[BACK]Return to factor-resume.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / sci-semi2001

Diff for /OpenXM/doc/sci-semi2001/factor-resume.tex between version 1.1 and 1.2

version 1.1, 2001/07/26 07:55:04 version 1.2, 2001/07/26 09:19:34
Line 1 
Line 1 
 %$OpenXM$  %$OpenXM: OpenXM/doc/sci-semi2001/factor-resume.tex,v 1.1 2001/07/26 07:55:04 noro Exp $
 \documentclass[12pt]{jarticle}  \documentclass[12pt]{jarticle}
 %\oddsidemargin -0.25in  %\oddsidemargin -0.25in
 %\evensidemargin -0.25in  %\evensidemargin -0.25in
Line 252  $tr \equiv 2 \bmod 3$}\\
Line 252  $tr \equiv 2 \bmod 3$}\\
 $b_0=x^2+1$, $c_0=x^2+x+2$ $B$H$9$k$H3N$+$K(B  $b_0=x^2+1$, $c_0=x^2+x+2$ $B$H$9$k$H3N$+$K(B
 $$f \equiv b_0c_0 \bmod 3$$ $B$,@.$jN)$D(B.  $$f \equiv b_0c_0 \bmod 3$$ $B$,@.$jN)$D(B.
 $B$b$H$N<0$KLa$k$H(B,  $B$b$H$N<0$KLa$k$H(B,
 $$gh \equiv (b_0+3b_1)(c_0+3c_1) \equiv 3^2$$ $B$h$j(B  $$gh \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$h$j(B
 $$f-gh \equiv a_0-b_0c_0+3(a_1-(c_0b_1+b_0c_1)) \bmod 3^2$$  $$f-gh \equiv a_0-b_0c_0+3(a_1-(c_0b_1+b_0c_1)) \bmod 3^2$$
 $a_0\equiv b_0c_0 \bmod 3$ $B$h$jN>JU$r(B 3 $B$G3d$k$H(B  $a_0\equiv b_0c_0 \bmod 3$ $B$h$jN>JU$r(B 3 $B$G3d$k$H(B
 $$(f-gh)/3 \equiv (a_0-b_0c_0)/3+(a_1-(c_0b_1+b_0c_1)) \bmod 3$$$B$5$F(B,  $$(f-gh)/3 \equiv (a_0-b_0c_0)/3+(a_1-(c_0b_1+b_0c_1)) \bmod 3$$$B$5$F(B,
Line 424  $k > 1$ $B$GI,MW$H$J$k(B $v_0$, $w_0$ $B$,B8:_$9$k$
Line 424  $k > 1$ $B$GI,MW$H$J$k(B $v_0$, $w_0$ $B$,B8:_$9$k$
   
 \item $BAw?.B&$O80$G0E9f2=$7(B, $B<u?.B&$O80$GI|9f2=$9$k(B.  \item $BAw?.B&$O80$G0E9f2=$7(B, $B<u?.B&$O80$GI|9f2=$9$k(B.
   
 $B80$O0l$D$G0E9f2=(B/$BI|9f2=$K;H$($k(B. $B$b$A$m$s(B, $B0E9f2=$K;H$C$?80$r;}$C$F$$(B  $B80$O0l$D$G0E9f2=(B/$BI|9f2=$K;H$&(B. $B$b$A$m$s(B, $B0E9f2=$K;H$C$?80$r;}$C$F$$(B
 $B$J$1$l$PI|9f$G$-$J$$$h$&$J0E9fJ}<0$rMQ$$$F$$$k$H$9$k(B. $B$3$N$h$&$J0E9f$O(B  $B$J$1$l$PI|9f$G$-$J$$$h$&$J0E9fJ}<0$rMQ$$$k(B. $B$3$N$h$&$J0E9f$O(B
 $B6&DL800E9f$H8F$P$l$k(B.  $B6&DL800E9f$H8F$P$l$k(B.
 \end{enumerate}  \end{enumerate}
 $B$3$3$GLdBj$,0l$D$"$k(B. $B0E9f2=$5$l$F$$$J$$(B, $BE{H4$1$NDL?.O)$r;H$C$F(B  $B$3$3$GLdBj$,0l$D$"$k(B. $B0E9f2=$5$l$F$$$J$$(B, $BE{H4$1$NDL?.O)$r;H$C$F(B
Line 517  Knuth, D.E., The Art of Computer Programming, Vol. 2.
Line 517  Knuth, D.E., The Art of Computer Programming, Vol. 2.
 Seminumerical Algorithms, Third ed. Addison-Wesley (1998).  Seminumerical Algorithms, Third ed. Addison-Wesley (1998).
   
 \bibitem{NORO}  \bibitem{NORO}
 $BLnO$(B $B@59T(B, $B7W;;5!Be?t(B. Rokko Lectures in Mathematics 9, $B?@8MBg3XM}3XIt(B  $BLnO$(B, $B7W;;5!Be?t(B. Rokko Lectures in Mathematics 9, $B?@8MBg3XM}3XIt(B
 $B?t3X65<<(B (2001).  $B?t3X65<<(B (2001).
   
