version 1.1, 2001/07/26 07:55:04 |
version 1.4, 2001/07/28 06:37:39 |
|
|
%$OpenXM$ |
%$OpenXM: OpenXM/doc/sci-semi2001/factor-resume.tex,v 1.3 2001/07/28 03:31:09 noro Exp $ |
\documentclass[12pt]{jarticle} |
\documentclass[12pt]{jarticle} |
%\oddsidemargin -0.25in |
%\oddsidemargin -0.25in |
%\evensidemargin -0.25in |
%\evensidemargin -0.25in |
Line 51 computer $B$H$$$&8@MU$O(B, $BJ8;zDL$j$K2r<a$9$l$P!V |
|
Line 51 computer $B$H$$$&8@MU$O(B, $BJ8;zDL$j$K2r<a$9$l$P!V |
|
\end{itemize} |
\end{itemize} |
|
|
$B$3$N$h$&$K(B CPU $B$X$NL?Na$N0l$D0l$D$OC1=c$J$b$N$P$+$j$G$"$k(B. |
$B$3$N$h$&$K(B CPU $B$X$NL?Na$N0l$D0l$D$OC1=c$J$b$N$P$+$j$G$"$k(B. |
$B07$($k?t$NBg$-$5$O(B, $B$9$J$o$A%l%8%9%?$NBg$-$5$H8@$C$F$h$$(B. $B$?$H$($P(B, |
$B07$($k?t$NBg$-$5$O(B, $B%l%8%9%?$NBg$-$5$G7h$^$k$H8@$C$F$h$$(B. $B$?$H$($P(B, |
32 $B%S%C%H%l%8%9%?$H$$$&$N$O(B 0 $B$^$?$O(B 1 $B$rI=$95-21AuCV$,(B 32 $B8D$"$k(B |
32 $B%S%C%H%l%8%9%?$H$$$&$N$O(B 0 $B$^$?$O(B 1 $B$rI=$95-21AuCV$,(B 32 $B8D$"$k(B |
$B%l%8%9%?$G$"$k$,(B, $B$3$N%l%8%9%?$O(B 0 $B$+$i(B $2^{32}-1$ $B$^$G$N@0?t$7$+(B |
$B%l%8%9%?$G$"$k$,(B, $B$3$N%l%8%9%?$O(B 0 $B$+$i(B $2^{32}-1$ $B$^$G$N@0?t$7$+(B |
$BJ];}$G$-$J$$$3$H$K$J$k(B. |
$BJ];}$G$-$J$$$3$H$K$J$k(B. |
Line 62 CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB |
|
Line 62 CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB |
|
$B$NCM$r(B $2^{32}$ $B$G3d$C$?M>$j$G$"$k(B. $B$"$k$$$O(B, |
$B$NCM$r(B $2^{32}$ $B$G3d$C$?M>$j$G$"$k(B. $B$"$k$$$O(B, |
$BEEBn$N$h$&$K(B $1.234567 \times 10^{20}$ $B$H$$$&CM$rJV$5$l$k$N$b:$$k(B. |
$BEEBn$N$h$&$K(B $1.234567 \times 10^{20}$ $B$H$$$&CM$rJV$5$l$k$N$b:$$k(B. |
$B8m:9$,F~$C$F$7$^$&$H(B, $B?t3XE*$K$O0UL#$N$J$$7k2L$H$J$j$+$M$J$$(B. |
$B8m:9$,F~$C$F$7$^$&$H(B, $B?t3XE*$K$O0UL#$N$J$$7k2L$H$J$j$+$M$J$$(B. |
$B$3$N$3$H$+$i(B, $B:GDc8B(B, $BBg$-$J@0?t$r07$($J$$$H:$$k$H$$$&$3$H$,$o$+$k(B. |
$B$9$J$o$A(B, $B?t3X$K;H$&$K$O(B, $B07$($k@0?t$NBg$-$5$K@)8B$,$"$C$F$O$J$i$J$$(B. |
$B$3$N$?$a$K$OG$0U$NBg$-$5$N@0?t$r07$&$?$a$N%W%m%0%i%`$r=q$1$P$h$$(B. |
$B$3$N$?$a$K$OG$0U$NBg$-$5$N@0?t$r07$&$?$a$N%W%m%0%i%`$r=q$1$P$h$$(B. |
$B$9$J$o$A(B, $B%a%b%j>e$K(B, $BNc$($P(B 32$B%S%C%H@0?t$rJB$Y$F(B, $B%3%s%T%e!<%?$K(B |
$B$9$J$o$A(B, $B%a%b%j>e$K(B, $BNc$($P(B 32$B%S%C%H@0?t$rJB$Y$F(B, $B%3%s%T%e!<%?$K(B |
$B!VI.;;!W$r$5$;$l$P$h$$(B. $B$3$N>l9g(B, $B?M4V$H0[$J$k$N$O(B, $B?M4V$N>l9g(B, |
$B!VI.;;!W$r$5$;$l$P$h$$(B. $B$3$N>l9g(B, $B?M4V$H0[$J$k$N$O(B, $B?M4V$N>l9g(B, |
