[BACK]Return to factor-resume.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / sci-semi2001

Diff for /OpenXM/doc/sci-semi2001/factor-resume.tex between version 1.2 and 1.5

version 1.2, 2001/07/26 09:19:34 version 1.5, 2001/07/28 07:07:20
Line 1 
Line 1 
 %$OpenXM: OpenXM/doc/sci-semi2001/factor-resume.tex,v 1.1 2001/07/26 07:55:04 noro Exp $  %$OpenXM: OpenXM/doc/sci-semi2001/factor-resume.tex,v 1.4 2001/07/28 06:37:39 noro Exp $
 \documentclass[12pt]{jarticle}  \documentclass[12pt]{jarticle}
 %\oddsidemargin -0.25in  %\oddsidemargin -0.25in
 %\evensidemargin -0.25in  %\evensidemargin -0.25in
Line 51  computer $B$H$$$&8@MU$O(B, $BJ8;zDL$j$K2r<a$9$l$P!V
Line 51  computer $B$H$$$&8@MU$O(B, $BJ8;zDL$j$K2r<a$9$l$P!V
 \end{itemize}  \end{itemize}
   
 $B$3$N$h$&$K(B CPU $B$X$NL?Na$N0l$D0l$D$OC1=c$J$b$N$P$+$j$G$"$k(B.  $B$3$N$h$&$K(B CPU $B$X$NL?Na$N0l$D0l$D$OC1=c$J$b$N$P$+$j$G$"$k(B.
 $B07$($k?t$NBg$-$5$O(B, $B$9$J$o$A%l%8%9%?$NBg$-$5$H8@$C$F$h$$(B. $B$?$H$($P(B,  $B07$($k?t$NBg$-$5$O(B, $B%l%8%9%?$NBg$-$5$G7h$^$k$H8@$C$F$h$$(B. $B$?$H$($P(B,
 32 $B%S%C%H%l%8%9%?$H$$$&$N$O(B 0 $B$^$?$O(B 1 $B$rI=$95-21AuCV$,(B 32 $B8D$"$k(B  32 $B%S%C%H%l%8%9%?$H$$$&$N$O(B 0 $B$^$?$O(B 1 $B$rI=$95-21AuCV$,(B 32 $B8D$"$k(B
 $B%l%8%9%?$G$"$k$,(B, $B$3$N%l%8%9%?$O(B 0 $B$+$i(B $2^{32}-1$ $B$^$G$N@0?t$7$+(B  $B%l%8%9%?$G$"$k$,(B, $B$3$N%l%8%9%?$O(B 0 $B$+$i(B $2^{32}-1$ $B$^$G$N@0?t$7$+(B
 $BJ];}$G$-$J$$$3$H$K$J$k(B.  $BJ];}$G$-$J$$$3$H$K$J$k(B.
Line 62  CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB
Line 62  CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB
 $B$NCM$r(B $2^{32}$ $B$G3d$C$?M>$j$G$"$k(B. $B$"$k$$$O(B,  $B$NCM$r(B $2^{32}$ $B$G3d$C$?M>$j$G$"$k(B. $B$"$k$$$O(B,
 $BEEBn$N$h$&$K(B $1.234567 \times 10^{20}$ $B$H$$$&CM$rJV$5$l$k$N$b:$$k(B.  $BEEBn$N$h$&$K(B $1.234567 \times 10^{20}$ $B$H$$$&CM$rJV$5$l$k$N$b:$$k(B.
 $B8m:9$,F~$C$F$7$^$&$H(B, $B?t3XE*$K$O0UL#$N$J$$7k2L$H$J$j$+$M$J$$(B.  $B8m:9$,F~$C$F$7$^$&$H(B, $B?t3XE*$K$O0UL#$N$J$$7k2L$H$J$j$+$M$J$$(B.
 $B$3$N$3$H$+$i(B, $B:GDc8B(B, $BBg$-$J@0?t$r07$($J$$$H:$$k$H$$$&$3$H$,$o$+$k(B.  $B$9$J$o$A(B, $B?t3X$K;H$&$K$O(B, $B07$($k@0?t$NBg$-$5$K@)8B$,$"$C$F$O$J$i$J$$(B.
 $B$3$N$?$a$K$OG$0U$NBg$-$5$N@0?t$r07$&$?$a$N%W%m%0%i%`$r=q$1$P$h$$(B.  $B$3$N$?$a$K$OG$0U$NBg$-$5$N@0?t$r07$&$?$a$N%W%m%0%i%`$r=q$1$P$h$$(B.
 $B$9$J$o$A(B, $B%a%b%j>e$K(B, $BNc$($P(B 32$B%S%C%H@0?t$rJB$Y$F(B, $B%3%s%T%e!<%?$K(B  $B$9$J$o$A(B, $B%a%b%j>e$K(B, $BNc$($P(B 32$B%S%C%H@0?t$rJB$Y$F(B, $B%3%s%T%e!<%?$K(B
 $B!VI.;;!W$r$5$;$l$P$h$$(B. $B$3$N>l9g(B, $B?M4V$H0[$J$k$N$O(B, $B?M4V$N>l9g(B,  $B!VI.;;!W$r$5$;$l$P$h$$(B. $B$3$N>l9g(B, $B?M4V$H0[$J$k$N$O(B, $B?M4V$N>l9g(B,
Line 71  CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB
Line 71  CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB
 $BNc$H$7$F(B, $B@0?t$NB-$7;;$O<!$N$h$&$K$J$k(B.  $BNc$H$7$F(B, $B@0?t$NB-$7;;$O<!$N$h$&$K$J$k(B.
   
