=================================================================== RCS file: /home/cvs/OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v retrieving revision 1.9 retrieving revision 1.12 diff -u -p -r1.9 -r1.12 --- OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd 2014/03/31 06:20:06 1.9 +++ OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd 2015/03/21 23:40:34 1.12 @@ -1,4 +1,4 @@ -%% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v 1.8 2014/03/31 00:49:51 takayama Exp $ +%% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v 1.11 2015/03/21 22:49:34 takayama Exp $ \name{hgm-package} \alias{hgm-package} \alias{HGM} @@ -8,9 +8,9 @@ HGM } \description{ -The holonomic gradient method (HGM, hgm) gives a way to evaluate normalization +The holonomic gradient method (HGM, hgm) gives a way to evaluate normalizing constants of unnormalized probability distributions by utilizing holonomic - systems of differential equations. + systems of differential or difference equations. The holonomic gradient descent (HGD, hgd) gives a method to find maximal likelihood estimates by utilizing the HGM. } @@ -22,7 +22,7 @@ License: \tab GPL-2\cr LazyLoad: \tab yes\cr } The HGM and HGD are proposed in the paper below. -This method based on the fact that a broad class of normalization constants +This method based on the fact that a broad class of normalizing constants of unnormalized probability distributions belongs to the class of holonomic functions, which are solutions of holonomic systems of linear partial differential equations. @@ -38,12 +38,13 @@ partial differential equations. } \references{ \itemize{ -\item Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, -[N3OST2] Tomonari Sei, Nobuki Takayama, Akimichi Takemura, +\item [N3OST2] Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, +Tomonari Sei, Nobuki Takayama, Akimichi Takemura, Holonomic Gradient Descent and its Application to Fisher-Bingham Integral, Advances in Applied Mathematics 47 (2011), 639--658, \url{http://dx.doi.org/10.1016/j.aam.2011.03.001} - +\item [dojo] Edited by T.Hibi, Groebner Bases: Statistics and Software Systems, Springer, 2013, +\url{http://dx.doi.org/10.1007/978-4-431-54574-3} \item \url{http://www.openxm.org} } } @@ -53,12 +54,12 @@ Advances in Applied Mathematics 47 (2011), 639--658, \keyword{ HGM } \keyword{ HGD } \seealso{ -\code{\link{hgm.mleFBByOptim}} -\code{\link{hgm.ncBingham}} -\code{\link{hgm.ncorthant}} -\code{\link{hgm.ncso3}} -\code{\link{hgm.pwishart}} +\code{\link{hgm.ncBingham}}, +\code{\link{hgm.ncorthant}}, +\code{\link{hgm.ncso3}}, +\code{\link{hgm.pwishart}}, \code{\link{hgm.Rhgm}} +\code{\link{hgm.z.mleFBByOptim}}, } \examples{ \dontrun{