Line 71 CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB |
|
Line 71 CPU $B$NDs6!$9$k5!G=$@$1$G$O(B, $B?t3X$K;H$&$K$OITB |
|
$BNc$H$7$F(B, $B@0?t$NB-$7;;$O<!$N$h$&$K$J$k(B. |
$BNc$H$7$F(B, $B@0?t$NB-$7;;$O<!$N$h$&$K$J$k(B. |
|
|
\begin{tabular}{ccccc}\\ |
\begin{tabular}{ccccc}\\ |
|
& $2^{64}$ & $2^{32}$ & $1$ \\ |
& 5 & 4001257187 & 1914644777 & (= $3^{42}$) \\ |
& 5 & 4001257187 & 1914644777 & (= $3^{42}$) \\ |
+ & & 2830677074 & 689956897 & (= $3^{40}$) \\ \hline |
+ & & 2830677074 & 689956897 & (= $3^{40}$) \\ \hline |
& 6 & 2536966965 & 2604601674 & (= $10\times 3^{40}$)\\ |
& 6 & 2536966965 & 2604601674 & (= $10\times 3^{40}$)\\ |
Line 113 $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D |
|
Line 114 $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D |
|
\end{enumerate} |
\end{enumerate} |
|
|
$B$5$F(B, $BNc$($P(B $f(x) = x^2+11508x+28386587$ $B$r0x?tJ,2r$9$k>l9g(B, $B$I$NJ}K!(B |
$B$5$F(B, $BNc$($P(B $f(x) = x^2+11508x+28386587$ $B$r0x?tJ,2r$9$k>l9g(B, $B$I$NJ}K!(B |
$B$,$h$$$@$m$&$+(B. $B@52r$O(B $f(x)=(x+3581)(x+7927)$ $B$@$,(B, |
$B$,$h$$$@$m$&$+(B. $f(x)$ $B$O(B $f(x)=(x+3581)(x+7927)$ $B$HJ,2r$5$l$k$,(B, |
$28386587=3581\cdot 7927$ $B$H$$$&AG0x?tJ,2r$,!V4cNO!W$GJ,$+$k?M$OB?J,>/(B |
$28386587=3581\cdot 7927$ $B$H$$$&AG0x?tJ,2r$,!V4cNO!W$GJ,$+$k?M$OB?J,>/(B |
$B$J$$$H;W$&(B. $B<B:](B, $BB?9`<0$N0x?tJ,2r$KHf$Y$F(B, $B@0?t$NAG0x?tJ,2r$N$[$&$,$O(B |
$B$J$$$H;W$&(B. $B<B:](B, $BB?9`<0$N0x?tJ,2r$KHf$Y$F(B, $B@0?t$NAG0x?tJ,2r$N$[$&$,$O(B |
$B$k$+$K:$Fq$JLdBj$G$"$k(B. $B$^$?(B, $BAG0x?tJ,2r$,4JC1$G$b(B, $BAG0x?t$,B?$9$.$k$H(B, |
$B$k$+$K:$Fq$JLdBj$G$"$k(B. $B$^$?(B, $BAG0x?tJ,2r$,4JC1$G$b(B, $BAG0x?t$,B?$9$.$k$H(B, |
Line 130 $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H |
|
Line 131 $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H |
|
$BCf4VCM$NDjM}(B |
$BCf4VCM$NDjM}(B |
$B!V(B$f(a) < 0$, $f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B |
$B!V(B$f(a) < 0$, $f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B |
$B$r;H$C$F:,$rC5$9J}K!$G$"$k!VFsJ,K!!W$"$k$$$O@\@~$rMQ$$$k%K%e!<%H%sK!(B |
$B$r;H$C$F:,$rC5$9J}K!$G$"$k!VFsJ,K!!W$"$k$$$O@\@~$rMQ$$$k%K%e!<%H%sK!(B |
$B$,$"$k(B ($B$$$:$l$b9b9;?t3X(B C $B$K$"$k(B). $B$3$l$i$H(B, $B@0?t:,$NM-L5$rD4$Y$l$P(B |
$B$,$"$k(B ($B$$$:$l$b9b9;?t3X(B C $B$K$"$k(B). $BLdBj$O@0?t:,$NM-L5$J$N$G(B, |
$B$h$$(B, $B$H$$$&$3$H$+$i(B, $BM-8B2s$G7W;;$,$G$-$k$3$H$,J,$+$k(B. $B$7$+$7(B, $BB?9`<0(B |