 \begin{tabular}{ccccc}\\  \begin{tabular}{ccccc}\\
   & $2^{64}$ & $2^{32}$ & $1$ \\
 & 5 & 4001257187 & 1914644777 & (= $3^{42}$) \\  & 5 & 4001257187 & 1914644777 & (= $3^{42}$) \\
 + &  & 2830677074 & 689956897 & (= $3^{40}$) \\ \hline  + &  & 2830677074 & 689956897 & (= $3^{40}$) \\ \hline
 & 6 & 2536966965 & 2604601674 & (= $10\times 3^{40}$)\\  & 6 & 2536966965 & 2604601674 & (= $10\times 3^{40}$)\\
Line 113  $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D
Line 114  $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D
 \end{enumerate}  \end{enumerate}
   
 $B$5$F(B, $BNc$($P(B $f(x) = x^2+11508x+28386587$ $B$r0x?tJ,2r$9$k>l9g(B, $B$I$NJ}K!(B  $B$5$F(B, $BNc$($P(B $f(x) = x^2+11508x+28386587$ $B$r0x?tJ,2r$9$k>l9g(B, $B$I$NJ}K!(B
 $B$,$h$$$@$m$&$+(B. $B@52r$O(B $f(x)=(x+3581)(x+7927)$ $B$@$,(B,  $B$,$h$$$@$m$&$+(B. $f(x)$ $B$O(B $f(x)=(x+3581)(x+7927)$ $B$HJ,2r$5$l$k$,(B,
 $28386587=3581\cdot 7927$ $B$H$$$&AG0x?tJ,2r$,!V4cNO!W$GJ,$+$k?M$OB?J,>/(B  $28386587=3581\cdot 7927$ $B$H$$$&AG0x?tJ,2r$,!V4cNO!W$GJ,$+$k?M$OB?J,>/(B
 $B$J$$$H;W$&(B. $B<B:](B, $BB?9`<0$N0x?tJ,2r$KHf$Y$F(B, $B@0?t$NAG0x?tJ,2r$N$[$&$,$O(B  $B$J$$$H;W$&(B. $B<B:](B, $BB?9`<0$N0x?tJ,2r$KHf$Y$F(B, $B@0?t$NAG0x?tJ,2r$N$[$&$,$O(B
 $B$k$+$K:$Fq$JLdBj$G$"$k(B. $B$^$?(B, $BAG0x?tJ,2r$,4JC1$G$b(B, $BAG0x?t$,B?$9$.$k$H(B,  $B$k$+$K:$Fq$JLdBj$G$"$k(B. $B$^$?(B, $BAG0x?tJ,2r$,4JC1$G$b(B, $BAG0x?t$,B?$9$.$k$H(B,
Line 130  $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H
Line 131  $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H
 $BCf4VCM$NDjM}(B  $BCf4VCM$NDjM}(B
 $B!V(B$f(a) < 0$, $f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B  $B!V(B$f(a) < 0$, $f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B
 $B$r;H$C$F:,$rC5$9J}K!$G$"$k!VFsJ,K!!W$"$k$$$O@\@~$rMQ$$$k%K%e!<%H%sK!(B  $B$r;H$C$F:,$rC5$9J}K!$G$"$k!VFsJ,K!!W$"$k$$$O@\@~$rMQ$$$k%K%e!<%H%sK!(B
 $B$,$"$k(B ($B$$$:$l$b9b9;?t3X(B C $B$K$"$k(B). $B$3$l$i$H(B, $B@0?t:,$NM-L5$rD4$Y$l$P(B  $B$,$"$k(B ($B$$$:$l$b9b9;?t3X(B C $B$K$"$k(B). $BLdBj$O@0?t:,$NM-L5$J$N$G(B,
 $B$h$$(B, $B$H$$$&$3$H$+$i(B, $BM-8B2s$G7W;;$,$G$-$k$3$H$,J,$+$k(B. $B$7$+$7(B, $BB?9`<0(B  $B$3$l$i$NJ}K!$K$h$jHf3SE*MF0W$K:,$,C5$;$k(B. $B$7$+$7(B, $BB?9`<0(B
 $B$N<!?t$,(B 4 $B<!0J>e$N>l9g(B, $B0x;R$N<!?t$,$5$^$6$^$G$"$k$?$a(B, $B:,$rC5$9J}K!(B  $B$N<!?t$,(B 4 $B<!0J>e$N>l9g(B, $B0x;R$N<!?t$,$5$^$6$^$G$"$k$?$a(B, $B:,$rC5$9J}K!(B
 $B$rE,MQ$9$k$N$O:$Fq$G$"$m$&(B. $B$=$3$G(B, $B%3%s%T%e!<%?$K9g$C$?J}K!$rC5$9$3$H(B  $B$rE,MQ$9$k$N$O:$Fq$G$"$m$&(B. $B$=$3$G(B, $B%3%s%T%e!<%?$K9g$C$?J}K!$rC5$9$3$H(B
 $B$K$9$k(B. $B%R%s%H$H$7$F$O(B,  $B$K$9$k(B. $B%R%s%H$H$7$F$O(B,
   
 \begin{itemize}  \begin{itemize}
 \item $B!V6a;w!W$r$&$^$/;H$&(B  \item $B!V6a;w!W$r$&$^$/;H$&(B
 \item $B%3%s%T%e!<%?$O7+$jJV$7$,F@0U(B  \item $B%3%s%T%e!<%?$O7+$jJV$7(B, $B;n9T:x8m$,F@0U(B ($B$J$K$r$d$i$;$F$bJ86g$r8@$o$J$$(B)
 \end{itemize}  \end{itemize}
   
