version 1.9, 2014/03/25 02:25:26 |
version 1.26, 2022/04/06 01:03:42 |
|
|
Package: hgm |
Package: hgm |
Type: Package |
Type: Package |
Depends: R (>= 2.6.0) |
Depends: R (>= 2.6.0), deSolve |
Depends: deSolve |
Title: Holonomic Gradient Method and Gradient Descent |
Title: Holonomic gradient method and gradient descent |
Version: 1.19 |
Version: 1.6 |
Date: 2022-04-06 |
Date: 2014-03-25 |
Author: Nobuki Takayama, Tamio Koyama, Tomonari Sei, Hiromasa Nakayama, Kenta Nishiyama |
Author: Nobuki Takayama, Tamio Koyama, Tomonari Sei |
|
Maintainer: Nobuki Takayama <takayama@math.kobe-u.ac.jp> |
Maintainer: Nobuki Takayama <takayama@math.kobe-u.ac.jp> |
Description: The holonomic gradient method (HGM, hgm) gives a way to evaluate normalization |
Description: The holonomic gradient method (HGM, hgm) gives a way to evaluate normalization |
constants of unnormalized probability distributions by utilizing holonomic |
constants of unnormalized probability distributions by utilizing holonomic |
systems of differential equations. The holonomic gradient descent (HGD, hgd) gives a method |
systems of differential or difference equations. The holonomic gradient descent (HGD, hgd) gives a method |
to find maximal likelihood estimates by utilizing the HGM. |
to find maximal likelihood estimates by utilizing the HGM. |
License: GPL-2 |
License: GPL-2 |
LazyLoad: yes |
LazyLoad: yes |
URL: http://www.openxm.org |
URL: http://www.openxm.org |
|
NeedsCompilation: yes |
|
Packaged: 2022-04-06 05:29:42 UTC; taka |