$B$3$l$i$NJ}K!$K$h$jHf3SE*MF0W$K:,$,C5$;$k(B. $B$7$+$7(B, $BB?9`<0(B |
$B$N<!?t$,(B 4 $B<!0J>e$N>l9g(B, $B0x;R$N<!?t$,$5$^$6$^$G$"$k$?$a(B, $B:,$rC5$9J}K!(B |
$B$N<!?t$,(B 4 $B<!0J>e$N>l9g(B, $B0x;R$N<!?t$,$5$^$6$^$G$"$k$?$a(B, $B:,$rC5$9J}K!(B |
$B$rE,MQ$9$k$N$O:$Fq$G$"$m$&(B. $B$=$3$G(B, $B%3%s%T%e!<%?$K9g$C$?J}K!$rC5$9$3$H(B |
$B$rE,MQ$9$k$N$O:$Fq$G$"$m$&(B. $B$=$3$G(B, $B%3%s%T%e!<%?$K9g$C$?J}K!$rC5$9$3$H(B |
$B$K$9$k(B. $B%R%s%H$H$7$F$O(B, |
$B$K$9$k(B. $B%R%s%H$H$7$F$O(B, |
|
|
\begin{itemize} |
\begin{itemize} |
\item $B!V6a;w!W$r$&$^$/;H$&(B |
\item $B!V6a;w!W$r$&$^$/;H$&(B |
\item $B%3%s%T%e!<%?$O7+$jJV$7$,F@0U(B |
\item $B%3%s%T%e!<%?$O7+$jJV$7(B, $B;n9T:x8m$,F@0U(B ($B$J$K$r$d$i$;$F$bJ86g$r8@$o$J$$(B) |
\end{itemize} |
\end{itemize} |
|
|
$B$H$$$&(B 2 $BE@$G$"$k(B. $BA0<T$O(B, $BCf4VCM$NDjM}$,<B?t$K$*$1$k6a;w$H(B |
$B$H$$$&(B 2 $BE@$G$"$k(B. $BA0<T$O(B, $BCf4VCM$NDjM}$,<B?t$K$*$1$k6a;w$H(B |
$B7k$SIU$$$?$h$&$K(B, $BB>$N%?%$%W$N6a;w$,;H$($J$$$+(B, $B$H$$$&$3$H$G$"$k(B. |
$B7k$SIU$$$?$h$&$K(B, $BB>$N%?%$%W$N6a;w$,;H$($J$$$+(B, $B$H$$$&$3$H$G$"$k(B. |
$B8e<T$O(B, $B$=$N$h$&$J6a;w$r7+$jJV$7$FL\E*$NJ,2r$K6aIU$$$F$$$3$&(B, $B$H$$$&(B |
$B8e<T$O(B, $B$=$N$h$&$J6a;w$r7+$jJV$7$FL\E*$NJ,2r$K6aIU$$$F$$$3$&(B, $B$H$$$&(B |
Line 151 $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H |
|
Line 151 $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H |
|
$B$3$l$+$i=R$Y$kJ}K!$O(B, $B0x;R$N7A(B ($B<!?t(B)$B$r2>Dj$7$F(B, $B$=$N78?t$r6a;w$K(B |
$B$3$l$+$i=R$Y$kJ}K!$O(B, $B0x;R$N7A(B ($B<!?t(B)$B$r2>Dj$7$F(B, $B$=$N78?t$r6a;w$K(B |
$B$h$j5a$a$F$$$/J}K!$G$"$k(B. $B$3$N>l9g$K;X?K$H$J$k86M}$O(B |
$B$h$j5a$a$F$$$/J}K!$G$"$k(B. $B$3$N>l9g$K;X?K$H$J$k86M}$O(B |
$B!V@0?t(B $m$ $B$,(B 0 $\Leftrightarrow$ $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k!W(B |
$B!V@0?t(B $m$ $B$,(B 0 $\Leftrightarrow$ $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k!W(B |
$B$"$k$$$O(B |
|
$B!V@0?t(B $m$ $B$,(B 0 $\Leftrightarrow$ $m$ $B$O==J,Bg$-$$@0?t$G3d$j@Z$l$k!W(B |
|
$B$H$$$&$b$N$G$"$k(B. $B$3$l$rMQ$$$F(B, $B$?$H$($P(B |
$B$H$$$&$b$N$G$"$k(B. $B$3$l$rMQ$$$F(B, $B$?$H$($P(B |
|
|
\begin{enumerate} |
\begin{enumerate} |
Line 160 $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H |
|
Line 158 $(a^2-4b)/4 = 4717584$ $B$,(B $2172^2$ $B$G$"$k$3$H |
|
$h_1$ $B$r8+$D$1$k(B. |
$h_1$ $B$r8+$D$1$k(B. |
|
|
\item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B |