 $B$H$$$&(B 2 $BE@$G$"$k(B. $BA0<T$O(B, $BCf4VCM$NDjM}$,<B?t$K$*$1$k6a;w$H(B  $B$H$$$&(B 2 $BE@$G$"$k(B. $BA0<T$O(B, $BCf4VCM$NDjM}$,<B?t$K$*$1$k6a;w$H(B
 $B7k$SIU$$$?$h$&$K(B, $BB>$N%?%$%W$N6a;w$,;H$($J$$$+(B, $B$H$$$&$3$H$G$"$k(B.  $B7k$SIU$$$?$h$&$K(B, $BB>$N%?%$%W$N6a;w$,;H$($J$$$+(B, $B$H$$$&$3$H$G$"$k(B.
 $B8e<T$O(B, $B$=$N$h$&$J6a;w$r7+$jJV$7$FL\E*$NJ,2r$K6aIU$$$F$$$3$&(B, $B$H$$$&(B  $B8e<T$O(B, $B$=$N$h$&$J6a;w$r7+$jJV$7$FL\E*$NJ,2r$K6aIU$$$F$$$3$&(B, $B$H$$$&(B
Line 151  $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H
Line 151  $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H
 $B$3$l$+$i=R$Y$kJ}K!$O(B, $B0x;R$N7A(B ($B<!?t(B)$B$r2>Dj$7$F(B, $B$=$N78?t$r6a;w$K(B  $B$3$l$+$i=R$Y$kJ}K!$O(B, $B0x;R$N7A(B ($B<!?t(B)$B$r2>Dj$7$F(B, $B$=$N78?t$r6a;w$K(B
 $B$h$j5a$a$F$$$/J}K!$G$"$k(B. $B$3$N>l9g$K;X?K$H$J$k86M}$O(B  $B$h$j5a$a$F$$$/J}K!$G$"$k(B. $B$3$N>l9g$K;X?K$H$J$k86M}$O(B
 $B!V@0?t(B $m$ $B$,(B 0 $\Leftrightarrow$ $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k!W(B  $B!V@0?t(B $m$ $B$,(B 0 $\Leftrightarrow$ $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k!W(B
 $B$"$k$$$O(B  
 $B!V@0?t(B $m$ $B$,(B 0 $\Leftrightarrow$ $m$ $B$O==J,Bg$-$$@0?t$G3d$j@Z$l$k!W(B  
 $B$H$$$&$b$N$G$"$k(B. $B$3$l$rMQ$$$F(B, $B$?$H$($P(B  $B$H$$$&$b$N$G$"$k(B. $B$3$l$rMQ$$$F(B, $B$?$H$($P(B
   
 \begin{enumerate}  \begin{enumerate}
Line 160  $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H
Line 158  $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H
 $h_1$ $B$r8+$D$1$k(B.  $h_1$ $B$r8+$D$1$k(B.
   
 \item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B  \item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B
