$J$k(B. $B$9$J$o$A(B, $\sqrt{I+g_i}$ $B$O(B
261: $I+g_i^{e_i}$ $B$NIUB0AG%$%G%"%k(B.
262: \end{pr}
263:
264: \noi
265: $B%$%G%"%k$N(B seratating element $B$O(B, $BD>@\5a$a$k$N$O:$Fq$G$"$k(B. $BDj5A$K$h$j(B,
266: $\sqrt{I}$ $B$N(B separating element $B$,(B $I$ $B$N(B seratating element $B$H$J$k$3$H(B
267: $B$rMQ$$$F(B, $\sqrt{I}$ $B$r7W;;$7(B, separating element $B$r5a$a$k$3$H$r9M$($k(B.
268:
269: \begin{df}
270: $BBN(B $K$ $B$,40A4BN$H$O(B, $B4{LsB?9`<0$,A4$FJ,N%E*$G$"$k$3$H(B.
271: \end{df}
272:
273: \begin{re}
274: $B0J2<$NL?Bj(B, $B%"%k%4%j%:%`$G$O(B, $B4pACBN$,40A4BN$G$"$k$3$H$rMW5a$9$k$b$N$,(B
275: $B$$$/$D$+$"$k(B. $BI8?t(B 0 $B$NBN$OA4$F40A4BN$G$"$k(B. $B$^$?(B, $BM-8BBN$b40A4BN$G$"(B
276: $B$k$,(B, $BM-8BBN>e$NM-M}4X?tBN$O40A4BN$G$J$$(B. $B=`AGJ,2r$K$*$$$F$O4pACBN>e$N(B
277: $BM-M}4X?tBN$r78?t$H$9$kB?9`<04D$G$N7W;;$r9T$&$?$a(B, $B4pACBN$NI8?t$O(B 0
278: $B$K8B$i$l$k(B.
279: \end{re}
280:
281: \begin{pr}
282: $K$ $B$,40A4BN$J$i(B,
283: \begin{center}
284: 0 $B<!85%$%G%"%k(B $I$ $B$,(B radical $\Leftrightarrow$ $I$ $B$,(B, $B3FJQ?t$K$D$$$F(B
285: $B0lJQ?tL5J?J}B?9`<0$r4^$`(B.
286: \end{center}
287: \end{pr}
288:
289: \begin{pr}
290: $K$ $B$,40A4BN$H$9$k$H(B, 0 $B<!85(B radical $B%$%G%"%k(B $I$ $B$NNmE@$N8D?t$O(B
291: $\dim_K K[X]/I$ $B$KEy$7$$(B.
292: \end{pr}
293:
294: \begin{df}
295: $BB?9`<0(B $f$ $B$,(B $f = f_1^{e_1}\cdots f_m^{e_m}$ ($f_i$ $B$OL5J?J}(B) $B$H=q$1$?(B
296: $B$H$-(B, $f_1\cdots f_m$ $B$r(B $f$ $B$NL5J?J}ItJ,$H8F$V(B.
297: \end{df}
298:
299: \begin{co}
300: $I \cap K[x_i] = Id(f_i(x_i))$ $B$H$9$k(B.
301: $$\sqrt{I} = I+Id(h_1,\cdots,h_n)$$
302: ($h_i$ $B$O(B, $f_i$ $B$NL5J?J}ItJ,(B)
303: \end{co}
304:
305: \noi
306: radical $B%$%G%"%k$KBP$7$F$O(B, separating element $B$NH=Dj$O<!$N$h$&$K(B
307: $B=R$Y$i$l$k(B.
308:
309: \begin{pr}
310: $K$ $B$r40A4BN$H$7(B, $B%$%G%"%k(B $I$ $B$,(B 0 $B<!85(B radical $B$H$9$k(B. $f$ $B$N:G>.(B
311: $BB?9`<0$r(B $g$ $B$H$9$k$H(B,
312: \begin{center}
313: $f$ $B$,(B separating element $\Leftrightarrow$ $\deg(f)=\dim_K R/I$
314: \end{center}
315: $B$3$N$h$&$J(B $f$ $B$OB8:_$9$k(B. $K$ $B$,L58BBN$J$i$P(B, $f$ $B$H$7$F(B $X$ $B$N85$N@~(B
316: $B7AOB$+$iA*$Y$k(B.
317: \end{pr}
318:
319: \noi
320: $B0J>e$,(B, $B40A4BN>e$N(B 0 $B<!85%$%G%"%k$N=`AGJ,2r$N35N,$G$"$k(B. $BD>A0$N(B
321: $BL?Bj$K4XO"$7$F(B, $B<!$N$3$H$,@.$jN)$D(B.