\item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B |
$B=g<!:n$C$F$$$/(B ($k=2,3,\ldots$) |
$B=g<!:n$C$F$$$/(B ($k=2,3,\ldots$) --- $B$@$s$@$s!V@:EY!W$,>e$,$k(B |
|
|
\item $g_1$, $h_1$ $B$,@52r$KBP1~$7$F$$$l$P(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B. |
\item $g_1$, $h_1$ $B$,@52r$KBP1~$7$F$$$l$P(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B. |
\end{enumerate} |
\end{enumerate} |
$B$H$$$&%?%$%W$N%"%k%4%j%:%`$r9=@.$9$k$N$G$"$k(B. $B8@$$$+$($k$H<!$N$h$&$K$J$k(B. |
$B$H$$$&%?%$%W$N%"%k%4%j%:%`$r9=@.$9$k(B. $B8@$$$+$($k$H<!$N$h$&$K$J$k(B. |
$B0J2<(B, $B4JC1$N$?$a(B $f(x)$ $B$*$h$S$=$N0x;R$N78?t$OA4$F@5$G$"$k$H$9$k(B. |
$B0J2<(B, $B4JC1$N$?$a(B $f(x)$ $B$*$h$S$=$N0x;R$N78?t$OA4$F@5$G$"$k$H$9$k(B. |
$B$^$:(B, $f(x)$ $B$N3F78?t$r(B $p$-$B?J?t$GI=$7(B, $B3F(B $p^k$ $B$4$H$K$^$H$a$F(B |
$B$^$:(B, $f(x)$ $B$N3F78?t$r(B $p$-$B?J?t$GI=$7(B, $B3F(B $p^k$ $B$4$H$K$^$H$a$F(B |
$$f(x) = a_0(x)+p \cdot a_1(x)+p^2\cdot a_2(x)+\cdots$$ |
$$f(x) = a_0(x)+p \cdot a_1(x)+p^2\cdot a_2(x)+\cdots$$ |
Line 250 $tr \equiv 2 \bmod 3$}\\ |
|
Line 248 $tr \equiv 2 \bmod 3$}\\ |
|
\noindent |
\noindent |
$B$r0UL#$9$k$,(B, $B$3$l$i$O%Z%"$H$7$F$OF1$8$b$N$G$"$k(B. |
$B$r0UL#$9$k$,(B, $B$3$l$i$O%Z%"$H$7$F$OF1$8$b$N$G$"$k(B. |
$b_0=x^2+1$, $c_0=x^2+x+2$ $B$H$9$k$H3N$+$K(B |
$b_0=x^2+1$, $c_0=x^2+x+2$ $B$H$9$k$H3N$+$K(B |
$$f \equiv b_0c_0 \bmod 3$$ $B$,@.$jN)$D(B. |
$f \equiv b_0c_0 \bmod 3$ $B$,@.$jN)$D(B. |
$B$b$H$N<0$KLa$k$H(B, |
$B$b$H$N<0$KLa$k$H(B, |
$$gh \equiv (b_0+3b_1)(c_0+3c_1) \equiv 3^2$$ $B$h$j(B |
$$gh \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$h$j(B |
$$f-gh \equiv a_0-b_0c_0+3(a_1-(c_0b_1+b_0c_1)) \bmod 3^2$$ |
$$f-gh \equiv a_0-b_0c_0+3(a_1-(c_0b_1+b_0c_1)) \bmod 3^2$$ |
$a_0\equiv b_0c_0 \bmod 3$ $B$h$jN>JU$r(B 3 $B$G3d$k$H(B |
$a_0\equiv b_0c_0 \bmod 3$ $B$h$jN>JU$r(B 3 $B$G3d$k$H(B |
$$(f-gh)/3 \equiv (a_0-b_0c_0)/3+(a_1-(c_0b_1+b_0c_1)) \bmod 3$$$B$5$F(B, |
$$(f-gh)/3 \equiv (a_0-b_0c_0)/3+(a_1-(c_0b_1+b_0c_1)) \bmod 3$$$B$5$F(B, |
Line 282 $2r+t \equiv 0 \bmod 3$}\\ |
|
Line 280 $2r+t \equiv 0 \bmod 3$}\\ |
|
|
|
\noindent |
\noindent |
$B$3$l$G(B $$f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$H$J$k(B $b_1$, $c_1$ |
$B$3$l$G(B $$f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$$ $B$H$J$k(B $b_1$, $c_1$ |
$B$,5a$^$C$?$3$H$K$J$k(B. $B0J2<F1MM$K(B $$b_i = qx+r, c_i = sx+t$$ |
$B$,5a$^$C$?$3$H$K$J$k(B. $B<!$O(B $a_2$, $b_2$, $c_2$ $B$^$G$H$C$F(B $\bmod 3^3$ $B$G8+$H(B, |