 $B=g<!:n$C$F$$$/(B ($k=2,3,\ldots$)  $B=g<!:n$C$F$$$/(B ($k=2,3,\ldots$) --- $B$@$s$@$s!V@:EY!W$,>e$,$k(B
   
 \item $g_1$, $h_1$ $B$,@52r$KBP1~$7$F$$$l$P(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B.  \item $g_1$, $h_1$ $B$,@52r$KBP1~$7$F$$$l$P(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B.
 \end{enumerate}  \end{enumerate}
 $B$H$$$&%?%$%W$N%"%k%4%j%:%`$r9=@.$9$k$N$G$"$k(B. $B8@$$$+$($k$H<!$N$h$&$K$J$k(B.  $B$H$$$&%?%$%W$N%"%k%4%j%:%`$r9=@.$9$k(B. $B8@$$$+$($k$H<!$N$h$&$K$J$k(B.
 $B0J2<(B, $B4JC1$N$?$a(B $f(x)$ $B$*$h$S$=$N0x;R$N78?t$OA4$F@5$G$"$k$H$9$k(B.  $B0J2<(B, $B4JC1$N$?$a(B $f(x)$ $B$*$h$S$=$N0x;R$N78?t$OA4$F@5$G$"$k$H$9$k(B.
 $B$^$:(B, $f(x)$ $B$N3F78?t$r(B $p$-$B?J?t$GI=$7(B, $B3F(B $p^k$ $B$4$H$K$^$H$a$F(B  $B$^$:(B, $f(x)$ $B$N3F78?t$r(B $p$-$B?J?t$GI=$7(B, $B3F(B $p^k$ $B$4$H$K$^$H$a$F(B
 $$f(x) = a_0(x)+p \cdot a_1(x)+p^2\cdot a_2(x)+\cdots$$  $$f(x) = a_0(x)+p \cdot a_1(x)+p^2\cdot a_2(x)+\cdots$$
Line 250  $tr \equiv 2 \bmod 3$}\\
Line 248  $tr \equiv 2 \bmod 3$}\\
 \noindent  \noindent
 $B$r0UL#$9$k$,(B, $B$3$l$i$O%Z%"$H$7$F$OF1$8$b$N$G$"$k(B.  $B$r0UL#$9$k$,(B, $B$3$l$i$O%Z%"$H$7$F$OF1$8$b$N$G$"$k(B.
 $b_0=x^2+1$, $c_0=x^2+x+2$ $B$H$9$k$H3N$+$K(B  $b_0=x^2+1$, $c_0=x^2+x+2$ $B$H$9$k$H3N$+$K(B
 $$f \equiv b_0c_0 \bmod 3$$ $B$,@.$jN)$D(B.  $f \equiv b_0c_0 \bmod 3$ $B$,@.$jN)$D(B.
 $B$b$H$N<0$KLa$k$H(B,  $B$b$H$N<0$KLa$k$H(B,
 $$gh \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$h$j(B  $$gh \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$h$j(B
 $$f-gh \equiv a_0-b_0c_0+3(a_1-(c_0b_1+b_0c_1)) \bmod 3^2$$  $$f-gh \equiv a_0-b_0c_0+3(a_1-(c_0b_1+b_0c_1)) \bmod 3^2$$
Line 282  $2r+t \equiv 0 \bmod 3$}\\
Line 280  $2r+t \equiv 0 \bmod 3$}\\
   
