=================================================================== RCS file: /home/cvs/OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v retrieving revision 1.3 retrieving revision 1.12 diff -u -p -r1.3 -r1.12 --- OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd 2013/02/08 02:59:42 1.3 +++ OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd 2015/03/21 23:40:34 1.12 @@ -1,4 +1,4 @@ -%% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v 1.2 2013/02/08 01:27:01 takayama Exp $ +%% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v 1.11 2015/03/21 22:49:34 takayama Exp $ \name{hgm-package} \alias{hgm-package} \alias{HGM} @@ -8,9 +8,9 @@ HGM } \description{ -The holonomic gradient method (HGM, hgm) gives a way to evaluate normalization +The holonomic gradient method (HGM, hgm) gives a way to evaluate normalizing constants of unnormalized probability distributions by utilizing holonomic - systems of differential equations. + systems of differential or difference equations. The holonomic gradient descent (HGD, hgd) gives a method to find maximal likelihood estimates by utilizing the HGM. } @@ -18,22 +18,15 @@ The holonomic gradient method (HGM, hgm) gives a way t \tabular{ll}{ Package: \tab hgm\cr Type: \tab Package\cr -Version: \tab 1.0\cr -Date: \tab 2013-02-07\cr License: \tab GPL-2\cr LazyLoad: \tab yes\cr } The HGM and HGD are proposed in the paper below. -This method based on the fact that a broad class of normalization constants +This method based on the fact that a broad class of normalizing constants of unnormalized probability distributions belongs to the class of holonomic functions, which are solutions of holonomic systems of linear partial differential equations. } -\author{ -\itemize{ -\item Nobuki Takayama (takayama@math.kobe-u.ac.jp) -} -} \note{ This package includes a small subset of the Gnu scientific library codes (\url{http://www.gnu.org/software/gsl/}). @@ -45,12 +38,13 @@ partial differential equations. } \references{ \itemize{ -\item Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, - Tomonari Sei, Nobuki Takayama, Akimichi Takemura, +\item [N3OST2] Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, +Tomonari Sei, Nobuki Takayama, Akimichi Takemura, Holonomic Gradient Descent and its Application to Fisher-Bingham Integral, Advances in Applied Mathematics 47 (2011), 639--658, \url{http://dx.doi.org/10.1016/j.aam.2011.03.001} - +\item [dojo] Edited by T.Hibi, Groebner Bases: Statistics and Software Systems, Springer, 2013, +\url{http://dx.doi.org/10.1007/978-4-431-54574-3} \item \url{http://www.openxm.org} } } @@ -60,10 +54,19 @@ Advances in Applied Mathematics 47 (2011), 639--658, \keyword{ HGM } \keyword{ HGD } \seealso{ -\code{\link{hgm.so3nc}} +\code{\link{hgm.ncBingham}}, +\code{\link{hgm.ncorthant}}, +\code{\link{hgm.ncso3}}, +\code{\link{hgm.pwishart}}, +\code{\link{hgm.Rhgm}} +\code{\link{hgm.z.mleFBByOptim}}, } \examples{ \dontrun{ -example(hgm.so3nc) +example(hgm.ncBingham) +example(hgm.ncorthant) +example(hgm.ncso3) +example(hgm.pwishart) +example(hgm.Rhgm) } }