($i=2,3,\ldots$) $B$H$*$$$F(B $(q,r,s,t)$ $B$NO"N)0l<!9gF1<0$r=g<!(B |
$$f \equiv a_0+3a_1+3^2a_2 \equiv (b_0+3b_1+3^2b_2)(c_0+3c_1+3^2c_2) \bmod 3^3$$ |
|
$B$h$j(B |
|
$$((a_0+3a_1)-(b_0+3b_1)(c_0+3c_1))+3^2(a_2-(c_0b_2+b_0c_2)) \equiv 0 \bmod 3^3$$ |
|
($3^3$ $B$G3d$j@Z$l$k9`$O<N$F$?(B.) $B@hF,ItJ,$O(B $3^2$ $B$G3d$j@Z$l$k$N$G(B, |
|
$BN>JU$r(B $3^2$ $B$G3d$k$H(B |
|
$$((a_0+3a_1)-(b_0+3b_1)(c_0+3c_1))/3^2+(a_2-(c_0b_2+b_0c_2)) \equiv 0 \bmod 3$$ |
|
$b_2 = qx+r, c_2 = sx+t$ $B$H$*$/$H(B, $BA0$HF1MM$K(B $(q,r,s,t)$ $B$NO"N)0l<!(B |
|
$B9gF1<0$,F@$i$l$k(B. |
|
$B0J2<F1MM$K(B $b_i = qx+r, c_i = sx+t$ |
|
($i=3,4,\ldots$) $B$H$*$$$F(B $(q,r,s,t)$ $B$NO"N)0l<!9gF1<0$r=g<!(B |
$B2r$$$F$$$1$P(B |
$B2r$$$F$$$1$P(B |
$$f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1\ |
$$f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1\ |
}) \bmod 3^k$$ |
}) \bmod 3^k$$ |
$B$9$J$o$A(B$$f \equiv g_kh_k \bmod 3^k$$ $B$H$J$k(B $g_k$, $h_k$ $B$,7h$^$k(B. |
$B$9$J$o$A(B$f \equiv g_kh_k \bmod 3^k$ $B$H$J$k(B $g_k$, $h_k$ $B$,7h$^$k(B. |
\begin{table}[hbtp] |
\begin{table}[hbtp] |
\label{gh} |
\label{gh} |
\begin{center} |
\begin{center} |
Line 310 $k$ & $g_k$ & $h_k$ \\ \hline |
|
Line 317 $k$ & $g_k$ & $h_k$ \\ \hline |
|
\caption{($g_k$, $h_k$)} |
\caption{($g_k$, $h_k$)} |
\end{center} |
\end{center} |
\end{table} |
\end{table} |
$BI=(B 1 $B$O(B, $B$3$NA`:n$rB3$1$?$H$-$N(B, $B3F%9%F%C%W$K$*$1$k(B $g_k$ $h_k$ $B$r<($9(B. |
$BI=(B 1 $B$O(B, $B$3$NA`:n$rB3$1$?$H$-$N(B, $B3F%9%F%C%W$K$*$1$k(B $g_k$, $h_k$ $B$r<($9(B. |
$BI=$G8+$k$H(B, $k = 12$ $B$+$i(B $k = 13$ $B$GJQ2=$,$J$$$3$H$,J,$+$k(B. $B<B:]$K(B |
$BI=$G8+$k$H(B, $k = 12$ $B$+$i(B $k = 13$ $B$GJQ2=$,$J$$$3$H$,J,$+$k(B. $B<B:]$K(B |
$f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0 $B$G$"$k$3$H$,J,$+$k(B. |
$f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0 $B$G$"$k$3$H$,J,$+$k(B. |
$B$9$J$o$A(B |
$B$9$J$o$A(B |
Line 344 $p$ $B$,AG?t$N$H$-(B, $GF(p) = \{0,1,\cdots,p-1\}$$ |
|
Line 351 $p$ $B$,AG?t$N$H$-(B, $GF(p) = \{0,1,\cdots,p-1\}$$ |
|
$B$3$l$O8@$$BX$($k$H(B |
$B$3$l$O8@$$BX$($k$H(B |
$B!V(B$a {\not \equiv} 0 \bmod p$ $B$J$i(B $ab \equiv 1 \bmod p$ $B$J$k(B $b$ $B$,$"$k!W(B |
$B!V(B$a {\not \equiv} 0 \bmod p$ $B$J$i(B $ab \equiv 1 \bmod p$ $B$J$k(B $b$ $B$,$"$k!W(B |
$B$H$$$&$3$H$G$"$k(B. |
$B$H$$$&$3$H$G$"$k(B. |
$B!V(B$a$, $p$ $B$,8_$$$KAG$N$H$-@0?t(B $b$, $q$ $B$,B8:_$7$F(B $ab+qp=1$$B!W(B |