 \noindent  \noindent
 $B$3$l$G(B $$f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$H$J$k(B $b_1$, $c_1$  $B$3$l$G(B $$f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$H$J$k(B $b_1$, $c_1$
 $B$,5a$^$C$?$3$H$K$J$k(B. $B0J2<F1MM$K(B $$b_i = qx+r, c_i = sx+t$$  $B$,5a$^$C$?$3$H$K$J$k(B. $B<!$O(B $a_2$, $b_2$, $c_2$ $B$^$G$H$C$F(B $\bmod 3^3$ $B$G8+$H(B,
 ($i=2,3,\ldots$) $B$H$*$$$F(B $(q,r,s,t)$ $B$NO"N)0l<!9gF1<0$r=g<!(B  $$f \equiv a_0+3a_1+3^2a_2 \equiv (b_0+3b_1+3^2b_2)(c_0+3c_1+3^2c_2) \bmod 3^3$$
   $B$h$j(B
   $$((a_0+3a_1)-(b_0+3b_1)(c_0+3c_1))+3^2(a_2-(c_0b_2+b_0c_2)) \equiv 0 \bmod 3^3$$
   ($3^3$ $B$G3d$j@Z$l$k9`$O<N$F$?(B.) $B@hF,ItJ,$O(B $3^2$ $B$G3d$j@Z$l$k$N$G(B,
   $BN>JU$r(B $3^2$ $B$G3d$k$H(B
   $$((a_0+3a_1)-(b_0+3b_1)(c_0+3c_1))/3^2+(a_2-(c_0b_2+b_0c_2)) \equiv 0 \bmod 3$$
   $b_2 = qx+r, c_2 = sx+t$ $B$H$*$/$H(B, $BA0$HF1MM$K(B $(q,r,s,t)$ $B$NO"N)0l<!(B
   $B9gF1<0$,F@$i$l$k(B.
   $B0J2<F1MM$K(B $b_i = qx+r, c_i = sx+t$
   ($i=3,4,\ldots$) $B$H$*$$$F(B $(q,r,s,t)$ $B$NO"N)0l<!9gF1<0$r=g<!(B
 $B2r$$$F$$$1$P(B  $B2r$$$F$$$1$P(B
 $$f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1\  $$f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1\
 }) \bmod 3^k$$  }) \bmod 3^k$$
 $B$9$J$o$A(B$$f \equiv g_kh_k \bmod 3^k$$ $B$H$J$k(B $g_k$, $h_k$ $B$,7h$^$k(B.  $B$9$J$o$A(B$f \equiv g_kh_k \bmod 3^k$ $B$H$J$k(B $g_k$, $h_k$ $B$,7h$^$k(B.
 \begin{table}[hbtp]  \begin{table}[hbtp]
 \label{gh}  \label{gh}
 \begin{center}  \begin{center}
Line 310  $k$ & $g_k$ & $h_k$ \\ \hline