322:
323: \begin{pr}(shape lemma)\\
324: $I$ $B$r40A4BN(B $K$ $B>e$N(B 0 $B<!85(B radical $B%$%G%"%k(B $B$H$7(B,
325: $f$ $B$r(B separating element $B$H$9$k(B.
326: $z << X$ $B$J$kG$0U$N=g=x$N$b$H$G(B, $R[z]$ $B$N%$%G%"%k(B $IR[z]+Id(z-f)$ $B$O(B
327: $$\{x_1-f_1(z),\cdots,x_n-f_n(z),z-f_z(z),m(z)\}$$
328: $B$H$$$&7A$N%0%l%V%J4pDl$r$b$D(B. $B$3$N7A$N4pDl$r(B shape basis $B$H8F$V(B.
329: \end{pr}
330: \proof $z$ $B$N:G>.B?9`<0(B $m$ $B$O(B $f$ $B$N:G>.B?9`<0$K0l(B
331: $BCW$7(B, $B$=$N<!?t$O(B $\dim_K K[X]/I$ $B$HEy$7$/$J$k(B. $z << X$
332: $B$J$k=g=x$N$b$H$G$O(B, $B%0%l%V%J4pDl$O(B $m$ $B$r4^$_(B, $B%b%N%$%G%"%k$r(B
333: $B9M$($l$P(B, $m$ $B0J30$N85$NF,9`$O3FJQ?t$N(B 1 $B<!<00J30$G$O$"$j$($J$$(B. \qed\\
334: shape basis $B$O(B, 0 $B<!85%$%G%"%k$NNmE@$r?tCM$G5a$a$h$&$H$9$k>l9g$K(B,
335: $B8+3]$1>eM-8z$J7A$r$7$F$$$k(B. $B<B:](B, $I$ $B$NNmE@$O(B, $f_n(x_n)$ $B$NNmE@$K(B
336: $B$h$j(B,
337: $$\{(f_1(\alpha),\cdots,f_n(\alpha))\mid m(\alpha) = 0\}$$
338: $B$H=q$1$k(B. $B$7$+$7(B, $BM-M}?tBN>e$G<B:]$K(B shape basis $B$r5a$a$F8+$k$H(B,
339: $m$ $B$N78?t$KHf$Y$F(B $f_i$ $B$N78?t$,6K$a$FBg$-$/$J$k$3$H$,(B
340: $BB?$$(B. $B$3$N:$Fq$r9nI~$9$k$?$a(B, $B<!$NJ}K!$,9M0F$5$l$?(B.
341:
342: \begin{pr}(rational univariate representation; RUR)\\
343: \label{RUR}
344: $BA0L?Bj$HF1$82>Dj$N$b$H$G(B, $IR[z]+Id(z-f)$ $B$N4pDl$H$7$F(B,
345: $$\{ m'x_1-g_1(z), \cdots, m'x_{z}-g_n(z), m(z)\}$$
346: $B$H$$$&7A$N$b$N$,$H$l$k(B.
347: \end{pr}
348: \noi
349: $m$ $B$O(B shape basis $B$N>l9g$H0lCW$9$k(B. $B$3$N4pDl$K$h$k$NNmE@$NI=8=$O(B,
350: $$\{({g_1(\alpha)\over m'(\alpha)},\cdots,{g_n(\alpha)\over
351: m'(\alpha)}) \mid m(\alpha)=0\}$$
352: \noi
353: $B$H=q$1$k(B. $BB?$/$N<BNc$K$*$$$F(B, $g_i$ $B$N3F78?t$,(B, $m$ $B$N78?t$HF1DxEY$N(B
354: $BBg$-$5$K2!$($i$l$k$3$H$,J,$+$C$F$*$j(B, 0 $B<!85(B radical$B$NNmE@$NI=8=$H$7$F(B
355: $B$O(B RUR $B$K$h$k$b$N$,M%$l$F$$$k$H$$$C$F$h$$(B.
356: RUR $B$N7W;;K!$H$7$F$O(B, $BBP>N<0$K$h$kJ}K!$,:G=i$KDs0F$5$l$F$$$,(B,
357: modular change of ordering $B$HF1MM$N<jK!$rE,MQ$9$k$3$H$b$G$-(B, RUR $B$,(B
358: $B7k2L$NBg$-$5DxEY$G7W;;$G$-$k(B \cite{NY2}.
359:
360: \section{$B=`AGJ,2r$NNc(B}
361: $B<!$NNc$O(B, symplectic integrator $B$H8F$P$l$k0BDj$J@QJ,%9%-!<%`$N(B
362: $B?tCM7W;;K!$K4X$7$F8=$l$?J}Dx<07O$G$"$k(B \cite{SYMP}.