$B!V(B$a$, $p$ $B$,8_$$$KAG$N$H$-@0?t(B $b$, $q$ $B$,B8:_$7$F(B $ab+pq=1$$B!W(B |
$B$H=q$1$P(B, $B8+$?$3$H$,$"$k$+$b$7$l$J$$(B. $B$3$l$O(B, $B%f!<%/%j%C%I$N8_=|K!$N(B |
$B$H=q$1$P(B, $B8+$?$3$H$,$"$k$+$b$7$l$J$$(B. $B$3$l$O(B, $B%f!<%/%j%C%I$N8_=|K!$N(B |
$BI{;:J*$H$7$FF@$i$l$k7k2L$G$"$k(B. |
$BI{;:J*$H$7$FF@$i$l$k7k2L$G$"$k(B. |
\end{enumerate} |
\end{enumerate} |
|
|
$B$9$J$o$A(B, $GF(p)$ $B$OBN(B($B%?%$(B)$B$r$J$9(B. |
$B$9$J$o$A(B, $GF(p)$ $B$OBN(B($B%?%$(B)$B$r$J$9(B. |
$B85$N8D?t$,M-8B8D(B ($p$ $B8D(B)$B$J$N$GM-8BBN$H$h$V(B. $B$5$F(B, $a_0 \equiv f \bmod p$ |
$B85$N8D?t$,M-8B8D(B ($p$ $B8D(B)$B$J$N$GM-8BBN$H$h$V(B. $B$5$F(B, $a_0 \equiv f \bmod p$ |
$B$r(B $BBN(B $GF(p)$ $B$K78?t$r$b$D0lJQ?tB?9`<0$H8+$k$H(B, $a_0 \equiv b_0c_0 \bmod p$ |
$B$r(B $BBN(B $GF(p)$ $B$K78?t$r$b$D0lJQ?tB?9`<0$H8+$k$H(B, $a_0 \equiv b_0c_0 \bmod p$ |
Line 424 $k > 1$ $B$GI,MW$H$J$k(B $v_0$, $w_0$ $B$,B8:_$9$k$ |
|
Line 430 $k > 1$ $B$GI,MW$H$J$k(B $v_0$, $w_0$ $B$,B8:_$9$k$ |
|
|
|
\item $BAw?.B&$O80$G0E9f2=$7(B, $B<u?.B&$O80$GI|9f2=$9$k(B. |
\item $BAw?.B&$O80$G0E9f2=$7(B, $B<u?.B&$O80$GI|9f2=$9$k(B. |
|
|
$B80$O0l$D$G0E9f2=(B/$BI|9f2=$K;H$($k(B. $B$b$A$m$s(B, $B0E9f2=$K;H$C$?80$r;}$C$F$$(B |
$B80$O0l$D$G0E9f2=(B/$BI|9f2=$K;H$&(B. $B$b$A$m$s(B, $B0E9f2=$K;H$C$?80$r;}$C$F$$(B |
$B$J$1$l$PI|9f$G$-$J$$$h$&$J0E9fJ}<0$rMQ$$$F$$$k$H$9$k(B. $B$3$N$h$&$J0E9f$O(B |
$B$J$1$l$PI|9f$G$-$J$$$h$&$J0E9fJ}<0$rMQ$$$k(B. $B$3$N$h$&$J0E9f$O(B |
$B6&DL800E9f$H8F$P$l$k(B. |
$B6&DL800E9f$H8F$P$l$k(B. |
\end{enumerate} |
\end{enumerate} |
$B$3$3$GLdBj$,0l$D$"$k(B. $B0E9f2=$5$l$F$$$J$$(B, $BE{H4$1$NDL?.O)$r;H$C$F(B |
$B$3$3$GLdBj$,0l$D$"$k(B. $B0E9f2=$5$l$F$$$J$$(B, $BE{H4$1$NDL?.O)$r;H$C$F(B |
Line 503 p^k$ $B$G$N0x?tJ,2r$K;}$A>e$2$F(B, $B:G=*E*$K@0?t>e |
|
Line 509 p^k$ $B$G$N0x?tJ,2r$K;}$A>e$2$F(B, $B:G=*E*$K@0?t>e |
|
$B$$$i$l$F$$$k$3$H$b>R2p$7$?(B. $B%3%s%Q%/%H%G%#%9%/$N?.Mj@-$b(B, $BM-8BBN$rMQ$$(B |
$B$$$i$l$F$$$k$3$H$b>R2p$7$?(B. $B%3%s%Q%/%H%G%#%9%/$N?.Mj@-$b(B, $BM-8BBN$rMQ$$(B |
$B$?Id9f$G$"$k(B Reed-Solomon $BId9f$G;Y$($i$l$F$$$k$3$H$r9M$($l$P(B, $BM-8BBN$,(B |
$B$?Id9f$G$"$k(B Reed-Solomon $BId9f$G;Y$($i$l$F$$$k$3$H$r9M$($l$P(B, $BM-8BBN$,(B |
IT $B<R2q$rN"$G;Y$($F$$$k$H$$$C$F$b2a8@$G$O$J$$$@$m$&(B. $B?t3X$r@$$NCf$NLr(B |
IT $B<R2q$rN"$G;Y$($F$$$k$H$$$C$F$b2a8@$G$O$J$$$@$m$&(B. $B?t3X$r@$$NCf$NLr(B |
$B$KN)$F$h$&(B, $B$J$I$H9M$($F$$$k?t3X<T$O$[$H$s$I$$$J$$$@$m$&$7(B, $B$^$?(B, $B$=$&(B |