Line 317  $k$ & $g_k$ & $h_k$ \\ \hline
 \caption{($g_k$, $h_k$)}  \caption{($g_k$, $h_k$)}
 \end{center}  \end{center}
 \end{table}  \end{table}
 $BI=(B 1 $B$O(B, $B$3$NA`:n$rB3$1$?$H$-$N(B, $B3F%9%F%C%W$K$*$1$k(B $g_k$ $h_k$ $B$r<($9(B.  $BI=(B 1 $B$O(B, $B$3$NA`:n$rB3$1$?$H$-$N(B, $B3F%9%F%C%W$K$*$1$k(B $g_k$, $h_k$ $B$r<($9(B.
 $BI=$G8+$k$H(B, $k = 12$ $B$+$i(B $k = 13$ $B$GJQ2=$,$J$$$3$H$,J,$+$k(B. $B<B:]$K(B  $BI=$G8+$k$H(B, $k = 12$ $B$+$i(B $k = 13$ $B$GJQ2=$,$J$$$3$H$,J,$+$k(B. $B<B:]$K(B
 $f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0 $B$G$"$k$3$H$,J,$+$k(B.  $f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0 $B$G$"$k$3$H$,J,$+$k(B.
 $B$9$J$o$A(B  $B$9$J$o$A(B
Line 344  $p$ $B$,AG?t$N$H$-(B, $GF(p) = \{0,1,\cdots,p-1\}$$
Line 351  $p$ $B$,AG?t$N$H$-(B, $GF(p) = \{0,1,\cdots,p-1\}$$
 $B$3$l$O8@$$BX$($k$H(B  $B$3$l$O8@$$BX$($k$H(B
 $B!V(B$a {\not \equiv} 0 \bmod p$ $B$J$i(B $ab \equiv 1 \bmod p$ $B$J$k(B $b$ $B$,$"$k!W(B  $B!V(B$a {\not \equiv} 0 \bmod p$ $B$J$i(B $ab \equiv 1 \bmod p$ $B$J$k(B $b$ $B$,$"$k!W(B
 $B$H$$$&$3$H$G$"$k(B.  $B$H$$$&$3$H$G$"$k(B.
 $B!V(B$a$, $p$ $B$,8_$$$KAG$N$H$-@0?t(B $b$, $q$ $B$,B8:_$7$F(B $ab+qp=1$$B!W(B  $B!V(B$a$, $p$ $B$,8_$$$KAG$N$H$-@0?t(B $b$, $q$ $B$,B8:_$7$F(B $ab+pq=1$$B!W(B
 $B$H=q$1$P(B, $B8+$?$3$H$,$"$k$+$b$7$l$J$$(B. $B$3$l$O(B, $B%f!<%/%j%C%I$N8_=|K!$N(B  $B$H=q$1$P(B, $B8+$?$3$H$,$"$k$+$b$7$l$J$$(B. $B$3$l$O(B, $B%f!<%/%j%C%I$N8_=|K!$N(B
 $BI{;:J*$H$7$FF@$i$l$k7k2L$G$"$k(B.  $BI{;:J*$H$7$FF@$i$l$k7k2L$G$"$k(B.
 \end{enumerate}  \end{enumerate}
   