363:
364: \vskip\baselineskip
365: {\small
366: $\left\{
367: \parbox[c]{6in}{
368: $d_1+d_2+d_3+d_4=1, c_1+c_2+c_3+c_4=1,$\\
369: $(6d_1c_2+(6d_1+6d_2)c_3+(6d_1+6d_2+6d_3)c_4)c_1
370: +(6d_2c_3+(6d_2+6d_3)c_4)c_2+6d_3c_4c_3=1,$\\
371: $(3d_1^2+(6d_2+6d_3+6d_4)d_1+3d_2^2+(6d_3+6d_4)d_2+3d_3^2+6d_4d_3+3d_4^2)c_1$\\
372: $+(3d_2^2+(6d_3+6d_4)d_2+3d_3^2+6d_4d_3+3d_4^2)c_2+(3d_3^2+6d_4d_3+3d_4^2)c_3+3d_4^2c_4=1,$\\
373: $(3d_1+3d_2+3d_3+3d_4)c_1^2+((6d_2+6d_3+6d_4)c_2+(6d_3+6d_4)c_3+6d_4c_4)c_1$\\
374: $+(3d_2+3d_3+3d_4)c_2^2+((6d_3+6d_4)c_3+6d_4c_4)c_2+(3d_3+3d_4)c_3^2+6d_4c_4c_3+3d_4c_4^2=1,$\\
375: $(24d_2d_1c_3+(24d_2+24d_3)d_1c_4)c_2+(24d_3d_1+24d_3d_2)c_4c_3=1,$\\
376: $(12d_2^2+(24d_3+24d_4)d_2+12d_3^2+24d_4d_3+12d_4^2)d_1c_2
377: +((12d_3^2+24d_4d_3+12d_4^2)d_1$\\
378: $+(12d_3^2+24d_4d_3+12d_4^2)d_2)c_3
379: +(12d_4^2d_1+12d_4^2d_2+12d_4^2d_3)c_4=1,$\\
380: $4d_1c_2^3+(12d_1c_3+12d_1c_4)c_2^2+(12d_1c_3^2+24d_1c_4c_3
381: +12d_1c_4^2)c_2+(4d_1+4d_2)c_3^3$\\
382: $+(12d_1+12d_2)c_4c_3^2+(12d_1+12d_2)c_4^2c_3+(4d_1+4d_2+4d_3)c_4^3=1$
383: }
384: \right.$}
385:
386: \vskip\baselineskip
387: \noindent
388: $B=`AGJ,2r$K$h$j(B, $B$3$NJ}Dx<0$O0J2<$N$h$&$KJ,2r$5$l$k$3$H$,J,$+$k(B.
389:
390: \vskip\baselineskip
391: $\left\{
392: \parbox[c]{8in}{
393: $24c_4^2-6c_4+1=0$\\
394: $c_1=-c_4+{1\over 4}$,
395: $c_2=-c_4+{1\over 2}$,
396: $c_3=c_4+{1\over 4}$
397: $d_1=-2c_4+{1\over 2}$,
398: $d_2={1\over 2}$,
399: $d_3=2c_4$,
400: $d_4=0$}
401: \right.$
402:
403: $\left\{
404: \parbox[c]{8in}{
405: $6c_4^3-12c_4^2+6c_4-1=0$\\
406: $c_1=0$,
407: $c_2=c_4$,
408: $c_3=-2c_4+1$
409: $d_1={1\over 2}c_4$,
410: $d_2=-{1\over 2}c_4+{1\over 2}$,
411: $d_3=-{1\over 2}c_4+{1\over 2}$,
412: $d_4={1\over 2}c_4$}
413: \right.$
414:
415: $\left\{
416: \parbox[c]{8in}{
417: $48c_4^3-48c_4^2+12c_4-1=0$\\
418: $c_1=c_4$,
419: $c_2=-c_4+{1\over 2}$,
420: $c_3=-c_4+{1\over 2}$
421: $d_1=2c_4$,
422: $d_2=-4c_4+1$,
423: $d_3=2c_4$,
424: $d_4=0$}
425: \right.$
426:
427: $\left\{
428: \parbox[c]{8in}{
429: $6c_4^2-3c_4+1=0$\\
430: $c_1=0$,
431: $c_2=-c_4+{1\over 2}$,
432: $c_3={1\over 2}$
433: $d_1=-{1\over 2}c_4+{1\over 4}$,
434: $d_2=-{1\over 2}c_4+{1\over 2}$,
435: $d_3={1\over 2}c_4+{1\over 4}$,
436: $d_4={1\over 2}c_4$}
437: \right.$
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>