$B$KN)$F$h$&(B, $B$J$I$H9M$($F$$$k?t3X<T$O$"$^$j$$$=$&$K$J$$$7(B, $B$^$?(B, $B$=$&(B |
$B$$$&$7$,$i$_$+$i<+M3$G$"$k$H$3$m$,?t3X$NH/E8$N8;@t$H$$$($k$N$+$b$7$l$J(B |
$B$$$&$7$,$i$_$+$i<+M3$G$"$k$H$3$m$,?t3X$NH/E8$N8;@t$H$$$($k$N$+$b$7$l$J(B |
$B$$(B. $B$7$+$7(B, $B$=$N$h$&$K$7$FF@$i$l$?7k2L$,(B, $B8e$GA[A|$b$D$+$J$$$H$3$m$G1~(B |
$B$$(B. $B$7$+$7(B, $B$=$N$h$&$K$7$FF@$i$l$?7k2L$,(B, $B8e$GA[A|$b$D$+$J$$$H$3$m$G1~(B |
$BMQ$5$l$k>l9g$b$"$k(B. $B$^$?(B, $B0lHL$K4w$_7y$o$l$k860x$H$J$k!VFq$7$5!W$,(B, $B0E(B |
$BMQ$5$l$k>l9g$b$"$k(B. $B$^$?(B, $B0lHL$K4w$_7y$o$l$k860x$H$J$k!VFq$7$5!W$,(B, $B0E(B |
$B9f$N0BA4@-$N:,5r$H$J$k$H$$$&$N$b$*$b$7$m$$OC$G$"$j(B, $B7y$o$l$b$N$K4E$s$8(B |
$B9f$N0BA4@-$N:,5r$H$J$k$H$$$&$N$b$*$b$7$m$$OC$G$"$j(B, $B7y$o$l$b$N$K4E$s$8(B |
$B$J$,$i(B, $B<B$O$3$C$=$j@$$NCf$NLr$KN)$C$F$$$k$H$$$&(B, $B?t3X$N2{$N?<$5$rI=$7(B |
$B$J$,$i(B, $B<B$O$3$C$=$j@$$NCf$NLr$KN)$C$F$$$k$H$$$&(B, $B?t3X$N2{$N?<$5$rI=$7(B |
|
|
$B$F$$$k$H$$$&5$$,$9$k(B. |
$B$F$$$k$H$$$&5$$,$9$k(B. |
|
|
\begin{thebibliography}{99} |
\begin{thebibliography}{99} |
Line 517 Knuth, D.E., The Art of Computer Programming, Vol. 2. |
|
Line 524 Knuth, D.E., The Art of Computer Programming, Vol. 2. |
|
Seminumerical Algorithms, Third ed. Addison-Wesley (1998). |
Seminumerical Algorithms, Third ed. Addison-Wesley (1998). |
|
|
\bibitem{NORO} |
\bibitem{NORO} |
$BLnO$(B $B@59T(B, $B7W;;5!Be?t(B. Rokko Lectures in Mathematics 9, $B?@8MBg3XM}3XIt(B |
$BLnO$(B, $B7W;;5!Be?t(B. Rokko Lectures in Mathematics 9, $B?@8MBg3XM}3XIt(B |
$B?t3X65<<(B (2001). |
$B?t3X65<<(B (2001). |
|
|
\bibitem{ASIR} |
\bibitem{ASIR} |
$BLnO$(B $BB>(B, $B7W;;5!Be?t%7%9%F%`(B Risa/Asir. |
$BLnO$(B $BB>(B, $B7W;;5!Be?t%7%9%F%`(B Risa/Asir (1994-2001). |
{\tt ftp://archives.cs.ehime-u.ac.jp/pub/asir2000/} (1994-2001). |
|
|
{\tt ftp://archives.cs.ehime-u.ac.jp/pub/asir2000/} |
\end{thebibliography} |
\end{thebibliography} |
|
|
$BK\9F$G=R$Y$?$3$H$O(B, $B<g$K%3%s%T%e!<%?$,CB@8$7$?8e$K9M0F$5$l$?J}K!$G(B, $BJ8(B |
$BK\9F$G=R$Y$?$3$H$O(B, $B<g$K%3%s%T%e!<%?$,CB@8$7$?8e$K9M0F$5$l$?J}K!$G(B, $BJ8(B |
Line 533 Seminumerical Algorithms, Third ed. Addison-Wesley (19 |
|
Line 541 Seminumerical Algorithms, Third ed. Addison-Wesley (19 |
|
$B$b>\$7$/=R$Y$F$$$k(B. $BB>$NJ88%$K$D$$$F$O(B, $B$3$l$i$NK\$NJ88%I=$r;2>H$7$F$[(B |
$B$b>\$7$/=R$Y$F$$$k(B. $BB>$NJ88%$K$D$$$F$O(B, $B$3$l$i$NK\$NJ88%I=$r;2>H$7$F$[(B |