 $B$9$J$o$A(B, $GF(p)$ $B$OBN(B($B%?%$(B)$B$r$J$9(B.  $B$9$J$o$A(B, $GF(p)$ $B$OBN(B($B%?%$(B)$B$r$J$9(B.
 $B85$N8D?t$,M-8B8D(B ($p$ $B8D(B)$B$J$N$GM-8BBN$H$h$V(B. $B$5$F(B, $a_0 \equiv f \bmod p$  $B85$N8D?t$,M-8B8D(B ($p$ $B8D(B)$B$J$N$GM-8BBN$H$h$V(B. $B$5$F(B, $a_0 \equiv f \bmod p$
 $B$r(B $BBN(B $GF(p)$ $B$K78?t$r$b$D0lJQ?tB?9`<0$H8+$k$H(B, $a_0 \equiv b_0c_0 \bmod p$  $B$r(B $BBN(B $GF(p)$ $B$K78?t$r$b$D0lJQ?tB?9`<0$H8+$k$H(B, $a_0 \equiv b_0c_0 \bmod p$
Line 503  p^k$ $B$G$N0x?tJ,2r$K;}$A>e$2$F(B, $B:G=*E*$K@0?t>e
Line 509  p^k$ $B$G$N0x?tJ,2r$K;}$A>e$2$F(B, $B:G=*E*$K@0?t>e
 $B$$$i$l$F$$$k$3$H$b>R2p$7$?(B. $B%3%s%Q%/%H%G%#%9%/$N?.Mj@-$b(B, $BM-8BBN$rMQ$$(B  $B$$$i$l$F$$$k$3$H$b>R2p$7$?(B. $B%3%s%Q%/%H%G%#%9%/$N?.Mj@-$b(B, $BM-8BBN$rMQ$$(B
 $B$?Id9f$G$"$k(B Reed-Solomon $BId9f$G;Y$($i$l$F$$$k$3$H$r9M$($l$P(B, $BM-8BBN$,(B  $B$?Id9f$G$"$k(B Reed-Solomon $BId9f$G;Y$($i$l$F$$$k$3$H$r9M$($l$P(B, $BM-8BBN$,(B
 IT $B<R2q$rN"$G;Y$($F$$$k$H$$$C$F$b2a8@$G$O$J$$$@$m$&(B. $B?t3X$r@$$NCf$NLr(B  IT $B<R2q$rN"$G;Y$($F$$$k$H$$$C$F$b2a8@$G$O$J$$$@$m$&(B. $B?t3X$r@$$NCf$NLr(B
 $B$KN)$F$h$&(B, $B$J$I$H9M$($F$$$k?t3X<T$O$[$H$s$I$$$J$$$@$m$&$7(B, $B$^$?(B, $B$=$&(B  $B$KN)$F$h$&(B, $B$J$I$H9M$($F$$$k?t3X<T$O$"$^$j$$$=$&$K$J$$$7(B, $B$^$?(B, $B$=$&(B
 $B$$$&$7$,$i$_$+$i<+M3$G$"$k$H$3$m$,?t3X$NH/E8$N8;@t$H$$$($k$N$+$b$7$l$J(B  $B$$$&$7$,$i$_$+$i<+M3$G$"$k$H$3$m$,?t3X$NH/E8$N8;@t$H$$$($k$N$+$b$7$l$J(B
 $B$$(B. $B$7$+$7(B, $B$=$N$h$&$K$7$FF@$i$l$?7k2L$,(B, $B8e$GA[A|$b$D$+$J$$$H$3$m$G1~(B  $B$$(B. $B$7$+$7(B, $B$=$N$h$&$K$7$FF@$i$l$?7k2L$,(B, $B8e$GA[A|$b$D$+$J$$$H$3$m$G1~(B
 $BMQ$5$l$k>l9g$b$"$k(B. $B$^$?(B, $B0lHL$K4w$_7y$o$l$k860x$H$J$k!VFq$7$5!W$,(B, $B0E(B  $BMQ$5$l$k>l9g$b$"$k(B. $B$^$?(B, $B0lHL$K4w$_7y$o$l$k860x$H$J$k!VFq$7$5!W$,(B, $B0E(B
Line 521  Seminumerical Algorithms, Third ed. Addison-Wesley (19
Line 527  Seminumerical Algorithms, Third ed. Addison-Wesley (19
 $B?t3X65<<(B (2001).  $B?t3X65<<(B (2001).
   
 \bibitem{ASIR}  \bibitem{ASIR}
 $BLnO$(B $BB>(B, $B7W;;5!Be?t%7%9%F%`(B Risa/Asir.  $BLnO$(B $BB>(B, $B7W;;5!Be?t%7%9%F%`(B Risa/Asir (1994-2001).
 {\tt ftp://archives.cs.ehime-u.ac.jp/pub/asir2000/} (1994-2001).  
   {\tt ftp://archives.cs.ehime-u.ac.jp/pub/asir2000/}
 \end{thebibliography}  \end{thebibliography}
   
 $BK\9F$G=R$Y$?$3$H$O(B, $B<g$K%3%s%T%e!<%?$,CB@8$7$?8e$K9M0F$5$l$?J}K!$G(B, $BJ8(B  $BK\9F$G=R$Y$?$3$H$O(B, $B<g$K%3%s%T%e!<%?$,CB@8$7$?8e$K9M0F$5$l$?J}K!$G(B, $BJ8(B

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.5

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>