 \bibitem{ASIR}  \bibitem{ASIR}
Line 533  Seminumerical Algorithms, Third ed. Addison-Wesley (19
Line 533  Seminumerical Algorithms, Third ed. Addison-Wesley (19
 $B$b>\$7$/=R$Y$F$$$k(B. $BB>$NJ88%$K$D$$$F$O(B, $B$3$l$i$NK\$NJ88%I=$r;2>H$7$F$[(B  $B$b>\$7$/=R$Y$F$$$k(B. $BB>$NJ88%$K$D$$$F$O(B, $B$3$l$i$NK\$NJ88%I=$r;2>H$7$F$[(B
 $B$7$$(B.  \cite{ASIR} $B$O%U%j!<$J7W;;5!Be?t%7%9%F%`(B($B?t<0=hM}%7%9%F%`(B)$B$G(B,  $B$7$$(B.  \cite{ASIR} $B$O%U%j!<$J7W;;5!Be?t%7%9%F%`(B($B?t<0=hM}%7%9%F%`(B)$B$G(B,
 \cite{NORO} $B$K=q$+$l$?%"%k%4%j%:%`$O$[$\<BAu$5$l$F$$$k(B. $B<B:]$K$I$NDxEY(B  \cite{NORO} $B$K=q$+$l$?%"%k%4%j%:%`$O$[$\<BAu$5$l$F$$$k(B. $B<B:]$K$I$NDxEY(B
 $B;H$$$b$N$K$J$k$+;n$7$F$_$F$[$7$$(B.  $B;H$$$b$N$K$J$k$+;n$7$F$_$F$[$7$$(B.\\
   
   \noindent
   {\large\bf $BG[I[(B CD $B$K$D$$$F(B}
   \begin{enumerate}
   \item
   Windows $BHG(B Asir $B$K$O%$%s%9%H!<%i$,$"$j$^$;$s(B. $B$$$-$J$j5/F0$G$-$^$9(B.
   Asir $B$r5/F0$9$k$K$O(B, CDROM $B>e$N(B $B%U%)%k%@(B {\tt asir} $B$r3+$-(B,$B$5$i$K(B {\tt
   bin} $B%U%)%k%@$r3+$-(B {\tt asirgui} $B%"%$%3%s$r%@%V%k%/%j%C%/$7$^$9(B.  $B%^(B
   $B%K%e%"%k(B({\tt index.html}), $BF~Lg=q(B({\tt index-asir-book.html})$B$J$I$b(B
   CDROM $B$K$$$l$F$"$j$^$9(B.  Asir $B$N%[!<%`%Z!<%8$O(B, \\
   {\tt http://www.math.kobe-u.ac.jp/Asir/asir.html} $B$G$9(B. {\tt asirgui} $B$O(B
   $B%G%9%/%H%C%W$X%3%T!<$9$k$HF0$-$^$;$s(B.  $B%^%$%I%-%e%a%s%H$X$N%3%T!<$O(B($BB?(B
   $BJ,(B)$BBg>fIW$G$9(B.  $B$?$@$7(B {\tt asir} $B%U%)%k%@A4BN$r%3%T!<$9$kI,MW$,$"$j$^(B
   $B$9(B.  ({\tt asirgui} $B$OF|K\8l$N%Q%9L>$,$"$k$H%H%i%V%k$r5/$3$90Y(B.  $B%G%9(B
   $B%/%H%C%W$OF|K\8l$N%Q%9L>$rMxMQ$7$F$$$k(B.)
   
   \item
   Asir $B$O%^%7%sL>$,F|K\8l$N>l9g(B, $BF0:n$,$*$+$7$/$J$j$^$9(B.
   $B<+J,$N%3%s%T%e!<%?$N%^%7%sL>$rD4$Y$k$K$O(B, $B%G%9%/%H%C%W$N(B
   $B%M%C%H%o!<%/%3%s%T%e!<%?%"%$%3%s$r%/%j%C%/$7$F2<$5$$(B.
   LAN $B$K@\B3$5$l$F$$$J$$>l9g$O(B, 1 $BBf$@$1%3%s%T%e!<%?$,I=<($5$l$^$9$,(B,
   $B$=$NL>A0$,<+J,$N%3%s%T%e!<%?$NL>A0$G$9(B.
   
   \item
   CDROM $B>e$N(B {\tt povwin3} $B$r%@%V%k%/%j%C%/$9$k$H(B, ray tracer povray $B$N(B
   $B%$%s%9%H!<%k$,;O$^$j$^$9(B.  povray $B$NF|K\8l$N@bL@=q$H$7$F$O(B, $B%"%9%-!<=P(B
   $BHG6I$N!V(BPOV-Ray $B$G$O$8$a$k%l%$%H%l!<%7%s%0!W(B $B>.<<F|=P<yCx(B
   (ISBN4-7561-1831-3) $B$,$"$j$^$9(B. \\
   {\tt http://hp.vector.co.jp/authors/VA000449/pov/} $B$r$_$k$H(B povray $B$K$D$$$F(B
   $B$N$$$m$s$J>pJs$rF@$k$3$H$,2DG=$G$9(B.
   
   \item
   $B?@8MBg3X?t3X65<<$N(B web page $B$KCV$$$F$"$k(B, $B6JLL$N2hA|=8$r<}O?$7$F$"$j$^(B
   $B$9(B.\\
   {\tt web-math-kobe-u} $B%U%)%k%@$r3+$$$?$N$A(B, {\tt index.html} $B$r%@(B
   $B%V%k%/%j%C%/$7$F(B,$BI=<($5$l$?%Z!<%8$N(B Mathematical Diversion $B$r3+$-$^$9!#(B
   \end{enumerate}
 \end{document}  \end{document}
   

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>