$B$7$$(B. \cite{ASIR} $B$O%U%j!<$J7W;;5!Be?t%7%9%F%`(B($B?t<0=hM}%7%9%F%`(B)$B$G(B, |
$B$7$$(B. \cite{ASIR} $B$O%U%j!<$J7W;;5!Be?t%7%9%F%`(B($B?t<0=hM}%7%9%F%`(B)$B$G(B, |
\cite{NORO} $B$K=q$+$l$?%"%k%4%j%:%`$O$[$\<BAu$5$l$F$$$k(B. $B<B:]$K$I$NDxEY(B |
\cite{NORO} $B$K=q$+$l$?%"%k%4%j%:%`$O$[$\<BAu$5$l$F$$$k(B. $B<B:]$K$I$NDxEY(B |
$B;H$$$b$N$K$J$k$+;n$7$F$_$F$[$7$$(B. |
$B;H$$$b$N$K$J$k$+;n$7$F$_$F$[$7$$(B.\\ |
|
|
|
\noindent |
|
{\large\bf $BG[I[(B CD $B$K$D$$$F(B} |
|
\begin{enumerate} |
|
\item |
|
Windows $BHG(B Asir $B$K$O%$%s%9%H!<%i$,$"$j$^$;$s(B. $B$$$-$J$j5/F0$G$-$^$9(B. |
|
Asir $B$r5/F0$9$k$K$O(B, CDROM $B>e$N(B $B%U%)%k%@(B {\tt asir} $B$r3+$-(B,$B$5$i$K(B {\tt |
|
bin} $B%U%)%k%@$r3+$-(B {\tt asirgui} $B%"%$%3%s$r%@%V%k%/%j%C%/$7$^$9(B. $B%^(B |
|
$B%K%e%"%k(B({\tt index.html}), $BF~Lg=q(B({\tt index-asir-book.html})$B$J$I$b(B |
|
CDROM $B$K$$$l$F$"$j$^$9(B. Asir $B$N%[!<%`%Z!<%8$O(B, \\ |
|
{\tt http://www.math.kobe-u.ac.jp/Asir/asir.html} $B$G$9(B. {\tt asirgui} $B$O(B |
|
$B%G%9%/%H%C%W$X%3%T!<$9$k$HF0$-$^$;$s(B. $B%^%$%I%-%e%a%s%H$X$N%3%T!<$O(B($BB?(B |
|
$BJ,(B)$BBg>fIW$G$9(B. $B$?$@$7(B {\tt asir} $B%U%)%k%@A4BN$r%3%T!<$9$kI,MW$,$"$j$^(B |
|
$B$9(B. ({\tt asirgui} $B$OF|K\8l$N%Q%9L>$,$"$k$H%H%i%V%k$r5/$3$90Y(B. $B%G%9(B |
|
$B%/%H%C%W$OF|K\8l$N%Q%9L>$rMxMQ$7$F$$$k(B.) |
|
|
|
\item |
|
Asir $B$O%^%7%sL>$,F|K\8l$N>l9g(B, $BF0:n$,$*$+$7$/$J$j$^$9(B. |
|
$B<+J,$N%3%s%T%e!<%?$N%^%7%sL>$rD4$Y$k$K$O(B, $B%G%9%/%H%C%W$N(B |
|
$B%M%C%H%o!<%/%3%s%T%e!<%?%"%$%3%s$r%/%j%C%/$7$F2<$5$$(B. |
|
LAN $B$K@\B3$5$l$F$$$J$$>l9g$O(B, 1 $BBf$@$1%3%s%T%e!<%?$,I=<($5$l$^$9$,(B, |
|
$B$=$NL>A0$,<+J,$N%3%s%T%e!<%?$NL>A0$G$9(B. |
|
|
|
\item |
|
CDROM $B>e$N(B {\tt povwin3} $B$r%@%V%k%/%j%C%/$9$k$H(B, ray tracer povray $B$N(B |
|
$B%$%s%9%H!<%k$,;O$^$j$^$9(B. povray $B$NF|K\8l$N@bL@=q$H$7$F$O(B, $B%"%9%-!<=P(B |
|
$BHG6I$N!V(BPOV-Ray $B$G$O$8$a$k%l%$%H%l!<%7%s%0!W(B $B>.<<F|=P<yCx(B |
|
(ISBN4-7561-1831-3) $B$,$"$j$^$9(B. \\ |
|
{\tt http://hp.vector.co.jp/authors/VA000449/pov/} $B$r$_$k$H(B povray $B$K$D$$$F(B |
|
$B$N$$$m$s$J>pJs$rF@$k$3$H$,2DG=$G$9(B. |
|
|
|
\item |
|
$B?@8MBg3X?t3X65<<$N(B web page $B$KCV$$$F$"$k(B, $B6JLL$N2hA|=8$r<}O?$7$F$"$j$^(B |
|
$B$9(B.\\ |
|
{\tt web-math-kobe-u} $B%U%)%k%@$r3+$$$?$N$A(B, {\tt index.html} $B$r%@(B |
|
$B%V%k%/%j%C%/$7$F(B,$BI=<($5$l$?%Z!<%8$N(B Mathematical Diversion $B$r3+$-$^$9!#(B |
|
\end{enumerate} |
\end{document} |
\end{document} |
|
|